Refinement in a Separation Context

Ivana Mijajlović Queen Mary, University of London

Noah Torp-Smith IT University of Copenhagen

SPACE 2004

• Hoare did data refinement for imperative programs

- Hoare did data refinement for imperative programs
- Pointers + Data abstraction = Trouble

- Hoare did data refinement for imperative programs
- Pointers + Data abstraction = Trouble
- As usual dangling pointers are the problem

- Hoare did data refinement for imperative programs
- Pointers + Data abstraction = Trouble
- As usual dangling pointers are the problem
- Linguistic approaches haven't worked

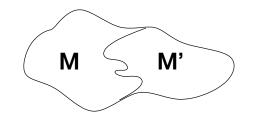
Modeling Clients and Modules

A relation $M \subseteq S \times H$ is **precise** if for any state s, h there is at most one subheap $h_0 \sqsubseteq h$, such that $(s, h_0) \in M$.

Modeling Clients and Modules

A relation $M \subseteq S \times H$ is **precise** if for any state s, h there is at most one subheap $h_0 \sqsubseteq h$, such that $(s, h_0) \in M$.

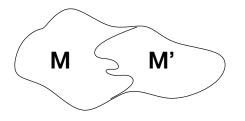
The separating conjuction of unary relations $M, M' \subseteq S \times H$ $M*M' = \{(s,h) \mid \exists h_0, h_1. h_0 \# h_1 \land h = h_0*h_1 \land (s,h_0) \in M \land (s,h_1) \in M'\}.$



Modeling Clients and Modules

A relation $M \subseteq S \times H$ is **precise** if for any state s, h there is at most one subheap $h_0 \sqsubseteq h$, such that $(s, h_0) \in M$.

The separating conjuction of unary relations $M, M' \subseteq S \times H$ $M*M' = \{(s,h) \mid \exists h_0, h_1. h_0 \# h_1 \land h = h_0 * h_1 \land (s,h_0) \in M \land (s,h_1) \in M'\}.$



Let $t \subseteq (S \times H) \times (S \times H) \uplus \{wrong\}$. The relation $M \subseteq S \times H$ is **preserved** by relation t if for all $(s,h), (s',h'), (s,h) \in M$ and (s,h)[t](s',h'), imply $(s',h') \in M$.

 $c_{user} ::= \text{ oper}_i, i \in I \mid \text{skip} \mid x := e \mid x := [e] \mid [e] := e \mid c_1; c_2$ $\mid \text{ if } e \text{ then } c_1 \text{ else } c_2 \mid \text{ while } e \text{ do } c$

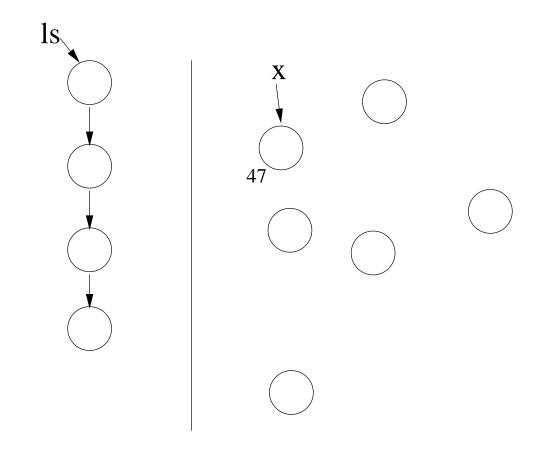
 $c_{user} ::= \text{ oper}_i, i \in I \mid \text{skip} \mid x := e \mid x := [e] \mid [e] := e \mid c_1; c_2$ $\mid \text{ if } e \text{ then } c_1 \text{ else } c_2 \mid \text{ while } e \text{ do } c$

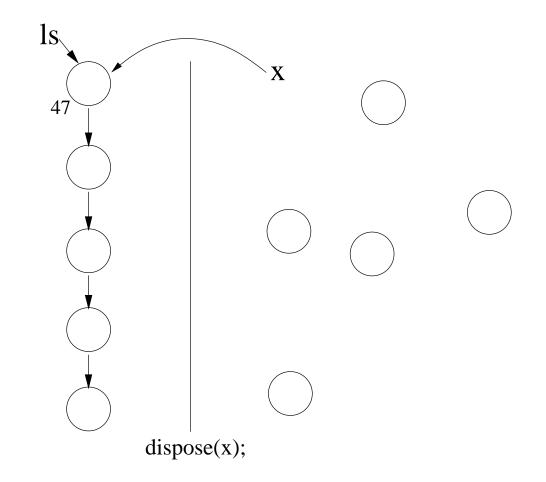
Let $M \subseteq S \times H$ be a precise unary relation, and for $i \in I$ let $oper_i$ preserve relation M * T. A program c is a **unary separation context** for M and $(oper_i)_{i \in I}$ if for all executions and all $(s, h) \in M * T c, s, h \not \rightarrow av$ and $c, s, h \not \rightarrow wrong$.

