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Cluster Computing
The Purpose of DSM Research

• Building less expensive parallel machines

• Building larger parallel machines

• Eliminating the programming difficulty of MPP 

and Cluster architectures

• Generally break new ground:

– New network architectures and algorithms

– New compiler techniques

– Better understanding of performance in distributed 

systems



Cluster Computing
Distributed Shared Memory Models

• Object based DSM

• Variable based DSM

• Structured DSM

• Page based DSM

• Hardware supported DSM



Cluster Computing
Object based DSM

• Probably the simplest way to implement DSM

• Shared data must be encapsulated in an 
object

• Shared data may only be accessed via the 
methods in the object

• Possible distribution models are:
– No migration

– Demand migration

– Replication

• Examples of Object based DSM systems are:
– Shasta

– Orca

– Emerald
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Variable based DSM

• Delivers the lowest distribution granularity

• Closely integrated in the compiler

• May be hardware supported

• Possible distribution models are:

– No migration

– Demand migration

– Replication

• Variable based DSM systems have never 

really matured into systems



Cluster Computing
Structured DSM

• Common denominator for a set of slightly 

similar DSM models

• Often tuple based

• May be implemented without hardware or 

compiler support

• Distribution is usually based on 

migration/read replication

• Examples of Structured DSM systems are:

– Linda

– Global Arrays

– PastSet



Cluster Computing
Page based DSM

• Emulates a standard symmetrical shared 

memory multi processor

• Always hardware supported to some extend

– May use customized hardware

– May rely only on the MMU

• Usually independent of compiler, but may 

require a special compiler for optimal 

performance



Cluster Computing
Page based DSM

• Distribution methods are:

– Migration

– Replication

• Examples of Page based DSM systems are:

– Ivy

– Threadmarks

– CVM

– Shrimp-2 SVM
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Hardware supported DSM

• Uses hardware to eliminate software 
overhead

• May be hidden even from the operating 
system

• Usually provides sequential consistency

• May limit the size of the DSM system

• Examples of hardware based DSM systems 
are:
– Shrimp

– Memnet

– DASH

– Cray T3 Series

– SGI Origin 2000



Cluster Computing

Distributed Shared Memory 
Timeline 

Ivy 1986

Linda 1995

Threadmarks 1994 CVM 1996

Global Arrays 1992

MacroScope 1992

Shasta 1996Orca 1991Emerald 1986

Memnet 1986 DASH 1989 Shrimp 1994



Cluster Computing
Three example DSM systems

• Orca

Object based language and compiler 

sensitive system

• Linda

Language independent structured memory 

DSM system

• IVY

Page based system



Cluster Computing
Orca

• Three tier system

• Language

• Compiler

• Runtime system

• Closely associated with Amoeba

• Not fully object orientated but rather object 

based

Data 1

Data 3

Data 2

Data 4

Method 2

Method 1



Cluster Computing
Orca

• Claims to be be Modula-2 based but behaves 

more like Ada

• No pointers available

• Includes both remote objects and object 

replication and pseudo migration

• Efficiency is highly dependent of a physical 

broadcast medium - or well implemented 

multicast.



Cluster Computing
Orca

• Advantages

– Integrated 

operating system, 

compiler and 

runtime 

environment 

ensures stability

– Extra semantics 

can be extracted 

to achieve speed

• Disadvantages

– Integrated operating 

system, compiler and 

runtime environment 

makes the system 

less accessible

– Existing application 

may prove difficult to 

port



Cluster Computing

Orca Status

• Alive and well

• Moved from Amoeba to BSD

• Moved from pure software to utilize custom 

firmware

• Many applications ported



Cluster Computing
Linda

• Tuple based

• Language independent

• Targeted at MPP systems but often used in 

NOW

• Structures memory in a tuple space

(“Person”, “Doe”, “John”, 23, 82, BLUE)
(“pi”, 3.141592)
(“grades”, 96, [Bm, A, Ap, Cp, D, Bp])



Cluster Computing
The Tuple Space

(“Person”, “Doe”, “John”, 23, 82, BLUE)

(“pi”, 3.141592)

(“grades”, 96, [Bm, A, Ap, Cp, D, Bp])



Cluster Computing
Linda

• Linda consists of a mere 3 primitives

• out - places a tuple in the tuple space

• in - takes a tuple from the tuple space

• read - reads the value of a tuple but leaves it in the 

tuple space

• No kind of ordering is guarantied, thus no 

consistency problems occur



Cluster Computing
Linda

• Advantages

– No new language 

introduced

– Easy to port trivial 

producer-

consumer 

applications

– Esthetic design

– No consistency 

problems

• Disadvantages

– Many applications 

are hard to port

– Fine grained 

parallelism is not 

efficient



Cluster Computing

Linda Status

• Alive but low activity

• Problems with performance

• Tuple based DSM improved by PastSet:

