Logiweb(TM)

Logiweb aspects of system prime s in pyk

Up Help

The predefined "pyk" aspect

define pyk of system prime s as text unicode start of text unicode small s unicode small y unicode small s unicode small t unicode small e unicode small m unicode space unicode small p unicode small r unicode small i unicode small m unicode small e unicode space unicode small s unicode end of text end unicode text end text end define

The predefined "tex" aspect

define tex of system prime s as text unicode start of text unicode newline unicode capital s unicode apostrophe unicode end of text end unicode text end text end define

The user defined "the statement aspect" aspect

define statement of system prime s as ( all metavar var a end metavar indeed all metavar var b end metavar indeed ( ( metavar var a end metavar peano succ peano is ( metavar var b end metavar peano succ ) ) peano imply ( metavar var a end metavar peano is metavar var b end metavar ) ) ) rule plus ( ( all metavar var h end metavar indeed all metavar var t end metavar indeed all metavar var r end metavar indeed all metavar var s end metavar indeed ( ( metavar var h end metavar peano imply ( metavar var t end metavar peano is metavar var r end metavar ) ) infer ( ( metavar var h end metavar peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) infer ( metavar var h end metavar peano imply ( metavar var r end metavar peano is metavar var s end metavar ) ) ) ) ) rule plus ( ( all metavar var a end metavar indeed all metavar var b end metavar indeed ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var a end metavar ) ) ) rule plus ( ( all metavar var x end metavar indeed all metavar var a end metavar indeed all metavar var b end metavar indeed ( peano nonfree quote metavar var x end metavar end quote in quote metavar var a end metavar end quote end nonfree endorse ( ( peano all metavar var x end metavar indeed ( metavar var a end metavar peano imply metavar var b end metavar ) ) peano imply ( metavar var a end metavar peano imply peano all metavar var x end metavar indeed metavar var b end metavar ) ) ) ) rule plus ( ( all metavar var h end metavar indeed all metavar var t end metavar indeed all metavar var r end metavar indeed ( metavar var h end metavar peano imply ( ( metavar var t end metavar peano plus ( metavar var r end metavar peano succ ) ) peano is ( ( metavar var t end metavar peano plus metavar var r end metavar ) peano succ ) ) ) ) rule plus ( ( all metavar var a end metavar indeed all metavar var b end metavar indeed ( ( metavar var a end metavar peano times ( metavar var b end metavar peano succ ) ) peano is ( ( metavar var a end metavar peano times metavar var b end metavar ) peano plus metavar var a end metavar ) ) ) rule plus ( ( all metavar var a end metavar indeed all metavar var b end metavar indeed ( ( metavar var a end metavar peano is metavar var b end metavar ) peano imply ( metavar var a end metavar peano succ peano is ( metavar var b end metavar peano succ ) ) ) ) rule plus ( ( all metavar var a end metavar indeed all metavar var b end metavar indeed ( ( metavar var a end metavar peano imply metavar var b end metavar ) infer ( metavar var a end metavar infer metavar var b end metavar ) ) ) rule plus ( ( all metavar var a end metavar indeed all metavar var b end metavar indeed ( ( ( peano not metavar var b end metavar ) peano imply peano not metavar var a end metavar ) peano imply ( ( ( peano not metavar var b end metavar ) peano imply metavar var a end metavar ) peano imply metavar var b end metavar ) ) ) rule plus ( ( all metavar var h end metavar indeed all metavar var t end metavar indeed all metavar var r end metavar indeed ( ( metavar var h end metavar peano imply ( metavar var t end metavar peano is metavar var r end metavar ) ) infer ( metavar var h end metavar peano imply ( metavar var t end metavar peano succ peano is ( metavar var r end metavar peano succ ) ) ) ) ) rule plus ( ( all metavar var a end metavar indeed all metavar var b end metavar indeed ( ( metavar var a end metavar peano plus ( metavar var b end metavar peano succ ) ) peano is ( ( metavar var a end metavar peano plus metavar var b end metavar ) peano succ ) ) ) rule plus ( ( all metavar var a end metavar indeed not ( peano zero peano is ( metavar var a end metavar peano succ ) ) ) rule plus ( ( all metavar var x end metavar indeed all metavar var a end metavar indeed ( metavar var a end metavar infer peano all metavar var x end metavar indeed metavar var a end metavar ) ) rule plus ( ( all metavar var c end metavar indeed all metavar var a end metavar indeed all metavar var x end metavar indeed all metavar var b end metavar indeed ( peano sub quote metavar var a end metavar end quote is quote metavar var b end metavar end quote where quote metavar var x end metavar end quote is quote metavar var c end metavar end quote end sub endorse ( ( peano all metavar var x end metavar indeed metavar var b end metavar ) peano imply metavar var a end metavar ) ) ) rule plus ( ( all metavar var h end metavar indeed all metavar var t end metavar indeed ( metavar var h end metavar peano imply ( ( metavar var t end metavar peano plus peano zero ) peano is metavar var t end metavar ) ) ) rule plus ( ( all metavar var a end metavar indeed ( ( metavar var a end metavar peano times peano zero ) peano is peano zero ) ) rule plus ( ( all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed ( ( metavar var a end metavar peano is metavar var b end metavar ) peano imply ( ( metavar var a end metavar peano is metavar var c end metavar ) peano imply ( metavar var b end metavar peano is metavar var c end metavar ) ) ) ) rule plus ( ( all metavar var t end metavar indeed ( metavar var t end metavar peano is metavar var t end metavar ) ) rule plus ( ( all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed all metavar var x end metavar indeed ( peano sub metavar var b end metavar is metavar var a end metavar where metavar var x end metavar is peano zero end sub endorse ( peano sub metavar var c end metavar is metavar var a end metavar where metavar var x end metavar is metavar var x end metavar peano succ end sub endorse ( metavar var b end metavar peano imply ( ( peano all metavar var x end metavar indeed ( metavar var a end metavar peano imply metavar var c end metavar ) ) peano imply peano all metavar var x end metavar indeed metavar var a end metavar ) ) ) ) ) rule plus ( ( all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed ( ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) rule plus ( ( all metavar var h end metavar indeed all metavar var t end metavar indeed all metavar var r end metavar indeed all metavar var s end metavar indeed ( ( metavar var h end metavar peano imply ( metavar var t end metavar peano is metavar var r end metavar ) ) infer ( ( metavar var h end metavar peano imply ( metavar var r end metavar peano is metavar var s end metavar ) ) infer ( metavar var h end metavar peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) ) ) rule plus all metavar var a end metavar indeed ( ( metavar var a end metavar peano plus peano zero ) peano is metavar var a end metavar ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) end define

The pyk compiler, version 0.grue.20050603 by Klaus Grue,
GRD-2005-06-29.UTC:12:28:36.959100 = MJD-53550.TAI:12:29:08.959100 = LGT-4626764948959100e-6