Abstract:
Stacks, Heaps and Regions:
One Logic to Bind Them

David Walker
Computer Science Department
Princeton University

Systems of proof-carrying code and typed assembly language guarantee a variety of im-
portant safety properties for low-level programs. However, implementers often spend the
most time and effort creating mechanisms related to checking aliasing properties, data lay-
out and memory management. One of the main causes of this phenomenon is simply the
sheer number and complexity of different memory invariants aliasing relationships that are
possible in a certifying compiler. In the face of this complexity, ad hoc techniques for ensur-
ing memory safety will break down.

A promising new way to manage the complexity of memory management invariants in
safe low-level systems is to use substructural logics. The expressive connectives of some
substructural logics are able to capture the spatial orientation of a data structure in a concise
fashion without having to rely upon the ad hoc auxiliary predicates needed by conventional
logics. In this talk, we will explain how to develop a substructural logic with connectives
capable of expressing a variety of spatial properties of data including:

e Juxtaposition of one piece of storage next to another
e Separation (disjointedness) of one piece of storage with respect to another

e Containment of one piece of storage within another

Great care has been taken to define each connective in our logic orthogonally to the
others, so a particular proof-carrying code system can employ the exact fragment of logic that
suits its needs. The connectives also compose nicely and allow us to express rich invariants
involving data structures allocated on the stack, in the heap, or in user-managed memory
regions. We have defined the syntactic proof rules for our logic, given a storage semantics
to the connectives, and defined a typed assembly language that uses the logic to ensure safe
stack, heap and region allocation and deallocation of data.

This is joint research with Amal Ahmed and Limin Jia.






