
Short Presentation:
Incremental Copying Collection with Pinning (Progress Report)

Daniel Spoonhower
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15217

spoons@cs.cmu.edu

Guy Blelloch
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15217

blelloch@cs.cmu.edu

Robert Harper
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15217

rwh@cs.cmu.edu

Abstract
Inspired by work in semi-conservative collection, we have imple-
mented a mostly-copying collector for an object-oriented language,
including support for object pinning. Our collector efficiently man-
ages fragmentation by measuringpage residencyand determining
where copying can be most effective. This work in progress will
form the foundation of our ongoing work in real-time collection.

1 Introduction
While garbage collection is an accepted mechanism for memory
management, the performance of a collector remains highly de-
pendent on the collection strategy employed in its implementation.
A fundamental decision is the choice between copying and non-
copying collection, and this decision is constrained by both seman-
tic and performance requirements. Taken in their pure forms, these
two techniques complement each other in their benefits and draw-
backs.

Copying collectors provide compaction, generally improve mem-
ory locality, and offer both better asymptotic running time and a
means to bound pause times. However, pure copying collectors
are not particularly well-suited to large or long-lived objects and
may not be applicable for all languages (e.g. those with ambiguous
pointers or object pinning).

In contrast, non-copying collectors reduce fragmentation during al-
location but make no effort to improve locality, and because they
must scan the entire heap for free space, they make it difficult or
impossible to bound pause times. They are biased toward larger
and longer-lived objects and are compatible with language features
such as object pinning. They are also able to operate with a smaller
memory footprint.

A number of attempts have been made to bridge the gap between
these two extremes. The most familiar examples are generational
collectors [11, 1]. Generational collectors segregate objects by age
in order to reduce pause times and to avoid copying long-lived ob-
jects. Collectors may also maintain separate heaps [12], applying

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

the most suitable collection technique to each heap. More recent
work [2] suggests that the collector should copy objects only when
fragmentation exceeds some threshold.

We observe thatmostly-copyingcollection [3, 9] is an appropriate
framework for addressing these trade-offs. While previous work
using this technique has been limited to semi-conservative collec-
tion, it is equally applicable to the other semantic and performance
issues raised above. This framework captures the behaviors of the
approaches described above by offering flexibility in how to pro-
mote heap objects. In addition, we believe that by measuringpage
residency, our mostly-copying collector will more readily adapt to
changing program usage patterns.

We have implemented a mostly-copying collector for C#, an object-
oriented programming language [8], that provides uniform support
for pinned and large objects and that uses an estimate of page res-
idency to limit fragmentation. Our preliminary results show that
our collector offers performance comparable to a generational col-
lector. Mostly-copying collection will provide a foundation for our
continuing work in real-time collection.

2 Algorithm
Copying collection can be used to give hard bounds on the length
of pause times in terms of the amount of live data [7]. However,
pure copying collectors are incompatible with ambiguous roots and
with the semantics of pinned objects. In extending previous work in
real-time copying collection, we applied a technique used in conser-
vative collection to support both object pinning and a limited form
of copying. This technique can then be extended to other circum-
stances where copying collection performs poorly, notably for large
and long-lived objects.

Mostly-Copying Collection Bartlett introducedmostly-copying
collection [3] as a mechanism for semi-conservative collection.
While previous work in conservative collection has focused on
purely non-copying techniques [6], mostly-copying collectors relo-
cate objects whenever possible, reserving non-copying techniques
for those roots whose types are unknown.

Unlike pure copying collectors, Bartlett’s mostly-copying collector
divides the heap into a large number of pages instead of two semi-
spaces. The distinction between thefrom-spaceand theto-space
is then made logically rather than as a fixed range of addresses.
Seen abstractly as sets of pages, thefrom- and to-spacesare not
necessarily contiguous regions of memory and may change over
time.

Individual objects may be promoted (as in an ordinary semi-space
collector) by copying the associated data and updating any refer-



ences to the objects, or an entire page may be promoted by remov-
ing the page from one set and adding it to the other. Roots whose
types are unknown are promoted using the latter technique, and
therefore roots that are not pointers will not be erroneously changed
during collection.

Pinned Objects To support a robust foreign function interface,
many modern languages require that objects passed beyond the
scope of the garbage collector arenotmoved during collection. Ob-
jects may also bepinned in languages (such as C#) that support
address arithmetic.

In C#, only root objects are pinned, and these pinned roots may
be enumerated at the beginning of each collection. We expect
pinned roots to be rare and recognize that pathological use of pin-
ning would certainly defeat our efforts for efficient collection.

Unlike previous applications of mostly-copying collection, our col-
lector has complete knowledge of the types of values on the pro-
gram stack. However, each pinned root must be held at a fixed ad-
dress in the heap for one or more collection cycles. Just as Bartlett’s
collector promoted pages where the type of a root was unknown,
ours does so to promote pinned objects (logically) without chang-
ing their addresses (physically). Our collector provides fast allo-
cation, as well as support for pinned objects while limiting heap
fragmentation.