– Introduced at kernel level

– Added causal ordering

– Added read replication

– Drastically improved performance



Cluster Computing
Ivy

• The first page based DSM system

• No custom hardware used - only depends on 

MMU support

• Placed in the operating system

• Supports read replication

• Three distribution models supported

• Central server

• Distributed servers

• Dynamic distributed servers

• Delivered rather poor performance



Cluster Computing
Ivy

• Advantages

– No new language 

introduced

– Fully transparent

– Virtual machine is a 

perfect emulation of 

an SMP architecture

– Existing parallel 

applications runs 

without porting

• Disadvantages

– Exhibits trashing

– Poor performance
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IVY Status

• Dead!

• New SOA is Shrimp-2 SVM and CVM

– Moved from kernel to user space

– Introduced new relaxed consistency 

models

– Greatly improved performance

– Utilizing custom hardware at firmware 

level



Cluster Computing

DASH

• Flat memory model

• Directory Architecture keeps track of 

cache replica

• Based on custom hardware extensions

• Parallel programs run efficiently 

without change, trashing occurs rarely



Cluster Computing

DASH

• Advantages
– Behaves like a 
generic shared 
memory multi 
processor

– Directory 
architecture 
ensures that 
latency only grow 
logarithmic with 
size

• Disadvantages

– Programmer must 

consider many 

layers of locality 

to ensure 

performance

– Complex and 

expensive 

hardware
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DASH Status

• Alive

• Core people gone to SGI

• Main design can be found in the 

SGI Origin-2000

• SGI Origin designed to scale to 

1024 processors



Cluster Computing

In depth problems to be presented 
later

• Data location problem

• Memory consistency problem



Cluster Computing

Consistency Models

Relaxed Consistency Models for 
Distributed Shared Memory
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Presentation Plan

• Defining Memory Consistency
• Motivating Consistency Relaxation
• Consistency Models
• Comparing Consistency Models
• Working with Relaxed Consistency
• Summary



Cluster Computing

Defining Memory 
Consistency

A Memory Consistency Model defines a set of 
constraints that must be meet by a system to conform 
to the given consistency model. These constraints 
define a set of rules that define how memory 
operations are viewed relative to:

•Real time
•Each other
•Different nodes



Cluster Computing

Why Relax the Consistency 
Model

• To simplify bus design on SMP systems
– More relaxed consistency models requires less bus 

bandwidth
– More relaxed consistency requires less cache 

synchronization

• To lower contention on DSM systems
– More relaxed consistency models allows better 

sharing
– More relaxed consistency models requires less 

interconnect bandwidth



Cluster Computing

Strict Consistency

• Performs correctly with race conditions
• Can’t be implemented in systems with more than 

one CPU

Any read to a memory location x returns
the value stored by the most resent write
to x.
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Strict Consistency
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Cluster Computing

Sequential Consistency

• Handles all correct code, except race 
conditions

• Can be implemented with more than one 
CPU

[A multiprocessor system is sequentially consistent if ] the result
of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the
operations of each individual processor appears in this sequence
in the order specified by its program.
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Sequential Consistency
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Cluster Computing

Causal Consistency

• Still fits programmers idea of sequential 
memory accesses

• Hard to make an efficient implementation

Writes that are potentially causally related must be seen by all
processes in the same order. Concurrent writes may be seen in
a different order on different machines.
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Causal Consistency
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Cluster Computing

PRAM Consistency

• Operations from one node can be grouped 
for better performance

• Does not comply with ordinary memory 
conception

Writes done by a single process are received by all other
processes in the order in which they were issued, but
writes from different processes may be seen in a different
order by different processes.
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PRAM Consistency
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Processor Consistency

• Slightly stronger than PRAM
• Slightly easier than PRAM

1. Before a read is allowed to perform with respect to any other
processor, all previous reads must be performed.

2. Before a write is allowed to perform with respect to any other
processor, all other accesses (read and write) must be
performed.



Cluster Computing

Weak Consistency

• Synchronization variables are different from 
ordinary variables

• Lends itself to natural synchronization based 
parallel programming

1. Accesses to synchronization variables are sequentially consistent.

2. No access to a synchronization variable is allowed to be performed until
all previous writes have completed everywhere.

3. No data access ( read or write ) is allowed to be performed until all
previous accesses to synchronization variables have been performed.
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Weak Consistency
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Release Consistency

• Synchronization's now differ between 
Acquire and Release

• Lends itself directly to semaphore 
synchronized parallel programming

1. Before an ordinary access to a shared variable is performed, all
previous acquires done be the process must have completed successfully.

