
Refinement in a Separation Context

Ivana Mijajlović
Queen Mary,

University of London

Noah Torp-Smith
IT University of Copenhagen

SPACE 2004

Introduction

• Hoare did data refinement for imperative programs

• Pointers + Data abstraction = Trouble

• As usual dangling pointers are the problem

• Linguistic approaches haven’t worked

Introduction

• Hoare did data refinement for imperative programs

• Pointers + Data abstraction = Trouble

• As usual dangling pointers are the problem

• Linguistic approaches haven’t worked

Introduction

• Hoare did data refinement for imperative programs

• Pointers + Data abstraction = Trouble

• As usual dangling pointers are the problem

• Linguistic approaches haven’t worked

Introduction

• Hoare did data refinement for imperative programs

• Pointers + Data abstraction = Trouble

• As usual dangling pointers are the problem

• Linguistic approaches haven’t worked

Modeling Clients and Modules

A relation M ⊆ S × H is precise if for any state s, h there is at most
one subheap h0 v h, such that (s, h0) ∈ M .

The separating conjuction of unary relations M, M ′ ⊆ S ×H

M∗M ′ = {(s, h) | ∃h0, h1. h0#h1 ∧h = h0∗h1 ∧ (s, h0) ∈ M ∧(s, h1) ∈ M ′}.

M M’

Let t ⊆ (S × H) × (S × H)] {wrong}. The relation M ⊆ S × H
is preserved by relation t if for all (s, h), (s′, h′), (s, h) ∈ M and
(s, h)[t](s′, h′), imply (s′, h′) ∈ M .

Modeling Clients and Modules

A relation M ⊆ S × H is precise if for any state s, h there is at most
one subheap h0 v h, such that (s, h0) ∈ M .

The separating conjuction of unary relations M, M ′ ⊆ S ×H

M∗M ′ = {(s, h) | ∃h0, h1. h0#h1 ∧h = h0∗h1 ∧ (s, h0) ∈ M ∧(s, h1) ∈ M ′}.

M M’

Let t ⊆ (S × H) × (S × H)] {wrong}. The relation M ⊆ S × H
is preserved by relation t if for all (s, h), (s′, h′), (s, h) ∈ M and
(s, h)[t](s′, h′), imply (s′, h′) ∈ M .

Modeling Clients and Modules

A relation M ⊆ S × H is precise if for any state s, h there is at most
one subheap h0 v h, such that (s, h0) ∈ M .

The separating conjuction of unary relations M, M ′ ⊆ S ×H

M∗M ′ = {(s, h) | ∃h0, h1. h0#h1 ∧h = h0∗h1 ∧ (s, h0) ∈ M ∧(s, h1) ∈ M ′}.

M M’

Let t ⊆ (S × H) × (S × H)] {wrong}. The relation M ⊆ S × H
is preserved by relation t if for all (s, h), (s′, h′), (s, h) ∈ M and
(s, h)[t](s′, h′), imply (s′, h′) ∈ M .

Separation Context

cuser ::= operi, i ∈ I | skip | x := e | x := [e] | [e] := e | c1; c2
| if e then c1 else c2 | while e do c

Let M ⊆ S × H be a precise unary relation, and for i ∈ I let operi

preserve relation M ∗ T. A program c is a unary separation context

for M and (operi)i∈I if for all executions and all (s, h) ∈ M ∗T c, s, h 6;
av and c, s, h 6; wrong.

Let M ⊆ S ×H be a precise relation, and for (i ∈ I) let operi preserve

M ∗ T, and let c be a separation context for M and (operi)i∈I. If

(s, h) ∈ M ∗ T, and c, s, h ; s′, h′, then (s′, h′) ∈ M ∗ T.

Separation Context

cuser ::= operi, i ∈ I | skip | x := e | x := [e] | [e] := e | c1; c2
| if e then c1 else c2 | while e do c

Let M ⊆ S × H be a precise unary relation, and for i ∈ I let operi

preserve relation M ∗ T. A program c is a unary separation context

for M and (operi)i∈I if for all executions and all (s, h) ∈ M ∗T c, s, h 6;
av and c, s, h 6; wrong.

Let M ⊆ S ×H be a precise relation, and for (i ∈ I) let operi preserve

M ∗ T, and let c be a separation context for M and (operi)i∈I. If

(s, h) ∈ M ∗ T, and c, s, h ; s′, h′, then (s′, h′) ∈ M ∗ T.

Separation Context

cuser ::= operi, i ∈ I | skip | x := e | x := [e] | [e] := e | c1; c2
| if e then c1 else c2 | while e do c

Let M ⊆ S × H be a precise unary relation, and for i ∈ I let operi

preserve relation M ∗ T. A program c is a unary separation context

for M and (operi)i∈I if for all executions and all (s, h) ∈ M ∗T c, s, h 6;
av and c, s, h 6; wrong.

Let M ⊆ S ×H be a precise relation, and for (i ∈ I) let operi preserve

M ∗ T, and let c be a separation context for M and (operi)i∈I. If

(s, h) ∈ M ∗ T, and c, s, h ; s′, h′, then (s′, h′) ∈ M ∗ T.

Separation context

x

47

ls

x=new()

Separation context

ls
x

47

dispose(x);

Separation context

x

47

ls

dispose(x); x=new();

Separation context

x

47

ls

dispose(x); x=new(); y=[x]

Non-separation context

x

47

ls

x=new()

Non-separation context

ls
x

47

dispose(x);

Non-separation context

ls
x

47

dispose(x); dispose(x)

Binary Relations for Refinement

We say that binary relation R is precise, if each of its two projections
on the set of states is precise.

Separating conjunction of binary relations

R R’

��� ����

��� � � �

Binary Relations for Refinement

We say that binary relation R is precise, if each of its two projections
on the set of states is precise.

Separating conjunction of binary relations

R R’

��� ����

��� � � �

Refinement

� �����

���
	���

���
	����

� ����� � �����

���
	���

���
	����

� �������

� ���������������� �"!

���$#%���&#'!

(���*)� ���+)� !

���$#%���&#,!���) # ���) # !

�����-��� �"!

The Result

• A separation context for the abstract data type is a separation

context for all its refinements

• Sepration contexts preserve R ∗ Id

�������

���������

	�
 ��������

	�
 �����������
� ������ �����

The Result

• A separation context for the abstract data type is a separation

context for all its refinements

• Sepration contexts preserve R ∗ Id

�������

���������

	�
 ��������

	�
 �����������
� ������ �����

Example - new() and dispose()

Abstract − Magic

Intermediate − Set

Concrete − List

���������
	

���������	�������	��� �

�

����������� �"!�#$�%�&�'�)(��*�&+
�,�

R1 = {((sA, hA), (sC, hC)) | sA, hA emp ∧ (sC, hC ∀∗p ∈ f. p 7→ ,)}

Example - new() and dispose()

Abstract − Magic

Intermediate − Set

Concrete − List

���������
	

���������	�������	��� �

�

����������� �"!�#$�%�&�'�)(��*�&+
�,�

R1 = {((sA, hA), (sC, hC)) | sA, hA emp ∧ (sC, hC ∀∗p ∈ f. p 7→ ,)}

Future Work

• This is only a model

• We would like to have a logic

Future Work

• This is only a model

• We would like to have a logic