Note that for programs that do not utilize object pinning, a collector
with this design behaves as an ordinary semi-space copying collec-
tor would behave.

Large Objects Many collectors distinguish large objects both be-
cause they are more expensive to copy and because they are ex-
pected to survive longer. Collectors may more aggressively tenure
large objects or manage them a separate region of memory with a
different mechanism [12].

Previous implementations of conservative mostly-copying collec-
tion recognized that there was little or no benefit in copying objects
that consumed most or all of a page. Note that the survival rates
of large objects are less important than their impact on fragmenta-
tion. Collectors should avoid copying large objects, not only be-
cause they are expensive to copy, but because there is little or noth-
ing to be gained in doing so. This trade-off between fragmentation
and the cost of copying that led us to a more general application of
mostly-copying collection, described below.

Page ResidencyPages containing large objects are exemplary can-
didates for page promotion because the collector can determine
a priori that there is little risk of fragmentation in doing so. Ide-
ally, the collector would promote only those pages where the cost of
copying reachable objects outweighs the otherwise resulting frag-
mentation.

The termresidencyis used to describe the density of reachable ob-
jects, and in the context of mostly-copying collection, we will con-
sider page residency. Using this terminology, we can say that if
the residency of a page is sufficiently high, the page should be pro-
moted. If the residency is not high enough then any reachable ob-
jects on the page should be relocated.

Seen in this light, we can understand that large objects should gen-
erally remain in fixed positions in the heap, not simply because they
are large, but because they occupy pages with high residency.

Our collector cannot, however, determine the residency of a page in
general without first traversing the entire heap. Instead, it estimates
the residency of each page using the following heuristic: it approx-

imates the current residency by using the residency at the end of
thepreviouscollection cycle. (We assume that the residency of any
page allocated by the mutator between the current and the previous
collection cycles is zero.)

Implementation Our collector maintains sets offree and used
pages using linked lists and performs allocation by removing pages
from thefree list and then incrementing a free pointer (as in Smith
and Morrisett’s implementation [9]). During collection, thefrom-
andto-spacesare maintained similarly.

Objects are copied using a Cheney scan. In addition to the familiar
pair of pointers, our collector maintains a list of gray pages (the
gray portion of the heap need not be contiguous). In the case of
page promotion, objects are both marked and added to a mark stack.
For promoted pages, we tally the residency as we set each mark bit.
In the current implementation, pages with an estimated residency
less than 75% are scavenged.

We have implemented our collector as part of the Shared Source
Common Language Runtime (SSCLI or “Rotor”). In addition to
pinning, our collector supports a number of other features required
by the C# run-time, including finalizers, weak references and inte-
rior pointers.

3 Analysis
As noted above, if the collectorneverpromotes pages then it will
behave exactly as a semi-space copying collector. Conversely, if the
collector promotesall pages, it mimics the behavior of a mark-and-
sweep collector.

Comparison to Generational CollectionBartlett [4] showed how
mostly-copying collection could be extended to perform genera-
tional collection with the addition of a remembered set [11].

The configuration of a generational collector (the number and sizes
of generations) not only controls the length of minor collections but
also determines how the collector will respond to different distribu-
tions of object lifetimes. For example, choosing a small nursery
results in shorter minor collections. However, decreasing the size
of the nursery also increases the risk that the collector promotes ob-
jects to the older generation immediately before they become un-
reachable. In a generational collector, there is no mechanism to
retract the decision to promote an object; all promoted objects are
treated uniformly. This risk can be mitigated by increasing the num-
ber of generations or by dividing each generation intoincrements
[5].

These increments are reminiscent of our pages, but are still con-
strained by a linear ordering based upon age. If the behavior of the
mutator results in significant shifts in memory usage (where many,
but not all older objects become unreachable), generational collec-
tors will be required to perform full collections. Using residency,
we believe our collector will adapt to changing program behavior
by scavenging only those pages which are sparsely populated (re-
gardless of age).

Worst-Case Behavior It should be clear that when our estimate
of residency is accurate, our collector performs well, copying from
pages that have become fragmented over time. In the worst case,
all but a small number of objects on a page survive exactly one col-
lection cycle and become unreachable immediately after that cycle
completes; though this results in a high error in the residency esti-
mate, our algorithm naturally recovers in one round.

Taken in the extreme, we could assume that the same fate befalls



Table 1. End-to-end time (in seconds). The left column shows
times for a generational collector, the right for our mostly-
copying collector using an estimate of page residency.

Benchmark Rotor Mostly-Copying
huffman 15.891 17.563
xml 39.906 39.829
splay 74.141 72.922
jsc 4.641 4.656

all pages in the heap: despite high residency at the end of the first
collection, all pages contain a small number of survivors at the be-
ginning of the second collection. Note that in the second cycle,
the collector is required to perform very little work: it must only
traverse the memory graph, marking live objects. During this sec-
ond cycle, the collector discovers that each of these pages should
be scavenged in the third cycle, a cycle that will also terminate rel-
atively quickly (as copying collection takes time proportional only
to the amount of live data).

