
Typed regions

Stefan Monnier

Université de Montréal

Typed regions Stefan Monnier 1

Introduction

Formal methods on the rise: language-based security

Maturity: bugs are more than an annoyance

Verify more properties than memory safety:

Java brought memory safety to the masses, now they want more

Type check low-level code: distrust tricky code

Type systems are oblivious to side-effects

Typed regions Stefan Monnier 2

Contributions

A new type system:

• Hybrid: regions⊗ alias types⊗ proofs

• Strong update with arbitrary aliasing

• Manipulate and reason about arbitrary state properties

• modularity of type systems and power of Hoare logic

• Able to type check a realistic GC

• With a better replacement for widen

Typed regions Stefan Monnier 3

Regions

A region holds multiple objects, deallocated all at once

Every allocation specifies the region: put[ρ] v

A new type for pointers: τ at ρ

(types) τ ::= t | int | τ × τ | τ at ρ

| ∀[~t]{~ρ}(~τ) → 0

If a region does not appear in an object’s type, it is not needed

free ρ can now be checked for safety

Simple and efficient

Typed regions Stefan Monnier 4

Alias types

A pointer to address ` has type: ptr `

(types) τ ::= t | int | τ × τ | ptr `

| ∀[~t]{
−−−→
` 7→ τ}(~τ) → 0

The heap has its own, separately maintained type. For example:

{`1 7→ (int, int), `2 7→ (ptr `1, ptr `2)}

Dangling pointers like ptr `3 are allowed but unusable

p :ptr ` = new 2; {` 7→ (>,>), . . .}
p.0 := 1; {` 7→ (int,>), . . .}
p.1 := p; {` 7→ (int, ptr `), . . .}

Low-level, very powerful, but restrictive

Typed regions Stefan Monnier 5

A fundamental principle of type soundness

A memory location cannot have 2 types at the same time

Enforced in the following ways:

regions The type of a location is immutable

=⇒ can be copied freely

alias types The type of a location is never copied

=⇒ can be changed at any time

Very few exceptions

intuitionistic value linear state

regions τ at ρ {~ρ}
alias types ptr ` {

−−−→
` 7→ τ}

Typed regions Stefan Monnier 6

Typed regions

A hybrid between simple regions and alias types:

Part immutable/copiable and part mutable/centralized

(types) τ ::= t | int | τ × τ | τ at ρ.n

| ∀[~t]{−−−−→ρ 7→ ϕ}(~τ) → 0

Pointers have type τ at ρ.n: the nth object in ρ, of intended type τ

Every region has its own type ϕ, maintained separately

The intended type of a location is not necessarily its actual type

The actual type of a location depends on the region’s type

Typed regions Stefan Monnier 7

The type of a region

A region’s type is a type function of 2 parameters: n and τ

fun plain n t = t

fun alias n t = if n = 1 then (int, int) else ⊥

A region of type plain is like a traditional region: ∃n.τ at ρ.n ' τ at ρ

alias corresponds to alias types: ∃t.t at ρ.n ' ptr ρ.n

The type language is the calculus of inductive constructions, a powerful

λ-calculus.

Typed regions Stefan Monnier 8

Why?

Copy/create arbitrary cycles: no base case, unknown aliasing

Alias types are too restrictive: pointer reversal with unknown aliasing

Expose memory layout: scanning a region

next : τ at ρ.n → ∃t.t at ρ.(n+1)
Used by all forms of GC

Clean up widen

Typed regions Stefan Monnier 9

