define pyk of equal reflexivity as text unicode start of text unicode small e unicode small q unicode small u unicode small a unicode small l unicode space unicode small r unicode small e unicode small f unicode small l unicode small e unicode small x unicode small i unicode small v unicode small i unicode small t unicode small y unicode end of text end unicode text end text end define
define tex of equal reflexivity as text unicode start of text unicode capital e unicode small q unicode small u unicode small a unicode small l unicode capital r unicode small e unicode small f unicode small l unicode small e unicode small x unicode small i unicode small v unicode small i unicode small t unicode small y unicode end of text end unicode text end text end define
define statement of equal reflexivity as system prime s infer all metavar var t end metavar indeed ( metavar var t end metavar peano is metavar var t end metavar ) end define
define proof of equal reflexivity as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var t end metavar indeed ( ( axiom prime s five conclude ( ( metavar var t end metavar peano plus peano zero ) peano is metavar var t end metavar ) ) cut ( ( axiom prime s one conclude ( ( ( metavar var t end metavar peano plus peano zero ) peano is metavar var t end metavar ) peano imply ( ( ( metavar var t end metavar peano plus peano zero ) peano is metavar var t end metavar ) peano imply ( metavar var t end metavar peano is metavar var t end metavar ) ) ) ) cut ( ( ( ( double mp prime modus ponens ( ( ( metavar var t end metavar peano plus peano zero ) peano is metavar var t end metavar ) peano imply ( ( ( metavar var t end metavar peano plus peano zero ) peano is metavar var t end metavar ) peano imply ( metavar var t end metavar peano is metavar var t end metavar ) ) ) ) modus ponens ( ( metavar var t end metavar peano plus peano zero ) peano is metavar var t end metavar ) ) modus ponens ( ( metavar var t end metavar peano plus peano zero ) peano is metavar var t end metavar ) ) conclude ( metavar var t end metavar peano is metavar var t end metavar ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,