
Cluster Computing

Distributed Shared Memory

History, fundamentals and

a few examples

Cluster Computing
Coming up

• The Purpose of DSM Research

• Distributed Shared Memory Models

• Distributed Shared Memory Timeline

• Three example DSM Systems

Cluster Computing
The Purpose of DSM Research

• Building less expensive parallel machines

• Building larger parallel machines

• Eliminating the programming difficulty of MPP

and Cluster architectures

• Generally break new ground:

– New network architectures and algorithms

– New compiler techniques

– Better understanding of performance in distributed

systems

Cluster Computing
Distributed Shared Memory Models

• Object based DSM

• Variable based DSM

• Structured DSM

• Page based DSM

• Hardware supported DSM

Cluster Computing
Object based DSM

• Probably the simplest way to implement DSM

• Shared data must be encapsulated in an
object

• Shared data may only be accessed via the
methods in the object

• Possible distribution models are:
– No migration

– Demand migration

– Replication

• Examples of Object based DSM systems are:
– Shasta

– Orca

– Emerald

Cluster Computing
Variable based DSM

• Delivers the lowest distribution granularity

• Closely integrated in the compiler

• May be hardware supported

• Possible distribution models are:

– No migration

– Demand migration

– Replication

• Variable based DSM systems have never

really matured into systems

Cluster Computing
Structured DSM

• Common denominator for a set of slightly

similar DSM models

• Often tuple based

• May be implemented without hardware or

compiler support

• Distribution is usually based on

migration/read replication

• Examples of Structured DSM systems are:

– Linda

– Global Arrays

– PastSet

Cluster Computing
Page based DSM

• Emulates a standard symmetrical shared

memory multi processor

• Always hardware supported to some extend

– May use customized hardware

– May rely only on the MMU

• Usually independent of compiler, but may

require a special compiler for optimal

performance

Cluster Computing
Page based DSM

• Distribution methods are:

– Migration

– Replication

• Examples of Page based DSM systems are:

– Ivy

– Threadmarks

– CVM

– Shrimp-2 SVM

Cluster Computing
Hardware supported DSM

• Uses hardware to eliminate software
overhead

• May be hidden even from the operating
system

• Usually provides sequential consistency

• May limit the size of the DSM system

• Examples of hardware based DSM systems
are:
– Shrimp

– Memnet

– DASH

– Cray T3 Series

– SGI Origin 2000

Cluster Computing

Distributed Shared Memory
Timeline

Ivy 1986

Linda 1995

Threadmarks 1994 CVM 1996

Global Arrays 1992

MacroScope 1992

Shasta 1996Orca 1991Emerald 1986

Memnet 1986 DASH 1989 Shrimp 1994

Cluster Computing
Three example DSM systems

• Orca

Object based language and compiler

sensitive system

• Linda

Language independent structured memory

DSM system

• IVY

Page based system

Cluster Computing
Orca

• Three tier system

• Language

• Compiler

• Runtime system

• Closely associated with Amoeba

• Not fully object orientated but rather object

based

Data 1

Data 3

Data 2

Data 4

Method 2

Method 1

Cluster Computing
Orca

• Claims to be be Modula-2 based but behaves

more like Ada

• No pointers available

• Includes both remote objects and object

replication and pseudo migration

• Efficiency is highly dependent of a physical

broadcast medium - or well implemented

multicast.

Cluster Computing
Orca

• Advantages

– Integrated

operating system,

compiler and

runtime

environment

ensures stability

– Extra semantics

can be extracted

to achieve speed

• Disadvantages

– Integrated operating

system, compiler and

runtime environment

makes the system

less accessible

– Existing application

may prove difficult to

port

Cluster Computing

Orca Status

• Alive and well

• Moved from Amoeba to BSD

• Moved from pure software to utilize custom

firmware

• Many applications ported

Cluster Computing
Linda

• Tuple based

• Language independent

• Targeted at MPP systems but often used in

NOW

• Structures memory in a tuple space

(“Person”, “Doe”, “John”, 23, 82, BLUE)
(“pi”, 3.141592)
(“grades”, 96, [Bm, A, Ap, Cp, D, Bp])

