Logiweb codex of peano commutativity in pyk
Up
Help
ref-2-id-55
axiom prime a one
ref-2-id-56
axiom prime a two
ref-2-id-57
axiom prime a three
ref-2-id-58
axiom prime a four
ref-2-id-59
axiom prime a five
ref-2-id-60
axiom prime s one
ref-2-id-61
axiom prime s two
ref-2-id-62
axiom prime s three
ref-2-id-63
axiom prime s four
ref-2-id-64
axiom prime s five
ref-2-id-65
axiom prime s six
ref-2-id-66
axiom prime s seven
ref-2-id-67
axiom prime s eight
ref-2-id-68
axiom prime s nine
ref-2-id-69
rule prime mp
ref-2-id-70
rule prime gen
ref-0-id-0
peano commutativity
ref-0-id-1
weakening
ref-0-id-2
conditioned mp prime
ref-0-id-3
permute antecedents
ref-0-id-4
imply transitivity
ref-0-id-5
equal reflexivity
ref-0-id-6
equal symmetry
ref-0-id-7
equal transitivity
ref-0-id-8
mendelson three two d
ref-0-id-9
substitution macro
ref-0-id-10
mendelson three two f base
ref-0-id-11
mendelson three two f induction
ref-0-id-12
mendelson three two f
ref-0-id-13
mendelson three two g base
ref-0-id-14
mendelson three two g induction
ref-0-id-15
mendelson three two g
ref-0-id-16
mendelson three two g rt switch
ref-0-id-17
add one
ref-0-id-18
mendelson three two d rule
ref-0-id-19
mendelson three two d conditioned rule
ref-0-id-20
equal transitivity rule
ref-0-id-21
equal transitivity conditioned rule
ref-0-id-22
plus commutativity base
ref-0-id-23
plus commutativity induction
ref-0-id-24
plus commutativity
ref-0-id-25
double mp prime
ref-0-id-26
induction macro
ref-0-id-27
equal symmetry rule
ref-0-id-28
double conditioned mp prime
The pyk compiler
, version 0.grue.20050603 by
Klaus Grue
,
GRD-2005-06-29.UTC:11:26:23.740136
=
MJD-53550.TAI:11:26:55.740136
=
LGT-4626761215740136e-6