define pyk of permute antecedents as text unicode start of text unicode small p unicode small e unicode small r unicode small m unicode small u unicode small t unicode small e unicode space unicode small a unicode small n unicode small t unicode small e unicode small c unicode small e unicode small d unicode small e unicode small n unicode small t unicode small s unicode end of text end unicode text end text end define
define tex of permute antecedents as text unicode start of text unicode capital p unicode small e unicode small r unicode small m unicode small u unicode small t unicode small e unicode capital a unicode small n unicode small t unicode small e unicode small c unicode small e unicode small d unicode small e unicode small n unicode small t unicode small s unicode end of text end unicode text end text end define
define statement of permute antecedents as system prime s infer all metavar var d end metavar indeed all metavar var e end metavar indeed all metavar var f end metavar indeed ( ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) infer ( metavar var e end metavar peano imply ( metavar var d end metavar peano imply metavar var f end metavar ) ) ) end define
define proof of permute antecedents as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var d end metavar indeed all metavar var e end metavar indeed all metavar var f end metavar indeed ( ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) infer ( ( ( weakening modus ponens ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) ) conclude ( metavar var e end metavar peano imply ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) ) ) cut ( ( axiom prime a two conclude ( ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) peano imply ( ( metavar var d end metavar peano imply metavar var e end metavar ) peano imply ( metavar var d end metavar peano imply metavar var f end metavar ) ) ) ) cut ( ( ( weakening modus ponens ( ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) peano imply ( ( metavar var d end metavar peano imply metavar var e end metavar ) peano imply ( metavar var d end metavar peano imply metavar var f end metavar ) ) ) ) conclude ( metavar var e end metavar peano imply ( ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) peano imply ( ( metavar var d end metavar peano imply metavar var e end metavar ) peano imply ( metavar var d end metavar peano imply metavar var f end metavar ) ) ) ) ) cut ( ( ( ( conditioned mp prime modus ponens ( metavar var e end metavar peano imply ( ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) peano imply ( ( metavar var d end metavar peano imply metavar var e end metavar ) peano imply ( metavar var d end metavar peano imply metavar var f end metavar ) ) ) ) ) modus ponens ( metavar var e end metavar peano imply ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) ) ) conclude ( metavar var e end metavar peano imply ( ( metavar var d end metavar peano imply metavar var e end metavar ) peano imply ( metavar var d end metavar peano imply metavar var f end metavar ) ) ) ) cut ( ( axiom prime a one conclude ( metavar var e end metavar peano imply ( metavar var d end metavar peano imply metavar var e end metavar ) ) ) cut ( ( ( conditioned mp prime modus ponens ( metavar var e end metavar peano imply ( ( metavar var d end metavar peano imply metavar var e end metavar ) peano imply ( metavar var d end metavar peano imply metavar var f end metavar ) ) ) ) modus ponens ( metavar var e end metavar peano imply ( metavar var d end metavar peano imply metavar var e end metavar ) ) ) conclude ( metavar var e end metavar peano imply ( metavar var d end metavar peano imply metavar var f end metavar ) ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,