define pyk of hypothetical rule prime gen as text unicode start of text unicode small h unicode small y unicode small p unicode small o unicode small t unicode small h unicode small e unicode small t unicode small i unicode small c unicode small a unicode small l unicode space unicode small r unicode small u unicode small l unicode small e unicode space unicode small p unicode small r unicode small i unicode small m unicode small e unicode space unicode small g unicode small e unicode small n unicode end of text end unicode text end text end define
define tex of hypothetical rule prime gen as text unicode start of text unicode newline unicode capital g unicode small e unicode small n unicode apostrophe unicode underscore unicode small h unicode end of text end unicode text end text end define
define statement of hypothetical rule prime gen as system prime s infer all metavar var h end metavar indeed all metavar var x end metavar indeed all metavar var a end metavar indeed ( peano nonfree quote metavar var x end metavar end quote in quote metavar var h end metavar end quote end nonfree endorse ( ( metavar var h end metavar peano imply metavar var a end metavar ) infer ( metavar var h end metavar peano imply peano all metavar var x end metavar indeed metavar var a end metavar ) ) ) end define
define proof of hypothetical rule prime gen as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var h end metavar indeed all metavar var x end metavar indeed all metavar var a end metavar indeed ( peano nonfree quote metavar var x end metavar end quote in quote metavar var h end metavar end quote end nonfree endorse ( ( metavar var h end metavar peano imply metavar var a end metavar ) infer ( ( ( axiom prime a five modus probans peano nonfree quote metavar var x end metavar end quote in quote metavar var h end metavar end quote end nonfree ) conclude ( ( peano all metavar var x end metavar indeed ( metavar var h end metavar peano imply metavar var a end metavar ) ) peano imply ( metavar var h end metavar peano imply peano all metavar var x end metavar indeed metavar var a end metavar ) ) ) cut ( ( ( rule prime gen modus ponens ( metavar var h end metavar peano imply metavar var a end metavar ) ) conclude peano all metavar var x end metavar indeed ( metavar var h end metavar peano imply metavar var a end metavar ) ) cut ( ( ( rule prime mp modus ponens ( ( peano all metavar var x end metavar indeed ( metavar var h end metavar peano imply metavar var a end metavar ) ) peano imply ( metavar var h end metavar peano imply peano all metavar var x end metavar indeed metavar var a end metavar ) ) ) modus ponens peano all metavar var x end metavar indeed ( metavar var h end metavar peano imply metavar var a end metavar ) ) conclude ( metavar var h end metavar peano imply peano all metavar var x end metavar indeed metavar var a end metavar ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,