Logiweb(TM)

Logiweb codex of peano commutativity in pyk

Up Help

ref-2-id-55 axiom prime a one
ref-2-id-56 axiom prime a two
ref-2-id-57 axiom prime a three
ref-2-id-58 axiom prime a four
ref-2-id-59 axiom prime a five
ref-2-id-60 axiom prime s one
ref-2-id-61 axiom prime s two
ref-2-id-62 axiom prime s three
ref-2-id-63 axiom prime s four
ref-2-id-64 axiom prime s five
ref-2-id-65 axiom prime s six
ref-2-id-66 axiom prime s seven
ref-2-id-67 axiom prime s eight
ref-2-id-68 axiom prime s nine
ref-2-id-69 rule prime mp
ref-2-id-70 rule prime gen
ref-0-id-0 peano commutativity
ref-0-id-1 weakening
ref-0-id-2 conditioned mp prime
ref-0-id-3 permute antecedents
ref-0-id-4 imply transitivity
ref-0-id-5 equal reflexivity
ref-0-id-6 equal symmetry
ref-0-id-7 equal transitivity
ref-0-id-8 mendelson three two d
ref-0-id-9 substitution macro
ref-0-id-10 mendelson three two f base
ref-0-id-11 mendelson three two f induction
ref-0-id-12 mendelson three two f
ref-0-id-13 mendelson three two g base
ref-0-id-14 mendelson three two g induction
ref-0-id-15 mendelson three two g
ref-0-id-16 mendelson three two g rt switch
ref-0-id-17 add one
ref-0-id-18 mendelson three two d rule
ref-0-id-19 mendelson three two d conditioned rule
ref-0-id-20 equal transitivity rule
ref-0-id-21 equal transitivity conditioned rule
ref-0-id-22 plus commutativity base
ref-0-id-23 plus commutativity induction
ref-0-id-24 plus commutativity
ref-0-id-25 double mp prime
ref-0-id-26 induction macro
ref-0-id-27 equal symmetry rule
ref-0-id-28 double conditioned mp prime

The pyk compiler, version 0.grue.20050603 by Klaus Grue,
GRD-2005-06-29.UTC:11:26:23.740136 = MJD-53550.TAI:11:26:55.740136 = LGT-4626761215740136e-6