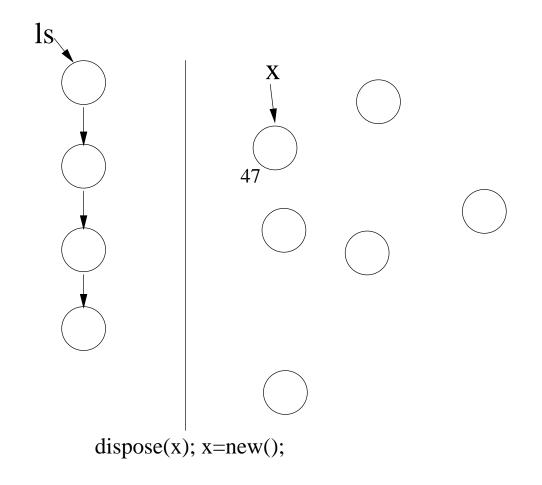
$$c_{user} ::= \text{ oper}_i, \ i \in I \mid \text{skip} \mid x := e \mid x := [e] \mid [e] := e \mid c_1; c_2$$
$$\mid \text{ if } e \text{ then } c_1 \text{ else } c_2 \mid \text{ while } e \text{ do } c$$

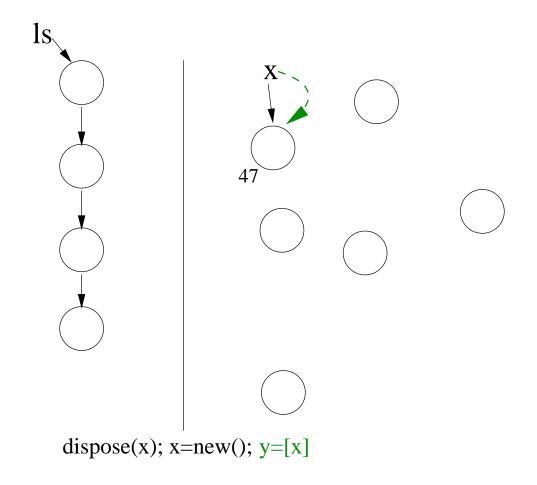
Let $M \subseteq S \times H$ be a precise unary relation, and for $i \in I$ let $oper_i$ preserve relation $M * \mathsf{T}$. A program c is a **unary separation context** for M and $(oper_i)_{i \in I}$ if for all executions and all $(s, h) \in M * \mathsf{T} c, s, h \not \rightarrow av$ and $c, s, h \not \rightarrow wrong$.

Let $M \subseteq S \times H$ be a precise relation, and for $(i \in I)$ let $oper_i$ preserve $M * \mathsf{T}$, and let c be a separation context for M and $(oper_i)_{i \in I}$. If $(s,h) \in M * \mathsf{T}$, and $c, s, h \rightsquigarrow s', h'$, then $(s',h') \in M * \mathsf{T}$.

