Logiweb(TM)

Logiweb aspects of double conditioned mp prime in pyk

Up Help

The predefined "pyk" aspect

define pyk of double conditioned mp prime as text unicode start of text unicode small d unicode small o unicode small u unicode small b unicode small l unicode small e unicode space unicode small c unicode small o unicode small n unicode small d unicode small i unicode small t unicode small i unicode small o unicode small n unicode small e unicode small d unicode space unicode small m unicode small p unicode space unicode small p unicode small r unicode small i unicode small m unicode small e unicode end of text end unicode text end text end define

The predefined "tex" aspect

define tex of double conditioned mp prime as text unicode start of text unicode capital d unicode small o unicode small u unicode small b unicode small l unicode small e unicode capital c unicode small o unicode small n unicode small d unicode small i unicode small t unicode small i unicode small o unicode small n unicode small e unicode small d unicode capital m unicode capital p unicode apostrophe unicode end of text end unicode text end text end define

The user defined "the statement aspect" aspect

define statement of double conditioned mp prime as system prime s infer all metavar var a end metavar indeed all metavar var d end metavar indeed all metavar var e end metavar indeed all metavar var f end metavar indeed ( ( metavar var a end metavar peano imply ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) ) infer ( ( metavar var a end metavar peano imply metavar var d end metavar ) infer ( ( metavar var a end metavar peano imply metavar var e end metavar ) infer ( metavar var a end metavar peano imply metavar var f end metavar ) ) ) ) end define

The user defined "the proof aspect" aspect

define proof of double conditioned mp prime as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var a end metavar indeed all metavar var d end metavar indeed all metavar var e end metavar indeed all metavar var f end metavar indeed ( ( metavar var a end metavar peano imply ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) ) infer ( ( metavar var a end metavar peano imply metavar var d end metavar ) infer ( ( metavar var a end metavar peano imply metavar var e end metavar ) infer ( ( ( ( conditioned mp prime modus ponens ( metavar var a end metavar peano imply ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) ) ) modus ponens ( metavar var a end metavar peano imply metavar var d end metavar ) ) conclude ( metavar var a end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) ) cut ( ( ( conditioned mp prime modus ponens ( metavar var a end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) ) modus ponens ( metavar var a end metavar peano imply metavar var e end metavar ) ) conclude ( metavar var a end metavar peano imply metavar var f end metavar ) ) ) ) ) ) end quote state proof state cache var c end expand end define

The pyk compiler, version 0.grue.20050603 by Klaus Grue,
GRD-2005-06-29.UTC:11:26:23.740136 = MJD-53550.TAI:11:26:55.740136 = LGT-4626761215740136e-6