Cluster Computing
The Tuple Space

(“Person”, “Doe”, “John”, 23, 82, BLUE)

(“pi”, 3.141592)

(“grades”, 96, [Bm, A, Ap, Cp, D, Bp])

Cluster Computing
Linda

• Linda consists of a mere 3 primitives

• out - places a tuple in the tuple space

• in - takes a tuple from the tuple space

• read - reads the value of a tuple but leaves it in the

tuple space

• No kind of ordering is guarantied, thus no

consistency problems occur

Cluster Computing
Linda

• Advantages

– No new language

introduced

– Easy to port trivial

producer-

consumer

applications

– Esthetic design

– No consistency

problems

• Disadvantages

– Many applications

are hard to port

– Fine grained

parallelism is not

efficient

Cluster Computing

Linda Status

• Alive but low activity

• Problems with performance

• Tuple based DSM improved by PastSet:

– Introduced at kernel level

– Added causal ordering

– Added read replication

– Drastically improved performance

Cluster Computing
Ivy

• The first page based DSM system

• No custom hardware used - only depends on

MMU support

• Placed in the operating system

• Supports read replication

• Three distribution models supported

• Central server

• Distributed servers

• Dynamic distributed servers

• Delivered rather poor performance

Cluster Computing
Ivy

• Advantages

– No new language

introduced

– Fully transparent

– Virtual machine is a

perfect emulation of

an SMP architecture

– Existing parallel

applications runs

without porting

• Disadvantages

– Exhibits trashing

– Poor performance

Cluster Computing

IVY Status

• Dead!

• New SOA is Shrimp-2 SVM and CVM

– Moved from kernel to user space

– Introduced new relaxed consistency

models

– Greatly improved performance

– Utilizing custom hardware at firmware

level

Cluster Computing

DASH

• Flat memory model

• Directory Architecture keeps track of

cache replica

• Based on custom hardware extensions

• Parallel programs run efficiently

without change, trashing occurs rarely

Cluster Computing

DASH

• Advantages
– Behaves like a
generic shared
memory multi
processor

– Directory
architecture
ensures that
latency only grow
logarithmic with
size

• Disadvantages

– Programmer must

consider many

layers of locality

to ensure

performance

– Complex and

expensive

hardware

Cluster Computing

DASH Status

• Alive

• Core people gone to SGI

• Main design can be found in the

SGI Origin-2000

• SGI Origin designed to scale to

1024 processors

Cluster Computing

In depth problems to be presented
later

• Data location problem

• Memory consistency problem

Cluster Computing

Consistency Models

Relaxed Consistency Models for
Distributed Shared Memory

Cluster Computing

Presentation Plan

• Defining Memory Consistency
• Motivating Consistency Relaxation
• Consistency Models
• Comparing Consistency Models
• Working with Relaxed Consistency
• Summary

Cluster Computing

Defining Memory
Consistency

A Memory Consistency Model defines a set of
constraints that must be meet by a system to conform
to the given consistency model. These constraints
define a set of rules that define how memory
operations are viewed relative to:

•Real time
•Each other
•Different nodes

Cluster Computing

Why Relax the Consistency
Model

• To simplify bus design on SMP systems
– More relaxed consistency models requires less bus

bandwidth
– More relaxed consistency requires less cache

synchronization

• To lower contention on DSM systems
– More relaxed consistency models allows better

sharing
– More relaxed consistency models requires less

interconnect bandwidth

Cluster Computing

Strict Consistency

• Performs correctly with race conditions
• Can’t be implemented in systems with more than

one CPU

Any read to a memory location x returns
the value stored by the most resent write
to x.

Cluster Computing

Strict Consistency

R(x)1

W(x)1

R(x)0

P0:

P1:

R(x)1

W(x)1

R(x)0

P0:

P1:

Cluster Computing

Sequential Consistency

• Handles all correct code, except race
conditions

• Can be implemented with more than one
CPU

[A multiprocessor system is sequentially consistent if] the result
of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the
operations of each individual processor appears in this sequence
in the order specified by its program.