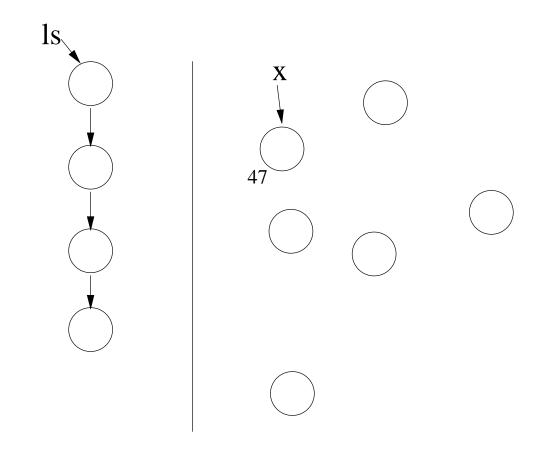




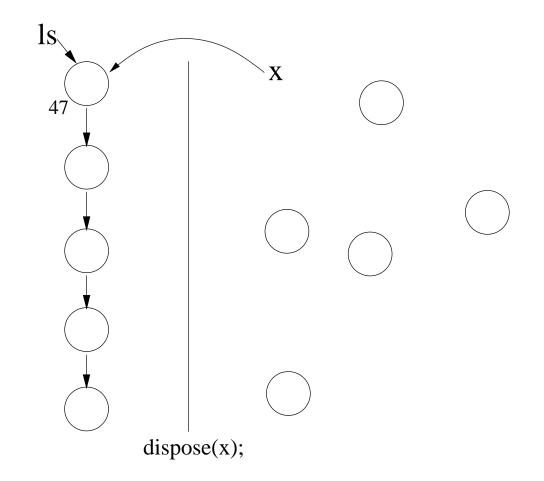




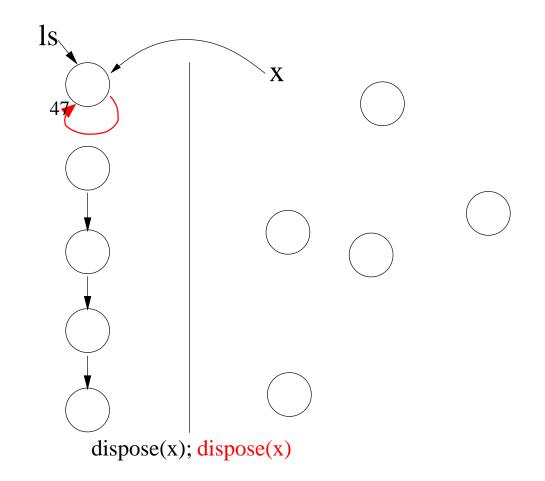
Non-separation context



Non-separation context



Non-separation context



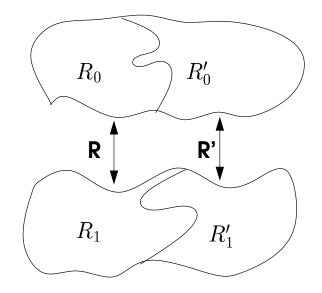
Binary Relations for Refinement

We say that binary relation R is **precise**, if each of its two projections on the set of states is precise.

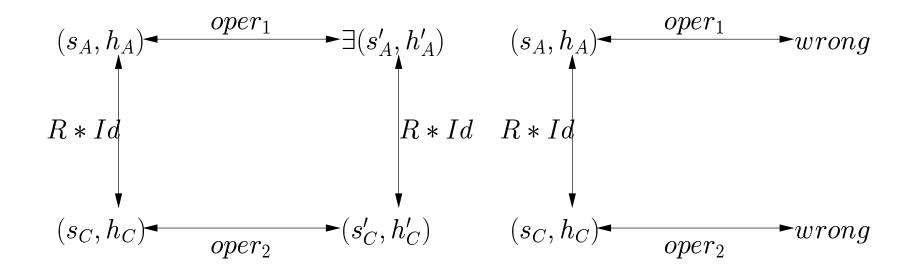
Binary Relations for Refinement

We say that binary relation R is **precise**, if each of its two projections on the set of states is precise.

Separating conjunction of binary relations



Refinement



The Result

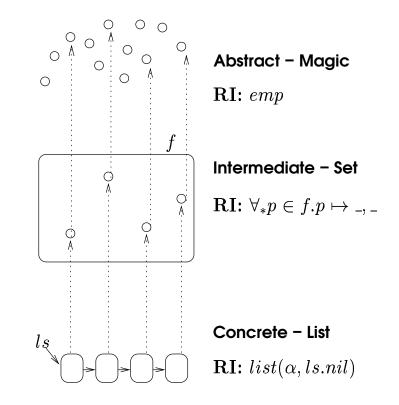
• A separation context for the abstract data type is a separation context for all its refinements

The Result

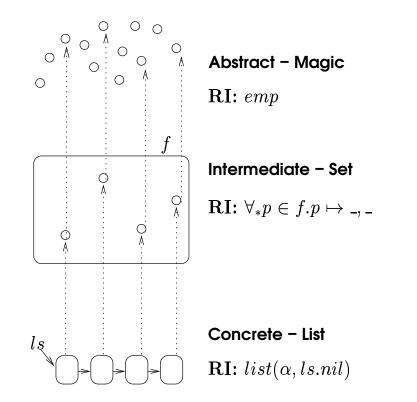
- A separation context for the abstract data type is a separation context for all its refinements
- Sepration contexts preserve $R * \mathsf{Id}$

$$\begin{array}{c} oper \\ R*Id \\ oper' \end{array} \longrightarrow \begin{array}{c} C[oper] \\ R*Id \\ C[oper'] \end{array}$$

Example - *new()* and *dispose()*



Example - *new()* and *dispose()*



 $R_1 = \{((s_A, h_A), (s_C, h_C)) \mid s_A, h_A \Vdash emp \land (s_C, h_C \Vdash \forall_* p \in f. \ p \mapsto _, _)\}$

Future Work

• This is only a model

Future Work

- This is only a model
- We would like to have a logic