We noted that residency could be measured precisely by making an
additional traversal of the heap, but rejected this possibility, claim-
ing that it was too expensive. The collector will sometimes simu-
late this behaviorbut only in situations where its estimate is wrong.
That is, the second and third cycles, taken together, perform a step
in which the collector recognizes the errors in its estimates and cor-
rects them.

MeasurementsTo motivate further investigation of our ideas, we
have performed several simple performance measurements. We
measured the total application and collection time consumed by
several benchmarks for the original Rotor collector and our mostly-
copying collector (using estimated residency). Each test was per-
formed five times; the best times are shown in Table 1.

The Rotor collector is a generational collector and copies data from
the nursery on minor and major collections, while using a mark-
and-sweep technique on older objects in major collections only. At
this stage in our implementation, a comparison with a generational
collector is an inadequate measure of performance. Our collector
currently performs no incremental collections, delaying collection
as long as possible. Our collections are less frequent but more time-
consuming, since the entire memory graph is traversed during each
collection.

The left column of Table 2 shows the percentage of surviving data
that our collector determines is stable and suitable for page promo-
tion. The right column shows the accuracy of the residency esti-
mate; larger percentages indicate greater changes to the stable set
over time.

The splay tree benchmark consists of a series of random root in-
sertions on a splay tree, interleaved with truncations of the tree.
During each truncation, we remove any nodes greater than some
fixed depthd. Object lifetimes in this example follow a lognormal
distribution (a distribution observed in many applications [10]) and
the shape of this distribution varies withd. The other benchmarks
include Huffman encoding an image, parsing an XML document,
and compiling a series of 37 JScript files. The XML parser uses a
significant number of pinned roots.

4 Future Work
Our strategy closely parallels the work of Baconet al.[2]. As we
have pointed out above and as they have noted, some form of com-
paction is necessary in any real-time collector, but it must be applied

Table 2. Effectiveness of promotion strategy. Percentage of sur-
viving data promoted by page promotion and the error in the
estimate of page residency (as a percentage of page promoted
data).

Benchmark Page Promoted Estimate Error
huffman 90.03% 0.04%
xml 51.89% 10.36%
splay 70.25% 11.86%
jsc 24.95% ∗

∗Only one collection cycle occurs

sparingly to avoid recopying objects unnecessarily. One focus of
our future work will be a more detailed comparison with this work.

In addition to performing a more thorough analysis and carrying
out a more complete set of experiments, we plan to extend our cur-
rent collector to support incremental collection with bounds on the
amount of time and space consumed by the collector. We also plan
to demonstrate the sensitivity of different collector algorithms to
their configuration parameters using programs such as our splay
tree benchmark.

5 References
[1] A. W. Appel. Simple generational garbage collection and fast alloca-

tion. Software Practice and Experience, 19(2):171–183, 1989.

[2] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage collector
with low overhead and consistent utilization. InProceedings of the
30th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 285–298. ACM Press, 2003.

[3] J. F. Bartlett. Compacting garbage collection with ambiguous roots.
Technical Report 88/2, DEC Western Research Laboratory, February
1988.

[4] J. F. Bartlett. A generational compacting garbage collector for C++.
In ECOOP/OOPSLA Workshop on Garbage Collection in Object-
Oriented Systems, Ottawa, Canada, 1990.

[5] S. M. Blackburn, R. E. Jones, K. S. McKinley, and J. E. B. Moss.
Beltway: Getting around garbage collection gridlock. InProceedings
of SIGPLAN 2002 Conference on Programming Languages Design
and Implementation, PLDI’02, Berlin, June, 2002, volume 37(5) of
ACM SIGPLAN Notices. ACM Press, June 2002.

[6] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment.Softw. Pract. Exper., 18(9):807–820, 1988.

[7] P. Cheng and G. Blelloch. A parallel, real-time garbage collector. In
Proc. 2001 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 125–136, June 2001.

[8] A. Hejlsberg, S. Wiltamuth, and P. Golde.The C# Programming Lan-
guage. Addison-Wesley, 2003.

[9] F. Smith and G. Morrisett. Comparing mostly-copying and mark-
sweep conservative collection.ACM SIGPLAN Notices, 34(3):68–78,
1999.

[10] D. Stefanovic, K. S. McKinley, and J. E. B. Moss. On models for
object lifetime distributions. InInternational Symposium on Memory
Management, October 2000.

[11] D. Ungar. Generation scavenging: A non-disruptive high performance
storage reclamation algorithm. InProceedings of the first ACM SIG-
SOFT/SIGPLAN software engineering symposium on Practical soft-
ware development environments, pages 157–167. ACM Press, 1984.

[12] D. Ungar and F. Jackson. Tenuring policies for generation-based stor-
age reclamation. InConference proceedings on Object-oriented pro-
gramming systems, languages and applications, pages 1–17. ACM
Press, 1988.