Cluster Computing

Sequential Consistency

R(x)1

W(x)1

R(x)0 R(x)1

W(x)1

R(x)0

P
0
:

P
1
:

P
0
:

P
1
:

R(x)0

W(x)1P0:

P1:

R(x)1P2:

R(x)0

W(x)1P0:

P1:

W(y)1

R(y)1P2:

Cluster Computing

Causal Consistency

• Still fits programmers idea of sequential
memory accesses

• Hard to make an efficient implementation

Writes that are potentially causally related must be seen by all
processes in the same order. Concurrent writes may be seen in
a different order on different machines.

Cluster Computing

Causal Consistency

R(X)1

P0

P1

W(X)1

W(Y)1

P2 R(Y)1 R(X)1

R(X)1

P0

P1

W(X)1

W(Y)1

P2 R(Y)1 R(X)0

Cluster Computing

PRAM Consistency

• Operations from one node can be grouped
for better performance

• Does not comply with ordinary memory
conception

Writes done by a single process are received by all other
processes in the order in which they were issued, but
writes from different processes may be seen in a different
order by different processes.

Cluster Computing

PRAM Consistency

R(X)1

P0

P1

W(X)1

W(Y)1

P2 R(Y)1 R(X)0

R(X)2

P0

P1

W(X)1

R(X)1

W(X)2

Cluster Computing

Processor Consistency

• Slightly stronger than PRAM
• Slightly easier than PRAM

1. Before a read is allowed to perform with respect to any other
processor, all previous reads must be performed.

2. Before a write is allowed to perform with respect to any other
processor, all other accesses (read and write) must be
performed.

Cluster Computing

Weak Consistency

• Synchronization variables are different from
ordinary variables

• Lends itself to natural synchronization based
parallel programming

1. Accesses to synchronization variables are sequentially consistent.

2. No access to a synchronization variable is allowed to be performed until
all previous writes have completed everywhere.

3. No data access (read or write) is allowed to be performed until all
previous accesses to synchronization variables have been performed.

Cluster Computing

Weak Consistency

R(X)1

P0

P1

W(X)1

R(X)2

W(X)2

S

S

R(X)1

P0

P1

W(X)1

R(X)2

W(X)2

S

S

Cluster Computing

Release Consistency

• Synchronization's now differ between
Acquire and Release

• Lends itself directly to semaphore
synchronized parallel programming

1. Before an ordinary access to a shared variable is performed, all
previous acquires done be the process must have completed successfully.

2. Before a release is allowed to be performed, all previous reads and
writes done by the process must have completed.

3. The acquire and release accesses must be processor consistent.

Cluster Computing

Release Consistency

R(x)0

W(x)0P0:

P1:

W(x)1

R(x)1P2:

Acq(L)

Rel(L)Acq(L)

Rel(L)

R(x)0

W(x)0P0:

P1:

W(x)1

R(x)1P2:

Acq(L)

Rel(L)Acq(L)

Rel(L)

Acq(L) Rel(L)

Cluster Computing

Lazy Release Consistency

• Differs only slightly from Release
Consistency

• Release dependent variables are not
propagated at release, but rather at the
following acquire

• This allows Release Consistency to be
used with smaller granularity

Cluster Computing

Entry Consistency

• Associates specific synchronization
variables with specific data variables

1. An acquire access of a synchronization variable is not allowed to perform
with respect to a process until all updates to the guarded shared data
have been performed with respect to that process.

2. Before an exclusive mode access to a synchronization variable by a
process is allowed to perform with respect to that process, no other
process may hold the synchronization variable, not even in non-exclusive
mode.

3. After an exclusive mode access to a synchronization variable has been
performed, any other process’ next non-exclusive mode access to that
synchronization variable may not be performed until it has been
performed with respect to that variable’s owner.

