
A Calculus for Resource Relationships

Robert Atkey

LFCS, Division of Informatics, University of Edinburgh

bob.atkey@ed.ac.uk

This research was supported by the MRG project (IST-2001-33149) which is funded by

the EC under the FET proactive initiative on Global Computing.

1



Expressing Separation in Affine αλ-calculus

• Affine αλ-calculus has two product types:

– A × B: normal pairing, allowing sharing of resources;

– A ∗ B: pairing, prohibiting sharing.

• In contexts these are replaced by “;” and “,”:

(a : A; (b : B, c : C)) ` e : E

• Program e requires (at least) that b and c do not share.

• “Affine” allows imposition of stronger pre-conditions

(Dereliction):

(a : A, (b : B, c : C)) ` e : E

2



Separation

• A function which runs jobs in parallel:

runPar : Job, Job → PJob

• To run them in parallel we require that the arguments do not

access the same memory.

• Expressible in (affine) αλ-calculus:

runPar : Job ∗ Job → PJob

• 3 pairs to be run in sequence, over 4 jobs:

(runPar(a ∗ b), runPar(b ∗ c), runPar(c ∗ d))

3



Separation

(runPar(a ∗ b), runPar(b ∗ c), runPar(c ∗ d))

• How to describe the required separation?

– a separate from b;

– b separate from c;

– c separate from d

a b

c d

�
�

�

• Not directly expressible in αλ;

– Attempt: (a : Job × d : Job) ∗ (b : Job ∗ c : Job)

4



Pulling out the Separation Constraints

• Basic Idea: Distinction between context members and

relationships between them.

• Express example as:

[a#b, b#c, c#d](a : Job, b : Job, c : Job, d : Job) ` ...

• Allowing nesting of contexts:

[1#2]([2#3](a : A, b : B, c : C), d : D) ` . . .

• Similar bunching of contexts to BI/αλ-calculus.

5



Structural Rules

• Constraint preserving transformations

give

Structural rules

Γ ⇒ ∆ gives

∆ ` e : A

Γ ` e : A (1)

• (Un)Flattening of nested contexts:

[1#2]([2#3](a, b, c), d) ⇔ [1#4, 2#4, 3#4, 2#3](a, b, c, d)

• Removal of constraints, when S ⊆ S′:

S′(Γ1, . . . , Γn) ⇒ S(Γ1, . . . , Γn)

• Permutation

6



Weakening and Contraction

• We may forget about parts of the context (and their

relationships):

[1#2, 2#3](a, b, c) ⇒ [1#2](a, b)

• Contraction preserves the correct separation:

S(a, b, c) ⇒ [](S(a, b, c),S(a′, b′, c′))

• But:

S(a, b, c) 6⇒ [1#2](S(a, b, c),S(a′, b′, c′))

7



Tuples and Functions

Γ1 ` e1 : A1 . . . Γn ` en : An

S(Γ1, . . . , Γn) ` S(e1, . . . , en) : S(A1, . . . , An)

Γ ` e1 : S(A1, . . . , An) ∆(S(x1 : A1, . . . , xn : An)) ` e2 : B

∆(Γ) ` let S(x1, . . . , xn) = e1 in e2 : B

S(Γ, x1 : A1, . . . , xn : An) ` e : B

Γ ` λS(x1, . . . , xn).e : A1, . . . , An

S
−→ B

Γ ` f : A1, . . . , An

S
−→ B ∆1 ` a1 : A1 . . . ∆n ` an : An

S(Γ, ∆1, . . . , ∆n) ` f@S(a1, . . . , an) : B

8



Encoding affine αλ-calculus

• Encoding of affine αλ-calculus:

– (A × B)† = [](A, B)

– (A ∗ B)† = [1#2](A, B)

– (A → B)† = A
[]

−→ B

– (A —∗ B)† = A
[1#2]
−→ B

• Associativity is given by flattening and unflattening:

S(S(A, B), C) = S{S/1}(A, B, C) = S(A,S(B, C))

9



Semantics

• Possible world semantics

• Partially ordered set R of worlds (resources) with:

– r1 ∪ r2, for combination of resources;

– A separation relation between resources r1#r2:

∗ Symmetric;

∗ If r1#r2 and r′1 v r1 and r′2 v r2 then r′1#r′2;

∗ r#(r1 ∪ r2) iff r#r1 and r#r2.

– Example: sets of memory locations.

• Interpret types using Day’s constructions in SetR;

• Instance of a general categorical semantics.

10



Variation: Beyond Separation

• Extend to domains other memory regions;

• Non-symmetric relationships such as allowable information flow:

– Assume a set S of security tokens

– A relation . ⊆ S × S for allowable flow

– Possible worlds are sets of security tokens, W ⊆ S.

– W1 . W2 if forall w1 ∈ W1, w2 ∈ W2, w1 . w2.

– Combination by union.

• Judgements have non-symmetric relations:

[1 . 2](i : int, s : stream) ` put(i, s) : stream

11



Variation: Separation and Number-of-uses

• Take inspiration from Linear Logic.

• Remove weakening and contraction;

• Add a new context former !:

– S(Γ, !∆, Θ)

– Reintroduce contraction and weakening on !’d bunches;

– Add structural rules:

Γ(∆) ` e : A

Γ(!∆) ` e : A

Γ(!!∆) ` e : A

Γ(!∆) ` e : A

Γ(!(∆, ∆′)) ` e : A

Γ(!∆, !∆′) ` e : A

• Also term syntax for introducing and eliminating types !A.

• Can do the same with αλ, but lose flexibility:

A ∗ (B × C) 6→ (A ∗ B) × C

12



Conclusions and Further Work

• This calculus:

– Has a semantics modelling resources and their relationships;

– Can express more patterns of separation; and

– Is more flexible wrt. changes in the structural rules than

αλ-calculus.

• Further work:

– Resource-insensitive types;

– Different ways of integrating number-of-uses/destruction;

– More on relationship to αλ:

∗ Conservativity?

13


