Cluster Computing

Distributed Shared Memory

History, fundamentals and
a few examples

] Coming up

Cluster Computing

e The Purpose of DSM Research

e Distributed Shared Memory Models

e Distributed Shared Memory Timeline
e Three example DSM Systems

] The Purpose of DSM Research

Cluster Computing

 Building less expensive parallel machines
e Building larger parallel machines

 Eliminating the programming difficulty of MPP
and Cluster architectures

e Generally break new ground:
- New network architectures and algorithms
— New compiler techniques

— Better understanding of performance in distributed
systems

I Distributed Shared Memory Models

Cluster Computin

e Object based DSM

e Variable based DSM

e Structured DSM

e Page based DSM

e Hardware supported DSM

Cluster Computing

Object based DSM

Probably the simplest way to implement DSM

Shared data must be encapsulated in an
object

Shared data may only be accessed via the
methods in the object

Possible distribution models are:

- No migration

- Demand migration

— Replication

Examples of Object based DSM systems are:
— Shasta

— Orca

— Emerald

] Variable based DSM

Cluster Computing

* Delivers the lowest distribution granularity
e Closely integrated in the compiler
 May be hardware supported

e Possible distribution models are:
— No migration
- Demand migration
— Replication
e Variable based DSM systems have never
really matured into systems

] Structured DSM

Cluster Computing

e Common denominator for a set of slightly
similar DSM models

e Often tuple based

 May be implemented without hardware or
compiler support

e Distribution is usually based on
migration/read replication

e Examples of Structured DSM systems are:
- Linda
— Global Arrays
— PastSet

Cluster Computing

Page based DSM

Emulates a standard symmetrical shared
memory multi processor

Always hardware supported to some extend
- May use customized hardware
- May rely only on the MMU

Usually independent of compiler, but may
require a special compiler for optimal
performance

] Page based DSM

Cluster Computing

e Distribution methods are:
— Migration
— Replication
e Examples of Page based DSM systems are:
- lvy
— Threadmarks
- CVM
— Shrimp-2 SVM

Cluster Computing

Hardware supported DSM

Uses hardware to eliminate software
overhead

May be hidden even from the operating
system

Usually provides sequential consistency
May limit the size of the DSM system

Examples of hardware based DSM systems
are:

— Shrimp

- Memnet

- DASH

— Cray T3 Series

- SGI Origin 2000

[] Distributed Shared Memory

] Timeline

Cluster Computing

— Memnet 1986 | — DASH 1989 I— Shrimp 1994

[
— Emerald 1986 Orca 1991 — Shasta 1996
— vy 1986 — Threadmarks 1994 (| CVM 1996

] Three example DSM systems

Cluster Computing

e Orca
Object based language and compiler
sensitive system

* Linda
Language independent structured memory
DSM system

e IVY
Page based system

] Orca

Cluster Computing

* Three tier system
* Language
e Compiler
* Runtime system

e Closely associated with Amoeba

e Not fully object orientated but rather object
based

] Orca

Cluster Computing

e Claims to be be Modula-2 based but behaves
more like Ada

* No pointers available

* Includes both remote objects and object
replication and pseudo migration

e Efficiency is highly dependent of a physical
broadcast medium - or well implemented
multicast.

] Orca

Cluster Computing

e Advantages Disadvantages

— Integrated - Integrated operating
system, compiler and

operating system, runtime environment
compiler and makes the system
runtime less accessible
environment - Existing application
ensures stability may prove difficult to

. ort
— Extra semantics P

can be extracted
to achieve speed

o Orca Status

Cluster Computing

e Alive and well
e Moved from Amoeba to BSD

e Moved from pure software to utilize custom
firmware

 Many applications ported

Cluster Computing

Linda

Tuple based
Language independent

Targeted at MPP systems but often used in
NOW

Structures memory in a tuple space

(“Person”, “Doe”, “John”, 23, 82, BLUE)
(“pi”, 3.141592)
(“grades”, 96, [Bm, A, Ap, Cp, D, Bp])