Cluster Computing

Automatic Update

• Lends itself to hardware support
• Efficient when two nodes are sharing the

same data often

Automatic update consistency has the same semantics as lazy
release consistency, and adding:

Before performing a release all automatic updates must be
performed.

Cluster Computing

Comparing Consistency
models

Added Semantics

Efficiency

Strict
Sequential

Causal

PRAM
Processor

Weak

Release Lazy Release

Entry

Automatic Update

Cluster Computing

Working with Relaxed
Consistency Models

• Natural tradeoff between efficiency and
added work

• Anything beyond Causal Consistency
requires the consistency model to be
explicitly known

• Compiler knowledge of the consistency
model can hide the relaxation from the
programmer

Cluster Computing

Summary

• Relaxing memory consistency is
necessary for any system with more than
one processor

• Simple relaxation can be hidden
• Strong relaxation can achieve better

performance

Cluster Computing

Data Location

Finding the data in Distributed
Shared Memory Systems.

Cluster Computing

Coming Up

• Data Distribution Models
• Comparing Data Distribution Models
• Data Location
• Comparing Data Location Models

Cluster Computing

Data Distribution

• Fixed Location
• Migration
• Read Replication
• Full Replication
• Comparing Distribution Models

Cluster Computing

Fixed Location

• Trivial to implement via RPC
• Can be handled at compile time
• Easy to debug
• Efficiency depends on locality
• Lends itself to Client-Server type of

applications

Cluster Computing

Migration

• Programs are written for local data access
• Accesses to non present data is caught at

runtime
• Invisible at compile time
• Can be hardware supported
• Efficiency depends on several elements

– Spatial Locality
– Temporal Locality
– Contention

Cluster Computing

Read Replication

• As most data that exhibits contention are read
only data the idea of read-replication is intuitive

• Very similar to copy-on-write in UNIX fork()
implementations

• Can be hardware supported
• Natural problem is when to invalidate mutable

read replicas to allow one node to write

Cluster Computing

Full Replication

• Migration+Read replication+Write
replication

• Write replication requires four phases
– Obtain a copy of the data block and make a copy of that
– Perform writes to one of the copies
– On releasing the data create a log of performed writes
– Assembling node checks that no two nodes has written the same

position

• Showed to be of little interest

Cluster Computing

Comparing Distribution
Models

Added Complexity

Potential Parallelism

Fixed Location

Migration

Read Replication

Full Replication

Cluster Computing

Data Location

• Central Server
• Distributed Servers
• Dynamic Distributed Servers
• Home Base Location
• Directory Based Location
• Comparing Location Models

Cluster Computing

Central Server

• All data location is know a one place
• Simple to implement
• Low overhead at the client nodes
• Potential bottleneck
• The server could be dedicated for data

serving

Cluster Computing

Distributed Servers

• Data is placed at node once
• Relatively simple to implement
• Location problem can be solved in two

ways
– Static mapping
– Locate once

• No possibility to adapt to locality patterns

Cluster Computing

Dynamic Distributed Servers

• Data block handling can migrate during
execution

• More complex implementation
• Location may be done via

– Broadcasting
– Location log
– Node investigation

• Possibility to adapt to locality patterns
• Replica handling becomes inherently hard

Cluster Computing

Home Base Location

• The Home node always hold a coherent
version of the data block

• Otherwise very similar to distributed server
• Advanced distribution models such as

shared write don’t have to elect a leader
for data merging.

Cluster Computing

Directory Based Location

• Specially suited for non-flat topologies
• Nodes only has to consider their

immediate server
• Servers provide a view as a ’virtual’

instance of the remaining system
• Servers may connect to servers in the

same invisible way
• Usually hardware based

Cluster Computing

Comparing Location Models

Added Complexity

Efficient size

Central server

Distributed servers

Dynamic Distributed servers

Directory based

Home based

Cluster Computing

Summary

• Distribution aspects differ widely, but high
complexity don’t always pay of

• Data location can be solved in various
ways, but each solution behaves best for a
given number of nodes

