
1

Automatic Inference of Reference
Count Invariants

David Detlefs
Sun Microsystems Laboratories

SPACE – Jan. 2004

2

Goal of this Work

❖ A form of compile-time GC.
❖ Escape analysis:
❖ Region inference:

❖Mostly short-lived objects.
❖Reachability rooted in local variables of stack frames.

❖ In contrast: automatically infer correct explicit
deallocation of elements of long-lived data
structures.

3

Motivating Example:
Set via Linked List

7 98

head

22

...... null

15

Node
Set

Elem

4

Motivating Example:
Set via Linked List

7 98

head

22

...... null

15

delete(98):

Node
Set

Elem

5

Motivating Example:
Set via Linked List

7 98

head

22

...... null

15

delete(98):

Free list

Node
Set

Elem

6

Outline of the Remainder

❖ When can you safely free something?
❖ What class invariant do you need?
❖ The role of ownership in class invariants.
❖ How we might infer such invariants.

❖ “Whole-class” abstract interpretation.
❖ “Owned-by-this” abstraction.

❖ Other related work.
❖ Current implementation status.
❖ Future work.

7

When can you safely free something?

❖ When its reference count is zero!

{ v == r & rc[r] == 1 }
<last use of v: “v = null”>
{ rc[r] == 0 }
.
.
.
<v goes out of scope>

8

When can you safely free something?

❖ When its reference count is zero!

{ v == r & rc[r] == 1 }
free(v); { v == null, rc[r] == 0 }
.
.
.
<v goes out of scope>

❖ (This is what escape analysis does...)

9

What does this mean in the example?

❖ void delete(Elem o) {
 Node hd = head;
 Node prev = null;
 while (hd != null) {
 if (o.equals(hd.elem)) {
 if (prev == null) head = hd.next;
 else prev.next = hd.next;
 return;
 } else {
 prev = hd; hd = hd.next;
}}}

10

What does this mean in the example?

❖ void delete(Elem o) {
 Node hd = head;
 Node prev = null;
 while (hd != null) {
 if (o.equals(hd.elem)) {
 if (prev == null) head = hd.next;
 else prev.next = hd.next;
 free(hd);
 return;
 } else {
 prev = hd; hd = hd.next;
}}}

11

What Class Invariant do you need?

❖ Need to know that all Nodes making up a Set
representation have reference count 1:

❖  s: Set ::
 (s.head = null
 ∨ (s.head ≠ null ∧ owner[s.head] = s
 ∧ ( n: Node :: (n ≠ null ∧ owner[n] = s) 
 (rc[n] = 1
 ∧ (n.next = null
 ∨ (n.next ≠ null ∧ owner[n.next] = s)
)))))

12

The role of ownership

❖ A nasty problem in program semantics:
❖ Which objects are “subobjects” of others objects?
❖ (or...) what object fields may contribute to the abstract

state of object x?
❖Reachability? Very hard, not always the right concept.

❖ Ownership makes this explicit: objects owned by
x may contribute to abstract state of x.

❖ For this talk:
❖ new objects are unowned.
❖ can only set the owner of unowned objects.
❖ Heuristic: if y is unowned, x.f = y sets owner[y] to

❖owner[x], if that is known, else
❖x (so n = new Node; ... ; s.head = n

 sets owner[n] = s)

13

Treatment of Reference Count

❖ “rc” is a state variable.
❖ Translation of source program (to guarded

command program) elaborates with updates of rc:

 lhs = rhs

14

Treatment of Reference Count

❖ “rc” is an implicit state variable.
❖ Translation of source program (to guarded

command program) elaborates with updates of rc:

 rc[lhs] = rc[lhs] – 1;
 { tmp :
 tmp = rhs;
 lhs = tmp;
 rc[tmp] = rc[tmp] + 1 }

15

Invariant Inference

❖ “Whole-class” abstract interpretation.
❖ Initially: there are no Set's allocated.
❖ Create a state in which the first Set is allocated, and

execute its constructor(s).
❖ Abstract the state(s) back to an invariant true of all Set's

seen so far:

 Set() { head = null; }
leads to
  s: Set :: s.head = null

❖ This is our tentative invariant.

16

Invariant Inference

❖ Interpret methods to a fixed point:

Meth Invariant

Meth

Meth

instantiate

abstract and merge

17

Invariant Inference for Set Example

❖ Constructor leaves us with 0-elem state.
❖ Run insert: get 1-elem post-state.
❖ Merge: Sets have 0 or 1 elements.
❖ Run insert again: concretize to two start states (0

and 1 element).
❖ Get two post states 0 →1, 1 →{1, 2 }.
❖ Merge: Sets have 0, 1, or 2 elements.
❖ How can we reach a fixed point?

18

Ownership abstraction

❖ When we've elaborated the possible states enough,
try to abstract out by finding an invariant that
applies to all objects owned by “this.”

❖ In our case, all Nodes n owned by Set s have
❖ rc[n] = 1
❖ n.next = null or else owner[n.next] = s

❖ This will be a fixed point: maintained by insert
and delete.

❖ And is sufficient to justify insertion of “free”.

19

Other related work

❖ RC GC:
❖[Bacon et. al],[Levanoni&Petrank],[Blackburn&McKinley].

❖ Escape analysis:
❖[Park&Goldberg],[Blanchet],[Choi et al.],[Whaley&Rinard]

❖ Linear types:
❖[Wadler],[Baker],[Fandrich&Deline]

❖ Region inference: [Tofte&Birkedal]
❖ Shape analysis: [Sagiv&Reps&Wilhelm]
❖ Role analysis: [Kuncak&Lam&Rinard]
❖ Program verification:

❖[Detlefs et al.],[Bush&Pincus&Sielaff]
❖ Ownership types:

❖[Boyapati&Liskov&Shrira],[Boyapati&Lee&Rinard]

20

Current Status: Can do...

❖ I've started an implementation.
❖ Typed Guarded Commands with classes.
❖ State =

❖current variable values.
❖eqNull, neqNull.
❖a general “predicate” describing other known facts.

❖ Can do:
❖ Run constructor.
❖ Run insert once, get right “invariant”.
❖ Concretize these states.
❖ Run insert on these states.

21

Current Status: Working On, To do...

❖ Abstracting the result state from second insert
correctly:

❖ Issue: predicates over variables not in scope.
❖Local vars of methods, or:
❖{ P } x := x+1 { P ∧ x = x$0 + 1 }
❖Should a predicate mentioning x$0 be part of an invariant?

❖ To do:
❖ Ownership abstraction.
❖ Quantified formulas in the state. ( n: Node :: ...)
❖ Making sure merge reaches a fixed point.

22

Future Work, Conclusions

❖ Actually getting this to work :-)
❖ Other examples:

❖ Binary trees.
❖ rc[n] > 1 examples:

❖Doubly linked lists.
❖Trees with parent pointers.

❖ Less ad-hoc implementation:
❖ Egraph for equalities.
❖ Simplex for integer inequalities.

❖ This is a promising technique:
❖ For compile-time GC.
❖ For program analysis in general.

23

