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ABSTRACT

This paper presents a new technique for performing bounds-
checking. We use dynamic binary instrumentation to modify
programs at run-time, track pointer bounds information and
check all memory accesses. The technique is neither sound
nor complete, however it has several very useful character-
istics: it works with programs written in any programming
language, and it requires no compiler support, no code re-
compilation, no source code, and no special treatment for
libraries. The technique performs best when debug informa-
tion and symbol tables are present in the compiled program,
but degrades gracefully when this information is missing—
fewer errors are found, but false positives do not increase.
We describe our prototype implementation, and consider
how it could be improved by better interaction with a com-
piler.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—

debugging aids, monitors, symbolic execution; D.2.4 [Software

Engineering]: Software/Program Verification—assertion
checkers, reliability, validation; D.3.2 [Language Classi-
fications]: Multiparadigm languages—C, C++

General Terms
Reliability, Verification

Keywords

Bounds-checking, memory debuggers

1. INTRODUCTION

Low-level programming languages like C and C++ pro-
vide raw memory pointers, permit pointer arithmetic, and
do not check bounds when accessing arrays. This can result
in very efficient code, but the unfortunate side-effect is that
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accidentally accessing the wrong memory is a very common
programming error.

The most obvious example in this class of errors is ex-
ceeding the bounds of an array. However the bounds of
non-array data objects can also be violated, such as heap
blocks, C structs, and stack frames. We will describe as
a bounds error any memory access which falls outside the
intended memory range.

These errors are not difficult to introduce, and they can
cause a huge range of bugs, some of which can be extremely
subtle and lurk undetected for years. Because of this, tools
for preventing and identifying them are extremely useful.
Many such tools are available, using a variety of techniques.
None are ideal, and each one has a different set of charac-
teristics, including:

e the kinds of bugs they can and cannot spot;

e which regions of memory (heap, static, stack) they
work with;

e the number of false positives they produce;
e whether they are static or dynamic;

e which parts of a program they cover, in particular how
they work with libraries;

e what level of compiler support is needed.

In this paper we describe a new technique for identify-
ing bounds errors. The basic idea is that all data objects
that have bounds we wish to check are tracked, as are all
pointers; each pointer has a legitimate memory range it can
access, and accesses outside this range are flagged as errors.
Our tool effectively turns programs pointers into fat point-
ers on-the-fly. However, the pointer ranges are maintained
separately from the pointers themselves, so pointer sizes do
not change.

The technique spots many, but not all, bounds errors in
the heap, the stack, and in static memory; it gives few false
positives; it is dynamic, and relies on dynamic binary trans-
lation. These characteristics are not particularly exciting.

The main contribution of this paper is that our bounds-
checking technique has several unique characteristics: it does
not require any compiler support; it works with programs
written in any language; and it checks entire programs, with-
out requiring any special treatment for libraries. This last



characteristic is particularly important—inadequate treat-
ment of library code is the single major shortcoming of many
previous bounds-checking techniques.

Thus, our technique has its advantages and disadvantages,
and is unlikely to be a world-beater in its own right. How-
ever, it is a useful complement to existing techniques, and
can hopefully be part of a future hybrid technique that is a
world-beater.

This paper is structured as follows. Section 2 describes
the technique at a high-level, and Section 3 describes our
prototype implementation, and gives more low-level details.
Section 4 discusses the shortcomings of the technique, and
ways in which a compiler might co-operate with our tool so
that it can give better results. Section 5 describes related
work, and discusses how our technique compares to others.
Section 6 discusses future work and concludes.

2. THEORY

This section provides a high-level description of our tech-
nique. Certain details are kept vague, and subsequently
fleshed out in Section 3.

2.1 Oveview

The basic idea is simple. Every pointer has a range of
addresses it can legitimately access. The range depends on
what the pointer originally pointed to. For example, the
legitimate range of a pointer returned by malloc() is the
bounds of the heap block pointed to by that pointer. We call
that range the pointer’s segment. All memory accesses are
checked to make sure that the memory accessed is within the
accessing pointer’s segment. Any violations are reported.

