define pyk of lemma prime l three two g as text unicode start of text unicode space unicode small l unicode small e unicode small m unicode small m unicode small a unicode space unicode small p unicode small r unicode small i unicode small m unicode small e unicode space unicode small l unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small g unicode end of text end unicode text end text end define
define tex of lemma prime l three two g as text unicode start of text unicode capital m unicode three unicode period unicode two unicode left parenthesis unicode small g unicode right parenthesis unicode end of text end unicode text end text end define
define statement of lemma prime l three two g as system prime s infer ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) end define
define proof of lemma prime l three two g as lambda var c dot lambda var x dot proof expand quote system prime s infer ( ( axiom prime s five conclude ( ( var y peano var peano succ peano plus peano zero ) peano is ( var y peano var peano succ ) ) ) cut ( ( axiom prime s five conclude ( ( var y peano var peano plus peano zero ) peano is ( var y peano var ) ) ) cut ( ( axiom prime s two conclude ( ( ( var y peano var peano plus peano zero ) peano is ( var y peano var ) ) peano imply ( ( var y peano var peano plus peano zero ) peano succ peano is ( var y peano var peano succ ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( ( var y peano var peano plus peano zero ) peano is ( var y peano var ) ) peano imply ( ( var y peano var peano plus peano zero ) peano succ peano is ( var y peano var peano succ ) ) ) ) modus ponens ( ( var y peano var peano plus peano zero ) peano is ( var y peano var ) ) ) conclude ( ( var y peano var peano plus peano zero ) peano succ peano is ( var y peano var peano succ ) ) ) cut ( ( lemma prime l three two d two conclude ( ( ( var y peano var peano succ peano plus peano zero ) peano is ( var y peano var peano succ ) ) peano imply ( ( ( var y peano var peano plus peano zero ) peano succ peano is ( var y peano var peano succ ) ) peano imply ( ( var y peano var peano succ peano plus peano zero ) peano is ( ( var y peano var peano plus peano zero ) peano succ ) ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( ( var y peano var peano succ peano plus peano zero ) peano is ( var y peano var peano succ ) ) peano imply ( ( ( var y peano var peano plus peano zero ) peano succ peano is ( var y peano var peano succ ) ) peano imply ( ( var y peano var peano succ peano plus peano zero ) peano is ( ( var y peano var peano plus peano zero ) peano succ ) ) ) ) ) modus ponens ( ( var y peano var peano succ peano plus peano zero ) peano is ( var y peano var peano succ ) ) ) conclude ( ( ( var y peano var peano plus peano zero ) peano succ peano is ( var y peano var peano succ ) ) peano imply ( ( var y peano var peano succ peano plus peano zero ) peano is ( ( var y peano var peano plus peano zero ) peano succ ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( ( var y peano var peano plus peano zero ) peano succ peano is ( var y peano var peano succ ) ) peano imply ( ( var y peano var peano succ peano plus peano zero ) peano is ( ( var y peano var peano plus peano zero ) peano succ ) ) ) ) modus ponens ( ( var y peano var peano plus peano zero ) peano succ peano is ( var y peano var peano succ ) ) ) conclude ( ( var y peano var peano succ peano plus peano zero ) peano is ( ( var y peano var peano plus peano zero ) peano succ ) ) ) cut ( ( mendelson one seven conclude ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) cut ( ( hypothetical three one s six conclude ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var peano succ ) ) peano is ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano succ ) ) ) ) cut ( ( ( hypothetical three one s two modus ponens ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) conclude ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano succ peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ peano succ ) ) ) ) cut ( ( ( ( hypothetical three two c modus ponens ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var peano succ ) ) peano is ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano succ ) ) ) ) modus ponens ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano succ peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ peano succ ) ) ) ) conclude ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var peano succ ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ peano succ ) ) ) ) cut ( ( hypothetical three one s six conclude ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano plus ( var x peano var peano succ ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) cut ( ( ( hypothetical three one s two modus ponens ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano plus ( var x peano var peano succ ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) conclude ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano plus ( var x peano var peano succ ) ) peano succ peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ peano succ ) ) ) ) cut ( ( ( ( hypothetical three two d modus ponens ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var peano succ ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ peano succ ) ) ) ) modus ponens ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano plus ( var x peano var peano succ ) ) peano succ peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ peano succ ) ) ) ) conclude ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var peano succ ) ) peano is ( ( var y peano var peano plus ( var x peano var peano succ ) ) peano succ ) ) ) ) cut ( ( axiom prime s nine conclude ( ( ( var y peano var peano succ peano plus peano zero ) peano is ( ( var y peano var peano plus peano zero ) peano succ ) ) peano imply ( ( peano all var x peano var indeed ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var peano succ ) ) peano is ( ( var y peano var peano plus ( var x peano var peano succ ) ) peano succ ) ) ) ) peano imply peano all var x peano var indeed ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( ( var y peano var peano succ peano plus peano zero ) peano is ( ( var y peano var peano plus peano zero ) peano succ ) ) peano imply ( ( peano all var x peano var indeed ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var peano succ ) ) peano is ( ( var y peano var peano plus ( var x peano var peano succ ) ) peano succ ) ) ) ) peano imply peano all var x peano var indeed ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) ) modus ponens ( ( var y peano var peano succ peano plus peano zero ) peano is ( ( var y peano var peano plus peano zero ) peano succ ) ) ) conclude ( ( peano all var x peano var indeed ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var peano succ ) ) peano is ( ( var y peano var peano plus ( var x peano var peano succ ) ) peano succ ) ) ) ) peano imply peano all var x peano var indeed ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) cut ( ( ( rule prime gen modus ponens ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var peano succ ) ) peano is ( ( var y peano var peano plus ( var x peano var peano succ ) ) peano succ ) ) ) ) conclude peano all var x peano var indeed ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var peano succ ) ) peano is ( ( var y peano var peano plus ( var x peano var peano succ ) ) peano succ ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( peano all var x peano var indeed ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var peano succ ) ) peano is ( ( var y peano var peano plus ( var x peano var peano succ ) ) peano succ ) ) ) ) peano imply peano all var x peano var indeed ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) modus ponens peano all var x peano var indeed ( ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var peano succ ) ) peano is ( ( var y peano var peano plus ( var x peano var peano succ ) ) peano succ ) ) ) ) conclude peano all var x peano var indeed ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) cut ( ( ( axiom prime a four at ( var x peano var ) ) conclude ( ( peano all var x peano var indeed ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) cut ( ( ( rule prime mp modus ponens ( ( peano all var x peano var indeed ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) modus ponens peano all var x peano var indeed ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) conclude ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,