
Roberto Amadio, Solange Coupet-Grimal,
Silvano Dal Zilio and Line Jakubiec

LIF, Marseille (Fr)
Appeared as Research Report LIF 19-2004, January 2004

�����������	
��
���������

��	�������	�
�

���	��
�����	�
���	���
���
��

�����������
�	���

��������

����	�	�����
	�����������
	������	���

�������	���

 �	�����

��	�����	����

�
���	�����	��

�
	�
���
�
�
�!
�
�����
�

	���	�������	��� ���

	�����"

	������

	�����#

�

A First-Order Functional Language

• With algebraic types, e.g. the type of natural
numbers is nat ::= z | s of nat

• Functions and pattern-matching, e.g.
add : (nat, nat) � nat :

• Evaluation: add s(s(z)) s(z) � s(s(s(z)))

• Compiled into bytecode instructions for a
(simple) stack machine

1. load 1
2. branch s 7
3. load 2
4. build s
5. call add 2
6. return

7. load 2
8. return

s(z) z1

s(z) z4 z z

s(z) z5 z s(z)

…5 s(z)z8 z s(z)

s(z) z2 s(z)

s(z) z3 z

…5 s(z)z1

…5 s(z)z2 z

…5 s(z)z7 z

6 zs(z) s(z)
program counter

frame returned result

Bounding the Space Needed

• It is easy to obtain a bound on the number of
values in a frame � type verification

• We need to bound the size of the values � size

verification, based on quasi-interpretations.

• We need to bound the number of frames in an
execution path � termination verification, based

on r.p.o. (recursive path orderings)

Bytecode (Type) Verification

1. load 1

2. branch s 7

3. load 2

4. build s
5. call add 2

6. return

7. load 2

8. return

nat nat

nat nat nat

nat nat nat

nat nat nat nat

nat nat nat nat

natnat nat

natnat nat

natnat nat nat

Shape Verification

1. load 1

2. branch s 7

3. load 2

4. build s
5. call add 2

6. return

7. load 2

8. return

x1 x2

x1 x2 x1

s(x3) x2 x3

s(x3) x2 x3 x2

s(x3) x2 x3 s(x2)

x2x1 x1

x2x1 x1 x2

x2 add(x3, s(x2))s(x3)

x1 = s(x3)

Quasi-Interpretations

• The polynomial qadd(x, y) = x + y is a valid
quasi-interpretation for the function add.

• We can check that size information are
correct (for “compiled programs”). In our
example it amounts to check that:

qadd(1 + x3, x2) � qadd(x3, 1 + x2)

Termination

• We use termination criteria based on
recursive path ordering.

• We can check that termination information
are correct. In our example it amounts to
check that:

add(s(x3), x2) >� add(x3, s(x2))

Result
• A combination of polynomial quasi-

interpretation and r.p.o. gives a (explicit!)
polynomial upper-bound on the size
needed for the execution.

• In our example, in an execution starting
with the frame (add, 1, x1 x2):
– a stack in a frame has size at most 4
– every value has size less than x1 + x2

– the number of frames is less than x1

size needed � 4 . x1 . (x1 + x2)

%%% type %%%
type nat = Z | S of nat
fun nat add(nat,nat)

%%% size %%%
q_Z = 0
q_S = #1 + 1
q_add = #1 + #2

%%% termination %%%
exp, double > add

%%% code %%%
1: load 1
2: branch S 7
3: load 2
4: build S
5: call add 2
6: return
7: load 2
8: return