Pointers are often used in operations other than memory
accesses. The obvious example is pointer arithmetic; for
example, array elements are indexed using addition on the
array’s base pointer. However, if two pointers are added,
the result should not be used to access memory; nor should
a non-pointer value be used to access memory. Thus we also
need to know which program values are non-pointers. The
result is that every value has a run-time type, and we need
a simple type system to determine the type of all values
produced by the program.

The following sections describe aspects of the technique
in more detail.

2.2 Metadata

The technique requires maintenance of metadata describ-
ing the run-time types of data objects. We say this meta-
data shadows the real values. This metadata has one of the
following four forms.

e X, a segment-type, describes a segment; this includes
its base address, size, location (heap, stack, or static),
and status (in-use or freed).

e n, a non-pointer-type, describes a value which is known
to be a non-pointer.

e p(X), a pointer-type, describes a value which is known
to be a pointer to segment X;

e u, an unknown-type, describes a value for which the
type is unknown.

The following data objects will have metadata associated
with them.

e Segments: each new segment is given a new segment-
type X;

e Memory and registers: each value is shadowed by one
of the types n, u or p(X).

In principle, every value produced, of any size, can be as-
signed a type. However, our most important checking takes
place when memory is accessed, which is always through
word-sized pointers. Therefore, the shadow value tracking
can be done at word-sized granularity.

2.3 Checking Accesses

Every load and store is checked. When accessing a mem-
ory location m through a value x we look at the type of x
and behave accordingly.

e n: Issue an error about accessing memory through a
non-pointer.

e u: Do nothing.

e p(X): If m is outside the range of X, issue an error
about accessing memory beyond the legitimate range
of x; if X is a freed segment, issue an error about
accessing memory through a dangling pointer.

Note that in all cases the memory access itself happens
unimpeded.

2.4 Allocating and Freeing Segments

There are four steps in dealing with each segment.

1. Identify when it is allocated, in order to create a segment-
type describing it.

2. Upon allocation, set the metadata for the new words
in the segment.

3. Identify each pointer to the segment, in order to set
the pointer’s shadow to the appropriate pointer-type.

4. Identify when it is freed, in order to change the status
of its segment-type to “freed”.

The way these aspects are handled differs between the heap,
static and stack segments. In addition, the exact meaning
of the term “segment”, and thus the kinds of errors found,
differs between the three memory areas. The following sec-
tions discuss these differences. Section 3.3.2 describes how
the implementation deallocates segment types.

24.1 Heap Segments

Heap segments are the easiest to deal with. For the heap,
one heap segment represents one heap block. The four steps
for dealing with heap blocks are as follows.

1. By intercepting malloc(), calloc(), realloc(), new,
and new[], we know for every heap segment its ad-
dress, size, and where it was allocated. We can thus
easily create the new segment-type, store it in a data
structure, and set the shadow value of the returned
pointer to point to it.

2. All the words within a newly allocated heap block have
their shadows set to n, since they should definitely not
be used to access memory, being either zeroed (for
calloc()) or uninitialised.



3. The pointer returned by the allocation function has its
shadow set to p(X), where X was the segment-type
just created. At this point, this is the only pointer to
the segment.

4. By intercepting free(), realloc(), delete, and delete[],

we know when heap segments are freed; we can look up
the segment-type in the data structure by its address
(from the pointer argument), and change the segment-
type’s status to “freed”.!

Note that our technique as described only detects overruns
past the edges of heap blocks. For example, if the heap
block contains a struct which contains two adjacent arrays,
overruns of the first array into the second will not be caught.
This could be improved by using debugging information,
which would tell us the type of the pointer. Then with
some effort, fields accesses could be identified by looking at
offsets from the block pointer. However, see Section 2.4.2 for
a discussion of some difficulties in identifying array overruns
in these cases.

