
(To appear in Proceedings of OZCHI 2003, Brisbane, Australia, 26–28 Nov ’03)

Side-By-Side Display and Control of Multiple Scenarios:

Subjunctive Interfaces for Exploring Multi-Attribute Data

Aran Lunzer & Kasper Hornbæk
Natural Sciences ICT Competence Centre, University of Copenhagen

Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark�
alunzer, khornbaek � @nik.ku.dk

Abstract

Information exploration often involves specifying al-
ternative values for some set of parameters, and com-
paring the corresponding results. Some interfaces allow
only one scenario, i.e., one set of parameter values, to
be handled at a time. To compare results, the user must
therefore switch repeatedly among the scenarios of in-
terest and must remember details of the results seen so
far. A subjunctive-interface approach may reduce this
burden on the user. Subjunctive interfaces let users es-
tablish, view and adjust multiple scenarios in parallel, so
that results can be compared side by side. As an illus-
tration, we describe two subjunctive interfaces for com-
paring queries over a multi-attribute dataset. In both
designs the query results are shown side by side, but in
one case the input parameters’ available values are laid
out in menus, marked to show which queries use each
value; in the other case the parameters are controlled
by sliders, with the parameters’ values in the different
queries displayed side by side like the results. Both de-
signs appear to offer advantages over other exploration
interfaces, because they reduce the number of interface
actions required and the information that users must re-
member.

1. Introduction

This paper describes a form of user-interface support
for information exploration, designed to increase effi-
ciency and decrease mental effort in tasks where the user
must compare available results. The support is based
on the coordinated use of multiple views, building upon
earlier research into what we call subjunctive interfaces
(Lunzer, 1999).

Interactive exploration of information (Waterworth
and Chignell, 1991) forms part of numerous tasks –
including the navigation of web sites, querying from
databases, experimentation with simulations or spread-

sheets, and exploratory design of artifacts. Typically, the
tools available for such tasks provide results only in re-
sponse to explicit, pinpoint specifications by the user.
Exploration thus requires the user to undertake an iter-
ative process of requesting and comparing results (Bates,
1989).

For example, interfaces for flight enquiries typically
require the user to specify a single destination city. Al-
though this is convenient for users with precisely formu-
lated travel needs, someone who would prefer to compare
the deals and schedules available for a range of destina-
tions must embark on an exploration. This kind of explo-
ration can burden the user in the following ways:

1. A high number of interface actions

Making the different specifications needed to obtain
the results may require many actions, e.g., mouse
clicks or key presses. In the flight-booking task,
having to submit separate queries for all the airport
cities within a country or region may deter a user
from pursuing a thorough search.

2. A need to remember earlier results

When only one result is visible at a time, compar-
ing results requires the user to remember the rele-
vant details of those that are currently out of sight.
In searching for flights, a user might even resort to
writing down details of results before they disappear
from the computer display.

3. Mental effort in organising the exploration

In cases where the results of interest depend on
variation in two or more parameters – for example,
travel date as well as destination – the user must ex-
pend effort in working through the desired combina-
tions of parameter values.

The flight-enquiry application is one example of an ex-
ploration where each result is obtained by specifying val-
ues for a fixed set of parameters. Existing visualisation

1

and interaction techniques addressing this class of ex-
plorations offer some assistance for the above problems.
For example, the need for high numbers of separate in-
terface actions is reduced by Dynamic Query techniques
(Ahlberg and Shneiderman, 1994; Shneiderman, 1994),
that let users rapidly work through different values for an
input parameter by moving a slider. This technique can
also reduce the user’s mental effort, because different re-
sults that only differ in terms of a single input parameter
can easily and quickly be revisited. It is less effective
for exploring results that differ in terms of many parame-
ters, because the user must still take care of organising a
search through those parameters’ individual ranges. This
also remains a concern for other forms of dynamic re-
sult generation such as Magic Lenses (Bier et al., 1993)
and Movable Filters (Fishkin and Stone, 1995). Goldstein
and Roth (1994) demonstrated a simple combination of
the Dynamic Query approach with their Aggregate Ma-
nipulator, which allows the user to establish and work
with long-lived result subsets and thus also helps to or-
ganise the exploration and reduce the need for memory.
The scenario-management facilities in Microsoft Excel R

�

likewise allow a user to obtain a tabular view for com-
paring the results from user-defined scenarios involving
different values in specified spreadsheet cells. However,
these facilities in Excel and the Aggregate Manipulator
can be seen as disrupting exploration progress, in that the
user must spend time on the distinct activity of defining
regions of the parameter space that are of interest.

