Logiweb(TM)

Logiweb aspects of lemma prime l three two d two in pyk

Up Help

The predefined "pyk" aspect

define pyk of lemma prime l three two d two as text unicode start of text unicode space unicode small l unicode small e unicode small m unicode small m unicode small a unicode space unicode small p unicode small r unicode small i unicode small m unicode small e unicode space unicode small l unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small d unicode space unicode small t unicode small w unicode small o unicode end of text end unicode text end text end define

The predefined "tex" aspect

define tex of lemma prime l three two d two as text unicode start of text unicode capital m unicode three unicode period unicode two unicode left parenthesis unicode small d unicode right parenthesis unicode space unicode left parenthesis unicode capital i unicode capital i unicode right parenthesis unicode end of text end unicode text end text end define

The user defined "the statement aspect" aspect

define statement of lemma prime l three two d two as system prime s infer all metavar var t end metavar indeed all metavar var r end metavar indeed all metavar var s end metavar indeed ( ( metavar var r end metavar peano is metavar var t end metavar ) peano imply ( ( metavar var s end metavar peano is metavar var t end metavar ) peano imply ( metavar var r end metavar peano is metavar var s end metavar ) ) ) end define

The user defined "the proof aspect" aspect

define proof of lemma prime l three two d two as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var t end metavar indeed all metavar var r end metavar indeed all metavar var s end metavar indeed ( ( lemma prime l three two d one conclude ( ( metavar var s end metavar peano is metavar var t end metavar ) peano imply ( ( metavar var r end metavar peano is metavar var t end metavar ) peano imply ( metavar var r end metavar peano is metavar var s end metavar ) ) ) ) cut ( ( mendelson corollary one ten b plus plus modus ponens ( ( metavar var s end metavar peano is metavar var t end metavar ) peano imply ( ( metavar var r end metavar peano is metavar var t end metavar ) peano imply ( metavar var r end metavar peano is metavar var s end metavar ) ) ) ) conclude ( ( metavar var r end metavar peano is metavar var t end metavar ) peano imply ( ( metavar var s end metavar peano is metavar var t end metavar ) peano imply ( metavar var r end metavar peano is metavar var s end metavar ) ) ) ) ) end quote state proof state cache var c end expand end define

The pyk compiler, version 0.grue.20050603 by Klaus Grue,
GRD-2005-07-04.UTC:09:35:58.146674 = MJD-53555.TAI:09:36:30.146674 = LGT-4627186590146674e-6