Logiweb(TM)

Logiweb aspects of hypothetical three two c in pyk

Up Help

The predefined "pyk" aspect

define pyk of hypothetical three two c as text unicode start of text unicode small h unicode small y unicode small p unicode small o unicode small t unicode small h unicode small e unicode small t unicode small i unicode small c unicode small a unicode small l unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small c unicode end of text end unicode text end text end define

The predefined "tex" aspect

define tex of hypothetical three two c as text unicode start of text unicode newline unicode capital m unicode three unicode period unicode two unicode left parenthesis unicode small c unicode right parenthesis unicode underscore unicode small h unicode end of text end unicode text end text end define

The user defined "the statement aspect" aspect

define statement of hypothetical three two c as system prime s infer all metavar var h end metavar indeed all metavar var t end metavar indeed all metavar var r end metavar indeed all metavar var s end metavar indeed ( ( metavar var h end metavar peano imply ( metavar var t end metavar peano is metavar var r end metavar ) ) infer ( ( metavar var h end metavar peano imply ( metavar var r end metavar peano is metavar var s end metavar ) ) infer ( metavar var h end metavar peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) ) end define

The user defined "the proof aspect" aspect

define proof of hypothetical three two c as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var h end metavar indeed all metavar var t end metavar indeed all metavar var r end metavar indeed all metavar var s end metavar indeed ( ( metavar var h end metavar peano imply ( metavar var t end metavar peano is metavar var r end metavar ) ) infer ( ( metavar var h end metavar peano imply ( metavar var r end metavar peano is metavar var s end metavar ) ) infer ( ( lemma prime l three two c conclude ( ( metavar var t end metavar peano is metavar var r end metavar ) peano imply ( ( metavar var r end metavar peano is metavar var s end metavar ) peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) ) cut ( ( ( hypothesize modus ponens ( ( metavar var t end metavar peano is metavar var r end metavar ) peano imply ( ( metavar var r end metavar peano is metavar var s end metavar ) peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) ) conclude ( metavar var h end metavar peano imply ( ( metavar var t end metavar peano is metavar var r end metavar ) peano imply ( ( metavar var r end metavar peano is metavar var s end metavar ) peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) ) ) cut ( ( ( ( hypothetical rule prime mp modus ponens ( metavar var h end metavar peano imply ( ( metavar var t end metavar peano is metavar var r end metavar ) peano imply ( ( metavar var r end metavar peano is metavar var s end metavar ) peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) ) ) modus ponens ( metavar var h end metavar peano imply ( metavar var t end metavar peano is metavar var r end metavar ) ) ) conclude ( metavar var h end metavar peano imply ( ( metavar var r end metavar peano is metavar var s end metavar ) peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) ) cut ( ( ( hypothetical rule prime mp modus ponens ( metavar var h end metavar peano imply ( ( metavar var r end metavar peano is metavar var s end metavar ) peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) ) modus ponens ( metavar var h end metavar peano imply ( metavar var r end metavar peano is metavar var s end metavar ) ) ) conclude ( metavar var h end metavar peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define

The pyk compiler, version 0.grue.20050603 by Klaus Grue,
GRD-2005-07-04.UTC:09:35:58.146674 = MJD-53555.TAI:09:36:30.146674 = LGT-4627186590146674e-6