This paper presents a subjunctive-interface approach
to exploration within fixed parameter sets, specifically
designed to reduce the three kinds of burden noted above.
The principles of subjunctive interfaces are described in
the next section, followed by a section illustrating how
they are applied to information exploration within a small
dataset from a US census. Finally we discuss how one
may evaluate the benefit of subjunctive interfaces over
other techniques.

2. Subjunctive interfaces

The idea of subjunctive interfaces is to allow the user
of a computer application to establish and control alter-
native scenarios that differ in their values for the appli-
cation’s input parameters. The concept was inspired by
Hofstadter’s (1979) playful notion of a Subjunc-TV – a
magical television whose tuning knobs would provide ac-
cess to alternative versions of a given broadcast based on
arbitrarily different circumstances chosen by the viewer.

2.1. Parallel scenarios in exploring information

In (Lunzer, 1999) it was suggested that subjunctive-
interface principles may provide benefits in many dif-
ferent styles of application. Terry and Mynatt (2002)
have demonstrated the principles’ application in support
of open-ended graphical design tasks; our goal here is

to apply the principles to information exploration. The
chosen approach is to use alternative scenarios to hold
alternative queries, and to offer the following scenario-
handling facilities:

� The user should be able to establish multiple, mutu-
ally incompatible queries based on different param-
eter values.

Referring back to the flight-booking example, a user
should be able to establish separate queries based on
a range of destination cities.

� The results of all the queries should be viewable si-
multaneously, in a way that helps the user to com-
pare them, and to see which results arise from which
parameter values – for example, which fare applies
to which city.

Having the results continuously visible side by side
allows the user to compare them without significant
use of memory.

� At the user’s discretion, any adjustment in a param-
eter value should be applicable to more than one
query at a time. This would allow, for example, si-
multaneous exploration of the effect of different de-
parture dates on the results for several different des-
tinations.

In general, this facility reduces both the number of
interaction operations and the mental effort involved
in organising a multiple-parameter exploration.

2.2. Handling many scenarios simultaneously

Enhancing an application to let users handle many sce-
narios in parallel brings an interface-design challenge:
how to present all the scenarios’ details so that a user can
distinguish them from each other, and can confidently tar-
get particular scenarios for parameter adjustment.

In this respect the simplest applications to enhance are
those in which differences between scenarios result di-
rectly in gross differences in spatial layout of their in-
terface elements. In that case, multiple scenarios can be
presented in parallel simply by overlaying their individ-
ual displays. Our early demonstrations of subjunctive-
interface techniques addressed applications of this kind.

However, for many forms of complex graphical dis-
play, and for the countless applications whose displays
include text, simple visual overlay would result in an un-
readable mess. An alternative approach is needed.

One possibility is to render multiple copies of the
entire application display. But naively replicating even
those parts of the display that are identical in all scenarios
is wasteful of space; furthermore, it may force the user to
expend a substantial amount of time and effort in figuring
out which aspects of the scenarios are actually different.

Our approach involves the use of what we call widget
multiplexers (Lunzer, 2002). Each multiplexer takes over

2

the presentation and manipulation of the display area for
a single interaction widget. If the display of that widget
is the same in all currently defined scenarios, the mul-
tiplexer just shows that display in its normal, full-size
form. But if the widget has different contents in different
scenarios, the multiplexer shows those various contents
side by side.

2.2.1. Showing values side by side

Figure 1: Graphical and textual widget multiplexers.

Figure 1 shows part of a simple application that sim-
ulates ants’ food-foraging behaviour. In this case it is
showing four different scenarios. In the large graphical
multiplexer in the upper part of the picture, thumbnails
for the four scenarios are laid out around the top and right.
A second multiplexer, with textual contents, is seen in the
figure’s lower part.

