define pyk of mendelson three two d conditioned rule as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small d unicode space unicode small c unicode small o unicode small n unicode small d unicode small i unicode small t unicode small i unicode small o unicode small n unicode small e unicode small d unicode space unicode small r unicode small u unicode small l unicode small e unicode end of text end unicode text end text end define
define tex of mendelson three two d conditioned rule as text unicode start of text unicode capital m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode three unicode period unicode two unicode left parenthesis unicode small d unicode right parenthesis unicode capital c unicode small o unicode small n unicode small d unicode capital r unicode small u unicode small l unicode small e unicode end of text end unicode text end text end define
define statement of mendelson three two d conditioned rule as system prime s infer all metavar var a end metavar indeed all metavar var t end metavar indeed all metavar var r end metavar indeed all metavar var s end metavar indeed ( ( metavar var a end metavar peano imply ( metavar var t end metavar peano is metavar var r end metavar ) ) infer ( ( metavar var a end metavar peano imply ( metavar var s end metavar peano is metavar var r end metavar ) ) infer ( metavar var a end metavar peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) ) end define
define proof of mendelson three two d conditioned rule as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var a end metavar indeed all metavar var t end metavar indeed all metavar var r end metavar indeed all metavar var s end metavar indeed ( ( metavar var a end metavar peano imply ( metavar var t end metavar peano is metavar var r end metavar ) ) infer ( ( metavar var a end metavar peano imply ( metavar var s end metavar peano is metavar var r end metavar ) ) infer ( ( mendelson three two d conclude ( ( metavar var t end metavar peano is metavar var r end metavar ) peano imply ( ( metavar var s end metavar peano is metavar var r end metavar ) peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) ) cut ( ( ( weakening modus ponens ( ( metavar var t end metavar peano is metavar var r end metavar ) peano imply ( ( metavar var s end metavar peano is metavar var r end metavar ) peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) ) conclude ( metavar var a end metavar peano imply ( ( metavar var t end metavar peano is metavar var r end metavar ) peano imply ( ( metavar var s end metavar peano is metavar var r end metavar ) peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) ) ) cut ( ( ( ( double conditioned mp prime modus ponens ( metavar var a end metavar peano imply ( ( metavar var t end metavar peano is metavar var r end metavar ) peano imply ( ( metavar var s end metavar peano is metavar var r end metavar ) peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) ) ) modus ponens ( metavar var a end metavar peano imply ( metavar var t end metavar peano is metavar var r end metavar ) ) ) modus ponens ( metavar var a end metavar peano imply ( metavar var s end metavar peano is metavar var r end metavar ) ) ) conclude ( metavar var a end metavar peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,