Logiweb(TM)

Logiweb codex of peano in pyk

Up Help

ref-0-id-0 peano
ref-0-id-1 peano zero
ref-0-id-2 peano one
ref-0-id-3 peano two
ref-0-id-4 peano a
ref-0-id-5 peano b
ref-0-id-6 peano c
ref-0-id-7 peano d
ref-0-id-8 peano e
ref-0-id-9 peano f
ref-0-id-10 peano g
ref-0-id-11 peano h
ref-0-id-12 peano i
ref-0-id-13 peano j
ref-0-id-14 peano k
ref-0-id-15 peano l
ref-0-id-16 peano m
ref-0-id-17 peano n
ref-0-id-18 peano o
ref-0-id-19 peano p
ref-0-id-20 peano q
ref-0-id-21 peano r
ref-0-id-22 peano s
ref-0-id-23 peano t
ref-0-id-24 peano u
ref-0-id-25 peano v
ref-0-id-26 peano w
ref-0-id-27 peano x
ref-0-id-28 peano y
ref-0-id-29 peano z
ref-0-id-30 peano nonfree * in * end nonfree
ref-0-id-31 peano nonfree star * in * end nonfree
ref-0-id-32 peano free * set * to * end free
ref-0-id-33 peano free star * set * to * end free
ref-0-id-34 peano sub * is * where * is * end sub
ref-0-id-35 peano sub star * is * where * is * end sub
ref-0-id-36 system s
ref-0-id-37 axiom a one
ref-0-id-38 axiom a two
ref-0-id-39 axiom a three
ref-0-id-40 axiom a four
ref-0-id-41 axiom a five
ref-0-id-42 axiom s one
ref-0-id-43 axiom s two
ref-0-id-44 axiom s three
ref-0-id-45 axiom s four
ref-0-id-46 axiom s five
ref-0-id-47 axiom s six
ref-0-id-48 axiom s seven
ref-0-id-49 axiom s eight
ref-0-id-50 axiom s nine
ref-0-id-51 rule mp
ref-0-id-52 rule gen
ref-0-id-53 lemma l three two a
ref-0-id-54 system prime s
ref-0-id-55 axiom prime a one
ref-0-id-56 axiom prime a two
ref-0-id-57 axiom prime a three
ref-0-id-58 axiom prime a four
ref-0-id-59 axiom prime a five
ref-0-id-60 axiom prime s one
ref-0-id-61 axiom prime s two
ref-0-id-62 axiom prime s three
ref-0-id-63 axiom prime s four
ref-0-id-64 axiom prime s five
ref-0-id-65 axiom prime s six
ref-0-id-66 axiom prime s seven
ref-0-id-67 axiom prime s eight
ref-0-id-68 axiom prime s nine
ref-0-id-69 rule prime mp
ref-0-id-70 rule prime gen
ref-0-id-71 lemma prime l three two a
ref-0-id-72 mendelson one seven
ref-0-id-73 hypothetical rule prime mp
ref-0-id-74 hypothesize
ref-0-id-75 hypothetical rule prime gen
ref-0-id-76 mendelson three two a
ref-0-id-77 hypothetical three two a
ref-0-id-78 hypothetical three two b
ref-0-id-79 hypothetical three one s one
ref-0-id-80 hypothetical three two c
ref-0-id-81 hypothetical three one s two
ref-0-id-82 hypothetical three one s five
ref-0-id-83 hypothetical three one s six
ref-0-id-84 mendelson three two f
ref-0-id-85 * peano var
ref-0-id-86 * peano succ
ref-0-id-87 * peano times *
ref-0-id-88 * peano plus *
ref-0-id-89 * peano is *
ref-0-id-90 * is peano var
ref-0-id-91 peano not *
ref-0-id-92 * peano and *
ref-0-id-93 * peano or *
ref-0-id-94 peano all * indeed *
ref-0-id-95 peano exist * indeed *
ref-0-id-96 * peano imply *
ref-0-id-97 * peano iff *
ref-0-id-98 * macro modus ponens *
ref-0-id-99 * hypothetical modus ponens *

The pyk compiler, version 0.grue.20050603 by Klaus Grue,
GRD-2005-06-29.UTC:12:28:36.959100 = MJD-53550.TAI:12:29:08.959100 = LGT-4626764948959100e-6