Logiweb(TM)

Logiweb aspects of mendelson three two f induction in pyk

Up Help

The predefined "pyk" aspect

define pyk of mendelson three two f induction as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small f unicode space unicode small i unicode small n unicode small d unicode small u unicode small c unicode small t unicode small i unicode small o unicode small n unicode end of text end unicode text end text end define

The predefined "tex" aspect

define tex of mendelson three two f induction as text unicode start of text unicode capital m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode three unicode period unicode two unicode left parenthesis unicode small f unicode right parenthesis unicode capital i unicode small n unicode small d unicode small u unicode end of text end unicode text end text end define

The user defined "the statement aspect" aspect

define statement of mendelson three two f induction as system prime s infer ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( var t peano var peano succ peano is ( peano zero peano plus ( var t peano var peano succ ) ) ) ) end define

The user defined "the proof aspect" aspect

define proof of mendelson three two f induction as lambda var c dot lambda var x dot proof expand quote system prime s infer ( ( axiom prime s two conclude ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( var t peano var peano succ peano is ( ( peano zero peano plus ( var t peano var ) ) peano succ ) ) ) ) cut ( ( axiom prime s six conclude ( ( peano zero peano plus ( var t peano var peano succ ) ) peano is ( ( peano zero peano plus ( var t peano var ) ) peano succ ) ) ) cut ( ( ( weakening modus ponens ( ( peano zero peano plus ( var t peano var peano succ ) ) peano is ( ( peano zero peano plus ( var t peano var ) ) peano succ ) ) ) conclude ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( ( peano zero peano plus ( var t peano var peano succ ) ) peano is ( ( peano zero peano plus ( var t peano var ) ) peano succ ) ) ) ) cut ( ( ( mendelson three two d conditioned rule modus ponens ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( var t peano var peano succ peano is ( ( peano zero peano plus ( var t peano var ) ) peano succ ) ) ) ) modus ponens ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( ( peano zero peano plus ( var t peano var peano succ ) ) peano is ( ( peano zero peano plus ( var t peano var ) ) peano succ ) ) ) ) conclude ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( var t peano var peano succ peano is ( peano zero peano plus ( var t peano var peano succ ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define

The pyk compiler, version 0.grue.20050603 by Klaus Grue,
GRD-2005-06-29.UTC:11:26:23.740136 = MJD-53550.TAI:11:26:55.740136 = LGT-4626761215740136e-6