24.2 Satic Segments

Identifying static segments is more difficult. First, iden-
tifying static segments by looking only at the compiled ex-
ecutable is close to impossible. So we rely on debugging
information to do this; if this information is not present, all
pointers to static data objects will have the type u, and no
accesses to static memory will be checked.

We can create segment-types for each static data object,
e.g. arrays, structs, integers; thus for static memory, a seg-
ment represents an single data object. The four steps for
dealing with static segments are as follows.

1. If debugging information is present, we identify static
arrays in the main executable at startup, and for shared
objects when they are mapped into memory.

2. Newly loaded static memory can contain legitimate
pointers. Those we can identify, from debugging in-
formation, are set to point to static segments. The
remaining words have their type set according to their
value. If a word is clearly a non-pointer—e.g. a small
integer—we give it the type n, otherwise we give it the
type u.

3. Identifying pointers to static segments is harder than
identifying pointers to heap segments. This is because
compilers have a lot of control over where static data
objects are put, and so can hard-wire absolute ad-
dresses into the compiled program. One possibility is
to rely on a simple assumption: any value that looks
like a pointer to an object, is a pointer to that ob-
ject (even if it is not to the start of the object). For
example, if a static integer array a[10] is located at
address 0x8049400, we may see the following x86 in-
struction snippets used to load elements of the array
into register %edx:

movl $0x8049400, Y%eax
movl (%eax), Y%edx

# load al0]

!Section 3.9 explains how we can deal with programs that
use custom allocators.

movl $0x8049400, %eax # load al[5]

movl 20(%eax), %edx

movl $0x8049414, Yeax # load al[5]
movl (%eax), %edx

movl $0x8049400, %eax # load al[5]
movl $5, %ebx

movl (%eax,%ebx,4), %edx

movl $5, %eax # load al[5]

movl 0x8049400(,%eax,4) ,%edx

movl $0x8049428, Yeax
movl (%eax), %edx

# load a[10]

This approach works in all these cases except the last
one; it is a bounds error, because the pointer value
used falls outside the range of a. However, detecting
this error is not possible, given that another array b[]
might lie directly after a[l, and so an access to a[10]
is indistinguishable from an access to b[0].

Unfortunately, this approach sometimes backfires. For
example, the program gap in the SPEC2000 bench-
marks initialises one static pointer to a static array as
p = &al-1]; p is then incremented before being used
to access memory. When compiled with GCC, the ad-
dress &a[-1] falls within the segment of another array
lying adjacent; thus the pointer is given the wrong
segment-type, and false positives occur when p is used
to access memory. A similar problem occurs with the
benchmark gec, in which an array access of the form
a[var - CONST] occurs, where var > CONST; the ad-
dress a[-CONST] is resolved by the compiler, giving an
address in an adjacent array.

The alternative is to be more conservative in identi-
fying static pointers, by only identifying those that
point exactly to the beginning of static arrays. Un-
fortunately, this means some static array accesses will
be missed, such as in the third assembly code snippet
above, and so some errors will be missed. In particu-
lar, array references like a[i-1] are quite common and
will not be handled if the compiler computes a[-1] at
compile-time.

As well as appearing in the code, static pointers can

also occur in static data. These can be identified from
the debugging information.

4. We identify when static arrays in shared objects are
unmapped from memory. With an appropriate data
structure, we can mark as freed all the segments within
the unmapped range. This is safe because static mem-
ory for a shared object is always contiguous, and never
overlaps with heap or stack memory.

As with heap segments, arrays within static structs could
be identified with some effort. However, as with top-level
arrays, direct accesses that exceed array bounds—Ilike the
a[10] case mentioned previously—cannot be detected.

24.3 Sack Segments

The stack is the final area of memory to deal with. One
could try to identify bounds errors on individual arrays on



the stack, but a simpler goal is to identify when a stack
frame is overrun/underrun. In this case, one stack segment
represents one stack frame. The four steps in dealing with
stack segments are as follows.