The intention of the pseudo-3D visual distortion ap-
plied to the ant-simulation thumbnails is to help the user
interpret them as all having the same aspect ratio, de-
spite their being squeezed and stretched to fit the nar-
row margin around the larger working view (described
below). However, at the limited resolution offered by
today’s typical computer screens, such distortion would
make a textual display unreadable. Therefore for text-
based displays we have developed the alternative form of
widget multiplexer seen in the bottom-right of Figure 1,
that does not employ this visual effect. The textual multi-
plexer in this example is showing four different values for
the evaporation-rate parameter in the four scenarios. No-
tice that because the label ‘evaporationRate’ has identical
appearance in all scenarios, there is no need to replicate
its display.

Whether graphical or textual, all widget multiplexers
are coordinated to lay out the scenarios in the same way.
In Figure 1 the user can tell that the scenario whose sim-
ulation display appears at top left in the graphical multi-
plexer is the one with the value of 2 for evaporation rate.
Colour coding is also used to reinforce this correspon-
dence, as will be explained later.

In the discussions that follow, scenario positions
within multiplexers are referred to by numbers – starting
at top left and increasing in a clockwise direction. The
style of layout shown here allows a maximum of eight
scenarios to be shown.

2.2.2. Interacting with selected scenarios

At any given time, one scenario chosen by the user is
designated the primary scenario. Each multiplexer high-
lights the primary scenario’s thumbnail with a black bor-
der and an arrow indicating that its contents are mirrored
into the working view. In Figure 1 the primary scenario
is scenario 4, whose thumbnail appears at bottom right in
each multiplexer. The user can select a different primary
scenario by clicking on a different thumbnail.

Only the working view supports the interaction facili-
ties (e.g., using mouse and keyboard) that the application
would normally offer through this widget. Its size is a
compromise between creating space for the thumbnails,
and ensuring that the information in the primary scenario
can be seen and manipulated at a comfortable scale.

The user can choose to have interactions in the work-
ing view affect many scenarios simultaneously. At any
given time, the active scenarios – i.e., those that are
influenced by interactions – comprise the primary sce-
nario and any others that the user has selected by control-
clicking on their thumbnails. In Figure 1, scenario 3 has
been selected as an additional active scenario.

Having introduced these basic features of subjunctive
interfaces, we now discuss how we have applied them to
a specific information-exploration activity.

3. Interfaces for exploring multi-
attribute data

We illustrate some of the design possibilities for sub-
junctive interfaces in exploring a census data set that was
used by Hochheiser and Shneiderman (2000) for an ex-
periment comparing menu-based interaction styles. First
we show an interface similar to that designed for the orig-
inal experiment, and outline its problems. We then show
two alternative subjunctive-interface approaches to ad-
dressing these problems.

3.1. The simultaneous-menus interface

Hochheiser and Shneiderman worked with a small
census dataset revealing commercial activity in the state
of Maryland. For each of the state’s twenty-three coun-
ties the set contains statistics for each of nine industries

3

Figure 2: An example of a ‘simultaneous menus’ style of exploration interface for census data, after Hochheiser and
Shneiderman (2000). For each combination of County, Industry and Year specified on the three ‘menus’ of links, the
dataset contains the three statistics that appear across the bottom.

in four successive years. The statistics specify the num-
ber of employees, number of establishments, and total an-
nual payroll. Each of the three input parameters (county,
industry, year) was presented as a menu from which the
user could make a single selection. An experiment com-
pared two styles of interacting with these menus.

In the first interface style, typical of much Web-based
data access, each menu was presented as an individual
web page. Making a selection by clicking a menu-item
link in the first menu brought up the page containing the
second menu, and so on. Making a selection on the third
menu brought up a page showing the relevant statistics.
This was referred to as the ‘sequential menus’ interface.

By contrast, in the ‘simultaneous menus’ interface, the
three menus and the result-display page were all visible at
all times (using HTML frames). Once the user had made
input selections by clicking on one link in each menu, the
result display showed the appropriate statistics. Figure 2
shows our own interface reproducing this design.

Retrieving a single set of statistics – a given combi-
nation of industry, county and year – is straightforward
using either sequential or simultaneous menus. How-
ever, Hochheiser and Shneiderman showed that, for sim-
ple comparisons between different statistics, using simul-
taneous menus resulted in lower task-completion times.

