define pyk of induction macro as text unicode start of text unicode small i unicode small n unicode small d unicode small u unicode small c unicode small t unicode small i unicode small o unicode small n unicode space unicode small m unicode small a unicode small c unicode small r unicode small o unicode end of text end unicode text end text end define
define tex of induction macro as text unicode start of text unicode capital i unicode small n unicode small d unicode small u unicode small c unicode small t unicode small i unicode small o unicode small n unicode capital m unicode small a unicode small c unicode small r unicode small o unicode end of text end unicode text end text end define
define statement of induction macro as system prime s infer all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed all metavar var z end metavar indeed ( peano sub quote metavar var a end metavar end quote is quote metavar var a end metavar end quote where quote metavar var z end metavar end quote is quote metavar var z end metavar end quote end sub endorse ( peano sub metavar var b end metavar is metavar var a end metavar where metavar var z end metavar is peano zero end sub endorse ( peano sub metavar var c end metavar is metavar var a end metavar where metavar var z end metavar is metavar var z end metavar peano succ end sub endorse ( metavar var b end metavar infer ( ( metavar var a end metavar peano imply metavar var c end metavar ) infer metavar var a end metavar ) ) ) ) ) end define
define proof of induction macro as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed all metavar var z end metavar indeed ( peano sub quote metavar var a end metavar end quote is quote metavar var a end metavar end quote where quote metavar var z end metavar end quote is quote metavar var z end metavar end quote end sub endorse ( peano sub metavar var b end metavar is metavar var a end metavar where metavar var z end metavar is peano zero end sub endorse ( peano sub metavar var c end metavar is metavar var a end metavar where metavar var z end metavar is metavar var z end metavar peano succ end sub endorse ( metavar var b end metavar infer ( ( metavar var a end metavar peano imply metavar var c end metavar ) infer ( ( ( rule prime gen modus ponens ( metavar var a end metavar peano imply metavar var c end metavar ) ) conclude peano all metavar var z end metavar indeed ( metavar var a end metavar peano imply metavar var c end metavar ) ) cut ( ( ( ( axiom prime s nine modus probans peano sub metavar var b end metavar is metavar var a end metavar where metavar var z end metavar is peano zero end sub ) modus probans peano sub metavar var c end metavar is metavar var a end metavar where metavar var z end metavar is metavar var z end metavar peano succ end sub ) conclude ( metavar var b end metavar peano imply ( ( peano all metavar var z end metavar indeed ( metavar var a end metavar peano imply metavar var c end metavar ) ) peano imply peano all metavar var z end metavar indeed metavar var a end metavar ) ) ) cut ( ( ( ( ( double mp prime modus ponens ( metavar var b end metavar peano imply ( ( peano all metavar var z end metavar indeed ( metavar var a end metavar peano imply metavar var c end metavar ) ) peano imply peano all metavar var z end metavar indeed metavar var a end metavar ) ) ) modus ponens metavar var b end metavar ) modus ponens peano all metavar var z end metavar indeed ( metavar var a end metavar peano imply metavar var c end metavar ) ) conclude peano all metavar var z end metavar indeed metavar var a end metavar ) cut ( ( ( axiom prime a four modus probans peano sub quote metavar var a end metavar end quote is quote metavar var a end metavar end quote where quote metavar var z end metavar end quote is quote metavar var z end metavar end quote end sub ) conclude ( ( peano all metavar var z end metavar indeed metavar var a end metavar ) peano imply metavar var a end metavar ) ) cut ( ( ( rule prime mp modus ponens ( ( peano all metavar var z end metavar indeed metavar var a end metavar ) peano imply metavar var a end metavar ) ) modus ponens peano all metavar var z end metavar indeed metavar var a end metavar ) conclude metavar var a end metavar ) ) ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,