1. When a function is entered, function arguments are
above the stack pointer,” the return address is at the
stack word pointed to by the stack pointer, and local
variables used by the function will be placed below the
stack pointer. If we know the size and number of argu-
ments, we can create a segment-type X for the stack
frame, which is bounded at one end at the address of
most extreme function argument, and is unbounded at
the other end. This segment-type can be stored in a
stack of segment-types.

2. The values within the segment should be shadowed
with n when the segment-type is created, as they are
uninitialised and should not be used as pointers. The
exception is the function arguments, whose shadow
values have already been initialised and should be left
untouched.

3. The only pointer to a new stack segment is the stack
pointer; its shadow is set to p(X), where X is the
segment-type just created.

4. When the function is exited, the segment-type can be
removed from the segment-type stack, and marked as
deallocated.®

These segments allow us to detect two kinds of errors.
First, any access using the stack pointer (or a register as-
signed the stack pointer’s value, such as the frame pointer)
that exceeds the end of the stack frame will be detected.

Second, and more usefully, any dangling pointers to old
stack frames will be caught. Such dangling pointers can oc-
cur if the address of a stack variable is saved, or returned
from the function. Even better, it will detect any use of dan-
gling pointers in multithreaded programs that have multiple
threads sharing stacks. Such bugs can be extremely difficult
to trace down.

Knowing the size and number of function arguments re-
quires access to the debug information. If the debug infor-
mation is missing, an approximation can be used: instead
of a segment that is bounded at one end, use an unbounded
segment. The first error above, violations of the stack’s edge,
will not be detected. However, the second error, that of dan-
gling pointer use, will be. This is because any access to a
freed segment triggers an error, regardless of whether that
access is in range. This approximation could also be used
for functions like printf () that have a variable number of
arguments.

As with heap blocks and static memory, we could do track-
ing of individual variables within stack frames, but it would
be very fiddly.

2.5 Operations

Every data-manipulating instruction executed by the pro-
gram must be shadowed by an operation to manipulate the
relevant metadata. These shadow operations are described
in the following sections.

2We assume the stack is growing towards lower addresses.
3This assumes function entries and exits are paired nicely,
and can be identified. Section 3.5 discusses what happens
in practice.

2.5.1 Copying Values

For machine instructions that merely copy existing values
around (e.g. memory-register, register-memory, and register-
register copies) the metadata must be correspondingly copied.
Note that p(X) metavalues must be copied by reference, so
that if the segment pointed to, X, is freed, all p(X) types
that point to it see its change in status.

2.5.2 New Satic Values

Machine instructions that mention constants effectively
introduce new values. The type of each static value is found
in the same way that the types of values in newly loaded
static memory are given, as was described in Section 2.4.2;
this will be n, u, or the appropriate pointer-type.

2.5.3 New Dynamic Values

Each machine operation that produces a new value has a
corresponding operation to produce the metadata for that
value. This includes arithmetic operations, logic operations,
and address computations. Figure 1 shows the metadata
computation for several common binary operations; the type
of the first operand is shown in the leftmost column, and the
type of the second operand is shown in the top row.

+ n u p(Y) X n u p¥)
n n u p(Y) n n o n n

w w u u n n n
p(X) | p(X) w n* pX)|n n n*

(a) Add (b) Multiply

& n u p(Y) B n u p¥)
n n u p(Y) n U U U

w w U u w U ou o u
p(X) | p(X) w n* pX) |u u wu

(c) Bitwise-and (d) Bitwise-xor

Figure 1: Basic operations

Let us start with addition, shown in Figure 1(a). Adding
two non-pointers results in a non-pointer. Adding a non-
pointer to a pointer results in a pointer of the same seg-
ment; this is crucial for handling pointer arithmetic and
array indexing. Adding two pointers together produces a
non-pointer, and an error is issued; while not actually incor-
rect, it is such a dubious operation that we consider it worth
flagging. The “*’ on that entry in the table indicates an er-
ror message is issued. Finally, if either of the arguments are
unknown, the result is unknown. Thus unknown values tend
to “taint” known values, which could lead to a large loss of
accuracy quite quickly. However, before the metadata oper-
ation takes place, we perform the real operation and check
its result. As we do for static values, we use a range test,
and if the result is clearly a non-pointer we give it the type
n. This is very important to prevent unknown-ness from
spreading too much.