We were interested in further examining the compari-
son issue, in retrieval tasks involving more complex com-
parisons than in the original experiment. For example, a
user may notice that the payroll record for Agricultural

Services in Caroline county in 1993 was ‘withheld’, and
may want to check all other payroll statistics for that
county (for all industries, all years) to see which oth-
ers – if any – were also withheld. Or, having noticed
that Dorchester county’s payroll statistics for Whole-
sale Trade show a year-on-year decrease throughout the
recorded period, a user may want to check whether this is
unique to Dorchester, or applies similarly to the Whole-
sale Trade figures for other counties.

Attempting to answer questions of this complexity
with even the simultaneous-menus interface would give
rise to the kinds of challenge that we outlined in the In-
troduction, and that we believe a subjunctive interface can
address:

1. A high number of interface actions

In this interface, making a selection for each param-
eter requires one click with the mouse. If a user
wants to explore combinations of values for different
parameters (e.g., to look through Caroline county’s
statistics for all industries in all years), a large num-
ber of mouse operations will be needed.

2. A need to remember earlier results

Every change in the input values replaces the pre-
vious results with those reflecting the current selec-
tions. Making comparisons between values, e.g., to
understand a trend from year to year, requires users
to remember several values.

4

Figure 3: The census-browsing interface shown in Figure 2, operating on four scenarios in parallel. All four scenarios
share the parameter settings Dorchester and Wholesale Trade, but each has been assigned a different year. Each of the
result displays is therefore split into a four-scenario multiplexed view showing the values for the various years.

3. Mental effort in organising the exploration

To work through multiple values of one parameter
in combination with multiple values of another re-
quires mental effort. Iterating through counties and
years to find cases where the payroll statistics have
been withheld, as discussed above, requires an or-
derly search to ensure that all county/year combina-
tions are tried.

3.2. A menu-based subjunctive interface

Figure 3 shows a subjunctive interface for this data
set, implemented in a way that remains as close as pos-
sible to the original simultaneous-menus design. In this
figure the user has established four scenarios. The wid-
get multiplexers handling the various result displays have
all taken on a multiple-view form, because each scenario
contains a different result value.

3.2.1. Distinguishing between scenarios

Figure 4 shows some details from Figure 3, revealing
how the interface helps the user to distinguish the settings
and the results that belong to different scenarios.

The user has established one scenario for each of the
four values in the Years menu. On the left of Figure 4
is the markup of that menu, and on the right the corre-
sponding state of a textual multiplexer showing the pay-
roll amounts for the four different scenarios (i.e., the four

different years). The payroll amount for 1995, for exam-
ple, is 10,469,000.

Figure 4: Menu markup and a multiplexed result.

Notice that in Figure 3 all three multiplexers use the
same arrangement of views for the different scenarios.
As described before, the values found in the equivalent
locations within each multiplexer – for example, at bot-
tom right – belong to the same scenario. The marker
boxes by the menu items in Figure 4 also use the same
layout. We believe that having standard layouts for two,
three, or more scenarios will help users to understand
quickly which element of a display relates to which sce-
nario. This layout correlation is reinforced by the use of
colour – in the backgrounds of textual views, the small
squares within the menu markers, and the thin rectangles
along the outside edges of graphical multiplexers such as
the simulation in Figure 1.

5

3.2.2. Setting values in selected scenarios

Figure 5: Mouse-pointer indication of active scenarios.

When the mouse pointer is moved over an interactive
element within a subjunctive interface, the pointer form
reveals the active scenarios – i.e., those that will be af-
fected by user interaction. This is shown in Figure 5. In
this case scenarios 2 and 4 are active, so a click at the po-
sition shown here will change the Industry value in those
scenarios from Construction to Finance – while in scenar-
ios 1 and 3 the value will remain as Agricultural Services.

Figure 6: A pop-up scenario specifier.

