Logiweb codex of proofreport in pyk
Up
Help
ref-0-id-0
proofreport
ref-0-id-1
peano zero
ref-0-id-2
peano one
ref-0-id-3
peano two
ref-0-id-4
peano a
ref-0-id-5
peano b
ref-0-id-6
peano c
ref-0-id-7
peano d
ref-0-id-8
peano e
ref-0-id-9
peano f
ref-0-id-10
peano g
ref-0-id-11
peano h
ref-0-id-12
peano i
ref-0-id-13
peano j
ref-0-id-14
peano k
ref-0-id-15
peano l
ref-0-id-16
peano m
ref-0-id-17
peano n
ref-0-id-18
peano o
ref-0-id-19
peano p
ref-0-id-20
peano q
ref-0-id-21
peano r
ref-0-id-22
peano s
ref-0-id-23
peano t
ref-0-id-24
peano u
ref-0-id-25
peano v
ref-0-id-26
peano w
ref-0-id-27
peano x
ref-0-id-28
peano y
ref-0-id-29
peano z
ref-0-id-30
peano nonfree * in * end nonfree
ref-0-id-31
peano nonfree star * in * end nonfree
ref-0-id-32
peano free * set * to * end free
ref-0-id-33
peano free star * set * to * end free
ref-0-id-34
peano sub * is * where * is * end sub
ref-0-id-35
peano sub star * is * where * is * end sub
ref-0-id-36
system prime s
ref-0-id-37
axiom prime a one
ref-0-id-38
axiom prime a two
ref-0-id-39
axiom prime a three
ref-0-id-40
axiom prime a four
ref-0-id-41
axiom prime a five
ref-0-id-42
axiom prime s one
ref-0-id-43
axiom prime s two
ref-0-id-44
axiom prime s three
ref-0-id-45
axiom prime s four
ref-0-id-46
axiom prime s five
ref-0-id-47
axiom prime s six
ref-0-id-48
axiom prime s seven
ref-0-id-49
axiom prime s eight
ref-0-id-50
axiom prime s nine
ref-0-id-51
rule prime mp
ref-0-id-52
rule prime gen
ref-0-id-53
lemma prime l three two a
ref-0-id-57
lemma prime l three two b
ref-0-id-58
lemma prime l three two c
ref-0-id-59
lemma prime l three two d one
ref-0-id-60
lemma prime l three two d two
ref-0-id-61
lemma prime l three two f
ref-0-id-62
lemma prime l three two g
ref-0-id-63
lemma prime l three two h one
ref-0-id-64
lemma prime l three two h two
ref-0-id-65
lemma prime l three two h
ref-0-id-67
hypothetical three two d
ref-0-id-68
mendelson corollary one ten a
ref-0-id-69
mendelson corollary one ten b
ref-0-id-70
mendelson corollary one ten pre b
ref-0-id-71
mendelson corollary one ten b plus plus
ref-0-id-72
hypothetical rule prime mp plus plus
ref-0-id-73
hypothesize plus plus
ref-0-id-74
mendelson one seven plus plus
ref-0-id-75
mendelson one seven
ref-0-id-76
hypothetical rule prime mp
ref-0-id-77
hypothesize
ref-0-id-78
hypothetical rule prime gen
ref-0-id-79
mendelson three two a
ref-0-id-80
hypothetical three two a
ref-0-id-81
hypothetical three two b
ref-0-id-82
hypothetical three one s one
ref-0-id-83
hypothetical three two c
ref-0-id-84
hypothetical three one s two
ref-0-id-85
hypothetical three one s five
ref-0-id-86
hypothetical three one s six
ref-0-id-87
mendelson three two f
ref-0-id-88
* peano var
ref-0-id-89
* peano succ
ref-0-id-90
* peano times *
ref-0-id-91
* peano plus *
ref-0-id-92
* peano is *
ref-0-id-93
* is peano var
ref-0-id-94
peano not *
ref-0-id-95
* peano and *
ref-0-id-96
* peano or *
ref-0-id-97
peano all * indeed *
ref-0-id-98
peano exist * indeed *
ref-0-id-99
* peano imply *
ref-0-id-100
* peano iff *
ref-0-id-101
* macro modus ponens *
ref-0-id-102
* hypothetical modus ponens *
The pyk compiler
, version 0.grue.20050603 by
Klaus Grue
,
GRD-2005-07-04.UTC:09:35:58.146674
=
MJD-53555.TAI:09:36:30.146674
=
LGT-4627186590146674e-6