define pyk of mendelson one seven as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small o unicode small n unicode small e unicode space unicode small s unicode small e unicode small v unicode small e unicode small n unicode end of text end unicode text end text end define
define tex of mendelson one seven as text unicode start of text unicode newline unicode capital m unicode one unicode period unicode seven unicode end of text end unicode text end text end define
define statement of mendelson one seven as system prime s infer all metavar var b end metavar indeed ( metavar var b end metavar peano imply metavar var b end metavar ) end define
define proof of mendelson one seven as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var b end metavar indeed ( ( axiom prime a one conclude ( metavar var b end metavar peano imply ( ( metavar var b end metavar peano imply metavar var b end metavar ) peano imply metavar var b end metavar ) ) ) cut ( ( axiom prime a two conclude ( ( metavar var b end metavar peano imply ( ( metavar var b end metavar peano imply metavar var b end metavar ) peano imply metavar var b end metavar ) ) peano imply ( ( metavar var b end metavar peano imply ( metavar var b end metavar peano imply metavar var b end metavar ) ) peano imply ( metavar var b end metavar peano imply metavar var b end metavar ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( metavar var b end metavar peano imply ( ( metavar var b end metavar peano imply metavar var b end metavar ) peano imply metavar var b end metavar ) ) peano imply ( ( metavar var b end metavar peano imply ( metavar var b end metavar peano imply metavar var b end metavar ) ) peano imply ( metavar var b end metavar peano imply metavar var b end metavar ) ) ) ) modus ponens ( metavar var b end metavar peano imply ( ( metavar var b end metavar peano imply metavar var b end metavar ) peano imply metavar var b end metavar ) ) ) conclude ( ( metavar var b end metavar peano imply ( metavar var b end metavar peano imply metavar var b end metavar ) ) peano imply ( metavar var b end metavar peano imply metavar var b end metavar ) ) ) cut ( ( axiom prime a one conclude ( metavar var b end metavar peano imply ( metavar var b end metavar peano imply metavar var b end metavar ) ) ) cut ( ( ( rule prime mp modus ponens ( ( metavar var b end metavar peano imply ( metavar var b end metavar peano imply metavar var b end metavar ) ) peano imply ( metavar var b end metavar peano imply metavar var b end metavar ) ) ) modus ponens ( metavar var b end metavar peano imply ( metavar var b end metavar peano imply metavar var b end metavar ) ) ) conclude ( metavar var b end metavar peano imply metavar var b end metavar ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,