Figure 6 shows a scenario specifier that pops up if the
user holds down the mouse button over an interactive ele-
ment – in this case the link for Transportation. The avail-
able scenarios are represented by coloured rectangles, in
the now familiar arrangement. Dragging the small circu-
lar handle to one of these rectangles, then releasing the
mouse, has a dual effect: first it changes the application’s
active-scenario selection, and then it executes a mouse-
click affecting the newly active scenario(s). In the case
shown here, releasing the mouse within the grey rectan-
gle at top-left in the specifier would set scenario 1 as the
(sole) active scenario, and would set Transportation as the
value in that scenario. All with a single click-and-drag
action. Releasing instead within either of the two rect-
angles that contain ticks – meaning that this menu value
is already set in those scenarios – would just cause the
ticked scenarios to become the active ones.

3.2.3. Establishing new scenarios

The small interlocking-squares icon at the bottom of
the scenario specifier signifies a duplication facility. If
the user releases the mouse over this icon, the application
will duplicate all the currently active scenarios (the num-
ber of active scenarios is shown in brackets), and will then
set the selected value – here Transportation – in those new
scenarios.

3.2.4. Specialised support for comparison

Figure 7: Colour coding to indicate identical values.

Textual multiplexers have an additional feature: a way
to reveal when a subset of the scenarios share the same
content value1. Figure 7 shows this feature in action.
Among the six scenarios it is displaying, there are only
two different values: the value 1993 is shared by sce-
narios 1, 3 and 5, while scenarios 2, 4 and 6 all hold
1996. Each value is only displayed within the view of
the lowest-numbered scenario in which it appears. The
views for the other scenarios sharing that value are blank,
but take on the background colour of the view that is dis-
playing the value. So in this case the views for scenarios
3 and 5 are shown with a background of the same colour
as scenario 1 (by convention, a light gray). At the tops of
these views are small bars filled with their ‘own’ colours.

We expect that users will find this feature beneficial
in situations where they must judge rapidly whether sce-
narios have the same value for some property – espe-
cially in cases where, because of limited space, a textual-
multiplexer view cannot display the whole of its contents.

3.3. A slider-based subjunctive interface

Figure 8 shows an alternative interface style for the
census application. Instead of having menus for setting
the input-parameter values, each parameter is controlled
by a slider. A parameter’s current setting is shown in a
display widget above its slider; this display is under con-
trol of a widget multiplexer, allowing it to show different
values corresponding to different scenarios.

This interface style has the advantage of taking up a
fixed amount of space regardless of the number of al-
ternative values a parameter may take. Therefore this
style would be preferable for setting a parameter that has
a large number of possible values, such as a continuous
scale, or where the domain of input values is not decided
in advance, such as when the user must supply an arbi-
trary string in a text field. A further advantage of using
a draggable slider as opposed to clickable menu items is
that the user does not need to be looking at the slider to try
new values; he or she can move the slider while watching
the impact somewhere else on screen, such as a changing
result display.

1When a textual multiplexer has the same contents for every sce-
nario, it shows a single, full-size display – just as the graphical multi-
plexers do.

6

Figure 8: The census application with a slider-based input style. Instead of setting input parameters by clicking on menus
that present all the available values, the user operates a slider for each parameter. Above each slider is a field showing
the current selected value; when different scenarios have been given different values, that field shows the different values
using an appropriate form of multiplexer.

These two ways of presenting a parameter’s values –
either using a menu or a multiplexed field – are examples
of a more general distinction between what we refer to as
scenario marking vs. scenario layout. Scenario layout, in
which the values for different scenarios are shown in sep-
arate views laid out within a multiplexer, suits any display
that normally consists of a single textual or graphical ele-
ment. Scenario marking, exemplified by the markers seen
alongside the menu items in the census application, suits
displays whose values are indicated by the position of a
mark within a spatial arrangement – such as a marking
menu, a list with selections, or a map. Clarifying distinc-
tions like this will help us in our ongoing development of
a taxonomy of subjunctive-interface techniques.

4. Discussion

Our most pressing concern is the need for substantial
empirical evaluation of the usability of subjunctive inter-
faces. In the first instance we are performing experiments
on the census-application interface. We now discuss the
benefits and limitations of subjunctive interfaces that we
expect these experiments to illuminate.

4.1. A click-count estimate of benefits

One way to reason about the utility of subjunctive in-
terfaces is to consider the number of clicks required for
typical tasks, as has been done for other kinds of in-
terface (Hochheiser and Shneiderman, 2000; Sears and
Shneiderman, 1994). We may also consider the extent
to which people have to use their memory when solving
tasks. While such considerations are inherently limited,
the aims are (1) to quantify the intuition that subjunctive
interfaces are more efficient to use, and (2) to guide the

selection of experimental tasks for an empirical evalua-
tion, built on hypotheses about performance.