Multiplication, shown in Figure 1(b), is simpler; the result
is always a non-pointer, and an error is issued if two point-
ers are multiplied. At first we issued errors if a pointer was
multiplied by a non-pointer, but in practice this occasionally



happens legitimately. Similarly, division sometimes occurs
on pointers, e.g. when putting pointers through a hash func-
tion. Several times we had to remove warnings on pointer
arithmetic operations we had assumed were ridiculous, be-
cause real programs occasionally do them. Generally, this
should not be a problem because the result is always marked
as n, and any subsequent use of the result to access memory
will be flagged as an error.

Bitwise-and, shown in Figure 1(c), is more subtle. If
a non-pointer is bitwise-and’d with a pointer, the result
can be a non-pointer or a pointer, depending on the non-
pointer value. For example, if the non-pointer has value
Oxfffffff0, the operation is probably finding some kind of
base value, and the result is a pointer. If the non-pointer has
value 0x000000ff, the operation is probably finding some
kind of offset, and the result is a non-pointer. We deal with
these possibilities by assuming the result is a pointer, but
also doing the range test on the result and converting it to
n if necessary. The resulting shadow operation is thus the
same as that for addition.

For bitwise-xor, shown in Figure 1(d), we do not try any-
thing tricky; we simply use a range test to choose either
u or n. This is because there are not any sensible ways
to transform a pointer with bitwise-xor. However, there
are two cases where bitwise-xor could be used in a non-
transformative way. First, the following C code swaps two
pointers using bitwise-xor.

pl "= p2;
p2 "= pi;
pl "= p2;

Second, in some implementations of doubly-linked lists, the
forward and backward pointers for a node are bitwise-xor’d
together, to save space.® In both these cases, the pointer
information will be lost, and the recovered pointers will end
up with the type u, and thus not be checked.

Most other operations are straightforward. Increment and
decrement are treated like addition of a non-ptr to a value,
except no range test is performed. Address computations
(on x86, using the lea instruction) are treated like additions.
Shift /rotate operations give a m or u result, depending on
the result value—we do not simply set the result to n just
in case a pointer is rotated one way, and then back to the
original value. Negation and bitwise-not give an n result.

2.5.4 Subtraction

We have not mentioned subtraction yet. It is somewhat
similar to addition, and is shown in Figure 2. Subtract-
ing two non-pointers gives a non-pointer; subtracting a non-
pointer from a pointer gives a pointer; subtracting a pointer
from a non-pointer is considered an error.

The big complication is that subtracting one pointer from
another is legitimate, and the result is a non-pointer. If the
two pointers involved in the subtraction point to the same
segment, there is no problem. However consider this C code:

char p1[10];
char p2[10];

“The pointers can be recovered by using the bitwise-xor’d
values from the adjacent nodes; their pointers can be recov-
ered from their adjacent nodes, and so on, all the way back
to the first or last node, which holds one pointer bitwise-
xor’d with NULL.

— n v p) ]
n n u n¥*
pX) [ p(X) u n/?

Figure 2: Subtraction

int diff = p2 - pi;
pildiff] = 0;

This uses the pointer p1 to access the array pointed to by p2,
which is a different segment. ANSI-C actually forbids such
inter-array pointer subtraction, but in practice it occurs in
real C code. Also, it may be valid in other programming lan-
guages, and if our technique is to be language-independent,
we must handle it.

The problem is that the addition of a non-pointer with
a pointer can result in a pointer to a different segment.
The most accurate way to handle this is to generalise the
type n to n(X,Y), which is like n for all operations ex-
cept addition and subtraction, in which case we require that

p(X) +n(X,Y) gives p(Y), p(X) —n(Y, X) gives p(Y), and

so on. Also, pointer differences should be added transitively,
so that n(X,Y) + n(Y, Z) gives n(X, Z).