] The Tuple Space

Cluster Computing

(“Person”, “Doe”, “John”, 23, 82, BLUE)

(“grades”, 96, [Bm, A, Ap, Cp, D, Bp])

(“pi”, 3.141592)

] Linda

Cluster Computing

e Linda consists of a mere 3 primitives
e out - places a tuple in the tuple space
e in - takes a tuple from the tuple space
e read - reads the value of a tuple but leaves it in the
tuple space
* No kind of ordering is guarantied, thus no
consistency problems occur

] Linda

Cluster Computing

* Advantages * Disadvantages
- No new language - Many applications
introduced are hard to port
— Easy to port trivial — Fine grained
producer- parallelism is not
consumer efficient

applications
— Esthetic design

— No consistency
problems

HI- Linda Status

Cluster Computing

 Alive but low activity
e Problems with performance
e Tuple based DSM improved by PastSet:
- Introduced at kernel level
- Added causal ordering
— Added read replication
— Drastically improved performance

Cluster Computing y

e The first page based DSM system

* No custom hardware used - only depends on
MMU support

e Placed in the operating system
 Supports read replication

e Three distribution models supported
e Central server
* Distributed servers
* Dynamic distributed servers

 Delivered rather poor performance

Cluster Computing

e Advantages

No new language
introduced

Fully transparent

Virtual machine is a
perfect emulation of
an SMP architecture

Existing parallel
applications runs
without porting

vy

* Disadvantages
— Exhibits trashing
— Poor performance

N IVY Status

Cluster Computing

* Dead!
* New SOA is Shrimp-2 SVM and CVM

— Moved from kernel to user space

- Introduced new relaxed consistency
models

— Greatly improved performance

— Utilizing custom hardware at firmware
level

L DASH

Cluster Computing

* Flat memory model

 Directory Architecture keeps track of
cache replica

e Based on custom hardware extensions

 Parallel programs run efficiently
without change, trashing occurs rarely

Cluster Computing

* Advantages

— Behaves like a
generic shared
memory multi
processor

— Directory
architecture
ensures that
latency only grow
logarithmic with
size

DASH

* Disadvantages

- Programmer must
consider many
layers of locality
to ensure
performance

— Complex and
expensive
hardware

L DASH Status

Cluster Computing

e Alive
e Core people gone to SGI

e Main design can be found in the
SGI Origin-2000

e SGI Origin designed to scale to
1024 processors

- = In depth problems to be presented

] later

Cluster Computing

e Data location problem
* Memory consistency problem

Cluster Computing

Consistency Models

Relaxed Consistency Models for
Distributed Shared Memory

A Presentation Plan

Cluster Computing

e Defining Memory Consistency

* Motivating Consistency Relaxation
e Consistency Models

 Comparing Consistency Models

» \Working with Relaxed Consistency
e Summary

[Defining Memory
Consistency

A Memory Consistency Model defines a set of
constraints that must be meet by a system to aonfor
to the given consistency model. These constraints
define a set of rules that define how memory
operations are viewed relative to:

*Real time

sEach other

Different nodes

- = Why Relax the Consistency

 To simplify bus design on SMP systems

— More relaxed consistency models requires less bus
bandwidth

— More relaxed consistency requires less cache
synchronization
* To lower contention on DSM systems

— More relaxed consistency models allows better
sharing

— More relaxed consistency models requires less
Interconnect bandwidth

Ho- Strict Consistency

Cluster Computing

Any read to a memory location x returns
the value stored by the most resent write
1o X.

* Performs correctly with race conditions

e Can’t be implemented in systems with more than
one CPU

HI- Strict Consistency

Cluster Computing

Py W(x)1
P: R(x)0 R(x)1
P W(X)1

P R(x)0 R(x)1

I Sequential Consistency

Cluster Computing

[A multiprocessor system is sequentially consigtdrine result
of any execution is the same as if the operatibiad the
processors were executed in some sequential caddrthe
operations of each individual processor appeardia sequence
In the order specified by its program.