Imagine a simple task, such as comparing � values of
a parameter. In the census data, such a task might be to
find the year (��� �) with the highest employment for a
certain county and industry. When comparing the menu-
based subjunctive interface to simultaneous menus, there
is no difference in the number of clicks required to com-
plete such a task; both interfaces require �����	��
 clicks,
where � is the number of parameters of the data set. The
slider-based subjunctive interface also requires a similar
number of clicks as a dynamic query interface. Yet nei-
ther subjunctive interface requires that the user remem-
ber result details, as is needed with simultaneous menus
or a dynamic-query interface; values can be compared di-
rectly from the display. This advantage is similar to what
has been called the rule of decomposition for multiple
view visualisations (Baldonado et al., 2000), which states
that using multiple views may help the user to ‘divide and
conquer’.

Consider a more complex task, such as comparing �
values of one parameter across � values of another. In
the census data, such a task could be to compare whether
construction, mining and services (����) showed the
same trends in payroll through the years in the data set
(��� �

). For the menu-based subjunctive interface, the
number of required clicks is ����������
�����������
�� . With
simultaneous menus, the number of clicks is �����	������

(with the given numbers, 14 against the subjunctive inter-
face’s 8). With either style of subjunctive interface less
information must be remembered, as the results for mul-
tiple values of a parameter are shown simultaneously; in
the above example, the interface can be set up to show all
years’ values at the same time.

7

An even more complex task would be to explore data
to find trends over time (� � �

) in employment within
retail, services and agriculture (� � �) for exemplars of
rural and urban counties (

� ���). For this task subjunctive
interfaces also require fewer clicks (� � �����
���� ��� �

�� � � � �
�� = 9) than do for example the simultaneous
menus (����� ����� � �
 = 26).

4.2. Barriers to realising benefits

The above reasoning suggests that we can expect bet-
ter performance for subjunctive interfaces as task com-
plexity increases. However, a simple click-count compar-
ison overlooks the facts that (a) the user has to set up the
subjunctive interfaces in an optimal way, (b) some clicks
may be more complex than others (e.g., double click,
or click and drag), and (c) locating and comparing data
within a subjunctive-interface display involves its own
form of mental effort. These factors may all reduce the
benefit eventually achieved in practical situations of use.

In particular, the formula for subjunctive-interface
click count is only valid if all but one dimension of vari-
ation can be set up for simultaneous display, leaving that
last dimension to be manipulated dynamically. This de-
pends on how many scenarios can be handled simultane-
ously. Given an eight-scenario limit, in the latter task the
user could either set up six scenarios holding the com-
binations of industry type and county (��� �), or eight
scenarios for year and county (� � �). But if

�
also had a

value of 3, the optimal click count suggested by the for-
mula would not be achievable in practice.

Evaluating user response to these challenges will help
us to judge the interfaces’ performance in terms of what
Baldonado et al. (2000) term the principle of parsimony
of related views. In other words, whether the burden of
understanding and operating the views outweighs the ad-
vantages that they offer. Part of the issue will be the util-
ity and comprehensibility of many detailed features of the
interface, such as the layout and colour-coding of multi-
scenario displays. In the first instance we are canvassing
informal evaluations of these features from our experi-
mental subjects.

At a more subtle level, the self-evidence rule of Bal-
donado et al. directs us to check whether users are con-
fused by differences between the aspect ratios of differ-
ent multiple-scenario layouts – for example, between the
multiplexer and menu-marking boxes seen in Figure 4.

4.3. Experimental evaluation

In this paper we have introduced two different inter-
faces for the census application – menu-based and slider-
based – and discussed how these exemplify scenario-
marking and scenario-layout interaction styles. The two
styles’ relative benefits and disadvantages may be re-
vealed with the help of controlled experiments. Our first
priority, however, has been to evaluate the usability and

performance of a subjunctive interface relative to an in-
terface with no multiple-scenario capability.