2. Before a release is allowed to be performed, all previous reads and
writes done by the process must have completed.

3. The acquire and release accesses must be processor consistent.



Cluster Computing

Release Consistency
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Lazy Release Consistency

• Differs only slightly from Release 
Consistency

• Release dependent variables are not 
propagated at release, but rather at the 
following acquire

• This allows Release Consistency to be 
used with smaller granularity 
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Entry Consistency

• Associates specific synchronization 
variables with specific data variables

1. An acquire access of a synchronization variable is not allowed to perform
with respect to a process until all updates to the guarded shared data
have been performed with respect to that process.

2. Before an exclusive mode access to a synchronization variable by a
process is allowed to perform with respect to that process, no other
process may hold the synchronization variable, not even in non-exclusive
mode.

3. After an exclusive mode access to a synchronization variable has been
performed, any other process’ next non-exclusive mode access to that
synchronization variable may not be performed until it has been
performed with respect to that variable’s owner.



Cluster Computing

Automatic Update

• Lends itself to hardware support
• Efficient when two nodes are sharing the 

same data often

Automatic update consistency has the same semantics as lazy
release consistency, and adding:

Before performing a release all automatic updates must be
performed.
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Comparing Consistency 
models

Added Semantics

Efficiency

Strict
Sequential

Causal

PRAM
Processor

Weak

Release Lazy Release

Entry

Automatic Update
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Working with Relaxed 
Consistency Models

• Natural tradeoff between efficiency and 
added work

• Anything beyond Causal Consistency 
requires the consistency model to be 
explicitly known

• Compiler knowledge of the consistency 
model can hide the relaxation from the 
programmer
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Summary

• Relaxing memory consistency is 
necessary for any system with more than 
one processor

• Simple relaxation can be hidden
• Strong relaxation can achieve better 

performance



Cluster Computing

Data Location

Finding the data in Distributed 
Shared Memory Systems.
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Coming Up

• Data Distribution Models
• Comparing Data Distribution Models
• Data Location
• Comparing Data Location Models
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Data Distribution

• Fixed Location
• Migration
• Read Replication
• Full Replication
• Comparing Distribution Models
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Fixed Location

• Trivial to implement via RPC
• Can be handled at compile time
• Easy to debug
• Efficiency depends on locality
• Lends itself to Client-Server type of 

applications
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Migration

• Programs are written for local data access
• Accesses to non present data is caught at 

runtime
• Invisible at compile time
• Can be hardware supported
• Efficiency depends on several elements

– Spatial Locality
– Temporal Locality
– Contention
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Read Replication

• As most data that exhibits contention are read 
only data the idea of read-replication is intuitive

• Very similar to copy-on-write in UNIX fork() 
implementations

• Can be hardware supported
• Natural problem is when to invalidate mutable 

read replicas to allow one node to write
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Full Replication

• Migration+Read replication+Write 
replication

• Write replication requires four phases
– Obtain a copy of the data block and make a copy of that
– Perform writes to one of the copies
– On releasing the data create a log of performed writes
– Assembling node checks that no two nodes has written the same 

position

• Showed to be of little interest
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Comparing Distribution 
Models

Added Complexity

Potential Parallelism

Fixed Location

Migration

Read Replication

Full Replication
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Data Location

• Central Server
• Distributed Servers
• Dynamic Distributed Servers
• Home Base Location
• Directory Based Location
• Comparing Location Models
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Central Server

• All data location is know a one place
• Simple to implement
• Low overhead at the client nodes
• Potential bottleneck
• The server could be dedicated for data 

serving
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Distributed Servers

• Data is placed at node once
• Relatively simple to implement
• Location problem can be solved in two 

ways
– Static mapping
– Locate once

• No possibility to adapt to locality patterns
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Dynamic Distributed Servers

• Data block handling can migrate during 
execution

• More complex implementation
• Location may be done via

– Broadcasting
– Location log
– Node investigation

• Possibility to adapt to locality patterns
• Replica handling becomes inherently hard



Cluster Computing

Home Base Location

• The Home node always hold a coherent 
version of the data block

• Otherwise very similar to distributed server
• Advanced distribution models such as 

shared write don’t have to elect a leader 
for data merging. 
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Directory Based Location

• Specially suited for non-flat topologies
• Nodes only has to consider their 

immediate server
• Servers provide a view as a ’virtual’

instance of the remaining system
• Servers may connect to servers in the 

same invisible way
• Usually hardware based
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Comparing Location Models

Added Complexity

Efficient size

Central server

Distributed servers

Dynamic Distributed servers

Directory based

Home based
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Summary

• Distribution aspects differ widely, but high 
complexity don’t always pay of

• Data location can be solved in various 
ways, but each solution behaves best for a 
given number of nodes


