A I:llhcti()nal scenario
for Bytecode Verification

of Space Bounds

— -
Roberto Amadio, Solange Coupet-Grimal,
Silvano Dal Zilio and Line Jakubiec

LIF, Marseille (Fr)
Appeared as Research Report LIF 19-2004, January 2004




programs

emit(e); next;

wait s(x) in
f(3)

else yield;

stop

I31JLI9A 9p02 AQ

v

trusted computing base

optimizations



With algebraic types, e.g. the type of natural
numbersis nat =2 | s of nat

Functions and pattern-matching, e.g.
add : (nat, nat) — nat :

add z vy Y
add s(x) vy add x s(y)

Evaluation: add s(s(z)) s(z) = s(s(s(z)))

Compiled into bytecode instructions for a
(simple) stack machine



~

o0 A Wb =

load 1 | Is(2)

z |s(z)

y4

wn
—~
N

)

branch s 7 2 1s(2)
load 2 < s(2)
build s . s(2)
call add 2 5 s()
return
load 2
return

Bl s@
program counter /\

Y
frame

\< returned result



* |tis easy to obtain a bound on the number of
values in a frame — type verification

* We need to bound the size of the values — size
verification, based on quasi-interpretations.

* We need to bound the number of frames in an
execution path — termination verification, based
on r.p.o. (recursive path orderings)



® NP> oA wN =

load 1
branch s 7
load 2

bui
cal

d s
add 2

return
load 2
return

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat

nat




.A.

® N oA 0N =

1

load 1

branch s 7

load 2

bui
cal

d s
add 2

return
load 2
return

X, = S(X5)




» The polynomial g_ (%, y) = x + y is a valid
qguasi-interpretation for the function add.

» We can check that size information are
correct (for “compiled programs”). In our
example it amounts to check that:

Qa1 + X5, X5) > Qggq(Xz 1+ X5)



« We use termination criteria based on
recursive path ordering.

« We can check that termination information
are correct. In our example it amounts to
check that:

add(s(xs), X,) > add(xs, s(X,))



* A combination of polynomial quasi-
interpretation and r.p.o. gives a (explicit!)

polynomial upper-bound on the size
needed for the execution.

* In our example, in an execution starting
with the frame (add, 1, X, X,):
— a stack in a frame has size at most 4
— every value has size less than x; + X,
—the number of frames is less than x,

size needed < 4 . X, . (X; + X,)



o\°

3% Ltype %%
type nat = Z2 | S of nat
fun nat add(nat, nat)

$%% size %%%
q_7Z = 0
q_S = #1 + 1

g _add = #1 + #2

%% termination %$%%
add

o\°
o\°
o\°

0 J o O x W DN

code %%%
load 1
branch S 7
load 2
build S
call add 2
return
load 2
return