We have begun by comparing the scenario-marking
subjunctive interface against the simultaneous-menus in-
terface, for complex multi-record retrievals from the cen-
sus data set. The interface used for our initial 20-subject
experiment differed somewhat from the version shown
here, in ways that suit this text-only application and that
were suggested by the results of a pilot study. The main
difference was that the widget multiplexers showed dis-
plays of equal size, without a separate working view, and
supported up to 12 parallel scenarios. The special colour-
coding mechanism described in section 3.2.4 was also
disabled.

While the results of that experiment were promising,
they also highlighted some usability issues that we are
now investigating with the help of further design itera-
tions. In this way we aim to pursue an informed explo-
ration of the subjunctive-interface design space, firstly for
this specific application and then for other domains and
other styles of interaction.

5. Conclusion

We have identified three kinds of burden that com-
monly affect users who want to compare results during
interactive exploration of information: a high number of
interactions, mental effort in remembering what has been
seen, and mental effort in organising the exploration. We
suggest that these can all be reduced by use of a sub-
junctive interface approach, which lets users establish,
view and adjust many scenarios in parallel. Two styles of
subjunctive interface for accessing a census dataset have
been built, one of which is now being evaluated alongside
a more traditional menu interface.

6. Acknowledgements

We thank Harry Hochheiser for lending us the cen-
sus data, and Jørgen Gomme and Erik Frøkjær for com-
ments on an early draft of this paper. The tools shown
here are built as an extension of the Morphic interface li-
brary within Squeak Smalltalk; the basic ant simulation
appears in Squeak’s standard class library.

References

Ahlberg, C. & Shneiderman, B. (1994). Visual informa-
tion seeking: Tight coupling of dynamic query filters
with starfield displays. In Proceedings of ACM CHI
94 (pp. 313–317). ACM Press.

Baldonado, M. Q. W., Woodruff, A., & Kuchinsky, A.
(2000). Guidelines for using multiple views in infor-
mation visualization. In Proceedings of AVI 2000 (pp.
110–119).

8

Bates, M. J. (1989). The design of browsing and berryp-
icking techniques for the online search interface. On-
line Review, 13(5), 407–424.

Bier, E. A., Stone, M. C., Pier, K., Buxton, W., &
DeRose, T. D. (1993). Toolglass and magic lenses:
The see-through interface. In Proceedings of ACM
SIGGRAPH 93 (pp. 73–80). ACM Press.

Fishkin, K. & Stone, M. (1995). Enhanced dynamic
queries via movable filters. In Proceedings of ACM
CHI 95 (pp. 415–420). ACM Press.

Goldstein, J. & Roth, S. (1994). Using aggregation and
dynamic queries for exploring large data sets. In Pro-
ceedings of ACM CHI 94 (pp. 23–29). ACM Press.

Hochheiser, H. & Shneiderman, B. (2000). Performance
benefits of simultaneous over sequential menus as
task complexity increases. International Journal of
Human-Computer Interaction, 12(2), 173–192.

Hofstadter, D. R. (1979). Gödel, Escher, Bach: an Eter-
nal Golden Braid. Basic Books.

Lunzer, A. (1999). Choice and comparison where the
user wants them: Subjunctive interfaces for computer-

supported exploration. In Proceedings of IFIP TC. 13
International Conference on Human-Computer Inter-
action (INTERACT ’99) (pp. 474–482). IOS Press.

Lunzer, A. (2002). Widget multiplexers for in-situ han-
dling of alternative application states. In Proceed-
ings of 2nd Danish Human-Computer Interaction Re-
search Symposium (pp. 40–41). University of Copen-
hagen DIKU Technical Report 2002/19.

Sears, A. & Shneiderman, B. (1994). Split menus: Ef-
fectively using selection frequency to organize menus.
ACM Transactions on Computer-Human Interaction,
1(1), 27–51.

Shneiderman, B. (1994). Dynamic queries for visual in-
formation seeking. IEEE Software, 11(6), 70–77.

Terry, M. & Mynatt, E. D. (2002). Side Views: Persistent,
on-demand previews for open-ended tasks. In Pro-
ceedings of ACM UIST ’02 (pp. 71–80). ACM Press.

Waterworth, J. & Chignell, M. (1991). A model for in-
formation exploration. Hypermedia, 3(1), 35–58.

9