 Handles all correct code, except race
conditions

e Can be implemented with more than one
CPU

Cluster Computing

Sequential Consistency

P q W(x)1

Pl: R(x)0 R(x)1
Po: W(X)1 >
P.: R(x)C >
Po: R(x)1

v Yy

P

D .

W(x)1

0 >
Pl: RO R(X)1
Po: W(X)1 W(y)l >
P R(x)C >
Po: R(y)1 >

Ho- Causal Consistency

Cluster Computing

Writes that are potentially causally related mustdeen by all
processes in the same order. Concurrent writeslmeaseen in
a different order on different machines.

o Still fits programmers idea of sequential
Mmemory accesses

 Hard to make an efficient implementation

HI- Causal Consistency

Cluster Computing

ROX)L W(Y)1

R(Y)L R(X)1

P, W(X)1

p ROX)L W(Y)1

1

p R(Y)L R(X)0

2

{HF PRAM Consistency

Cluster Computing

Writes done by a single process are received bytlaér
processes in the order in which they were issued, b
writes from different processes may be seen iffereint
order by different processes.

e Operations from one node can be grouped
for better performance

e Does not comply with ordinary memory
conception

- PRAM Consistency

Cluster Computing

W(X)1

ROX)L W(Y)1

P, R(Y)L R(X)0

P, W(X)1 W(X)2

3 R(X)2 R(X)1

H1 Processor Consistency

Cluster Computing

1.Before a read is allowed to perform with respecany other
processor, all previous reads must be performed.

2.Before a write Is allowed to perform with respecany other
processor, all other accesses (read and write) rbast
performed.

o Slightly stronger than PRAM
o Slightly easier than PRAM

- Weak Consistency

Cluster Computing

1. Accesses to synchronization variables are segubntiansistent.

2. No access to a synchronization variable is allowede performed until
all previous writes have completed everywhere.

3. No data access (read or write) is allowed to eefgrmed until all
previous accesses to synchronization variables baesm performed.

e Synchronization variables are different from
ordinary variables

e Lends itself to natural synchronization based
parallel programming

Cluster Computing

Weak Consistency

W(X)1 W(X)2 S

R(X)1 S R(X)2

P

W(X)1 W(X)2 S

S R(X)L R(X)2

{1 Release Consistency

Cluster Computing

1. Before an ordinary access to a shared variablesidggmed, all
previous acquires done be the process must haveletmu successfully.

2. Before a release is allowed to be performed, alvmus reads and
writes done by the process must have completed.

3. The acquire and release accesses must be procasssistent.

e Synchronization's now differ between
Acquire and Release

* Lends itself directly to semaphore
synchronized parallel programming

HI- Release Consistency

Cluster Computing

Po: Acq(L) W(xX)0 W(x)1 Rel(L)

Po: Acg(L) R(x)1 Rel(L)

Po: Acqg(L) W(x)0W(x)1 Rel(L)
Py Acq(L) R(x)C ReI(L)>
Po: Acq(L) R(x)1 Rel(L)

>

1 Lazy Release Consistency

Cluster Computing

 Differs only slightly from Release
Consistency

 Release dependent variables are not
propagated at release, but rather at the

following acquire

* This allows Release Consistency to be
used with smaller granularity

HI- Entry Consistency

Cluster Computing

1. An acquire access of a synchronization variableosallowed to perform
with respect to a process until all updates togharded shared data
have been performed with respect to that process.

2. Before an exclusive mode access to a synchronizadinable by a
process is allowed to perform with respect to fhraicess, no other

process may hold the synchronization variable,aven in non-exclusive
mode.

3. After an exclusive mode access to a synchronizatiaable has been
performed, any other process’ next non-exclusivearazcess to that
synchronization variable may not be performed unkibs been
performed with respect to that variable’s owner.

e Associlates specific synchronization
variables with specific data variables

i Automatic Update

Cluster Computing

Automatic update consistency has the same semaasickzy
release consistency, and adding:

Before performing a release all automatic updatestbe
performed.

e Lends itself to hardware support

o Efficient when two nodes are sharing the
same data often

Cluster Computing

A
Added Semantics

Comparing Consistency

Causal

uential
Stric%eoI

PRAM

models

Pr ocessor

W eak

Entry
Automatic Update

Releasel azy Release

>
Efficiency

s Working with Relaxed

Do Consistency Models

e Natural tradeoff between efficiency and
added work

* Anything beyond Causal Consistency
requires the consistency model to be
explicitly known

 Compiler knowledge of the consistency
model can hide the relaxation from the
programmer

i Summary

 Relaxing memory consistency Is
necessary for any system with more than
one processor

o Simple relaxation can be hidden

e Strong relaxation can achieve better
performance

Cluster Computing

Data Location

Finding the data in Distributed
Shared Memory Systems.

—L Coming Up

Cluster Computing

e Data Distribution Models
 Comparing Data Distribution Models
e Data Location

e Comparing Data Location Models

L Data Distribution

Cluster Computing

* Fixed Location

e Migration

 Read Replication

* Full Replication

« Comparing Distribution Models

HI- Fixed Location

Cluster Computing

e Trivial to iImplement via RPC

e Can be handled at compile time
e Easy to debug

« Efficiency depends on locality

* Lends itself to Client-Server type of
applications

T Migration

 Programs are written for local data access

* Accesses to non present data is caught at
runtime

 Invisible at compile time
e Can be hardware supported

« Efficiency depends on several elements

— Spatial Locality
— Temporal Locality
— Contention

iy Read Replication

Cluster Computing

As most data that exhibits contention are read
only data the idea of read-replication Is intuitive

Very similar to copy-on-write in UNIX fork()
Implementations

Can be hardware supported

Natural problem is when to invalidate mutable
read replicas to allow one node to write

- Full Replication

Cluster Computing

Migration+Read replication+Write
replication

Write replication requires four phases

— Obtain a copy of the data block and make a copy of that
— Perform writes to one of the copies
— On releasing the data create a log of performed writes

— Assembling node checks that no two nodes has written the same
position

e Showed to be of little interest

[Comparing Distribution

L Models

A
Added Complexity Full Replication

Read Replication

Migration

Fixed L ocation

>

Potential Parallelism

HI- Data Location

Cluster Computing

e Central Server

e Distributed Servers
 Dynamic Distributed Servers
« Home Base Location

* Directory Based Location
 Comparing Location Models

HI- Central Server

Cluster Computing

 All data location is know a one place
e Simple to implement

* Low overhead at the client nodes

* Potential bottleneck

e The server could be dedicated for data
serving

L Distributed Servers

e Data Is placed at node once
* Relatively simple to implement

e Location problem can be solved in two

ways
— Static mapping
— Locate once

* No possibility to adapt to locality patterns

||||||||||||||||

e Data block handling can migrate during
execution

 More complex implementation
e Location may be done via

— Broadcasting
— Location log
— Node investigation

e Possibility to adapt to locality patterns
* Replica handling becomes inherently hard

L Home Base Location

Cluster Computing

« The Home node always hold a coherent
version of the data block

* Otherwise very similar to distributed server

 Advanced distribution models such as
shared write don’'t have to elect a leader
for data merging.

1= Directory Based Location

Cluster Computing

o Specially suited for non-flat topologies

 Nodes only has to consider their
Immediate server

e Servers provide a view as a 'virtual’
Instance of the remaining system

e Servers may connect to servers in the
same Iinvisible way

e Usually hardware based

1= Comparing Location Models

Cluster Computing

A
Added Complexity Directory based

Dynamic Distributed servers

Distributed servers Home based

Central server

Efficient size

L Summary

Cluster Computing

 Distribution aspects differ widely, but high
complexity don’t always pay of

e Data location can be solved in various
ways, but each solution behaves best for a
given number of nodes