However, this is a complex solution for a problem that
does not occur very often. We describe how the implemen-
tation handles this case more simply in Section 3.7.

2.5.5 Propagation of Unknown

Note that it is tempting to be less rigorous with preserving
u types. For example, one might try making the result of
u + p(X) be p(X). After all, if the u operand is really a
non-pointer, the result is appropriate, and if the u operand
is really a pointer, the result will undoubtedly be well outside
the range of p(X), so any memory accesses through it will
be erroneous, and should be caught. By comparison, strict
u-preservation will cause us to miss this error.

At first, we tried doing this, being as aggressive as pos-
sible, and assuming unknowns are pointers when possible.
However, in practice it causes false positives, usually from
obscure sequences of instructions that would fool the shadow
operations into assigning the wrong segment-type to a pointer,
e.g. assigning a heap segment-type to a stack pointer.

Each time we saw such a false positive, we reduced the
aggressiveness; after it happened several times, we decided
that trying to second-guess like this was not the best way to
proceed. Instead, we switched to being more conservative
with u values, and using range tests throughout.

There is no way of handling these shadow operations that
is clearly the best. Instead, we just have to try alternatives
and find one that strikes a good balance between finding real
bounds-errors and avoiding false positives.

2.5.6 Other Operations

Machine instructions that do not produce or copy values,
such as jumps, do not require any instrumentation.

2.6 Comments

The technique is very heavyweight, since it relies on (a)
instrumenting every instruction in the program that moves
an existing value, or produces a new value, and (b) shad-
owing every word in registers and memory with a shadow
value.



3. PRACTICE

This section describes our prototype implementation of
our technique.

3.1 Implementation Framework

As mentioned in Section 2.6, the technique is very heavy-
weight. It was very much designed to be implemented us-
ing Valgrind [9], a system for building supervision tools on
x86/Linux, which supports exactly this sort of pervasive in-
strumentation and value tracking. The tool, which we call
Annelid, is written as a plug-in for Valgrind, implemented
as about 3,500 lines of C (including blanks and comments).

The instrumentation is entirely dynamic. The Valgrind
core gains control of the supervised program at start-up,
and none of the supervised program’s original code is run.
Instead, Valgrind translates the original code on demand,
one basic block at a time, into a RISC-like intermediate
language called UCode, which is expressed in virtual regis-
ters. The UCode is passed to the plug-in, which adds the
necessary instrumentation, and then passes it back to the
Valgrind core. The core reallocates registers, converts the
UCode back to x86 machine code, caches it for future re-
use, and runs it. Dynamically loaded libraries are handled
exactly like any other code. For more details about how
Valgrind works, please see [9].

3.2 Metadata Representation

The four types of metadata are represented as follows.

e A segment-type X is represented by a dynamically al-
located segment structure containing its base address,
size, a pointer to an “execution context” (a stack-
trace from the time the segment is allocated, which
is updated again when the segment is freed), and a
tag indicating which part of memory the segment is in
(heap, stack, or static) and its status (in-use or freed).
Each structure is 16 bytes. Execution contexts are
stored separately, in such a way that no single context
is stored more than once, because repeated contexts
are very common. Each execution context contains n
pointers, where n is the stack-trace depth chosen by
the user (default depth is four).

e A non-pointer-type n is represented by a small con-
stant NONPTR.

e An unknown-type u is represented by a small constant
UNKNQOWN.

e A pointer-type p(X) is represented by a pointer to
the segment structure representing the segment-type
X. Pointer-types can be easily distinguished from non-
pointer-types and unknown-types because the segment
structures never have addresses so small as NONPTR and
UNKNOWN.

Each register and word of memory is shadowed,® and holds
NONPTR, UNKNOWN, or a pointer to a segment structure. Mem-
ory shadowing is done in 64KB chunks. A shadow memory
table stores 65,536 pointers—one for every 64KB chunk of
memory. Initially every pointer in the table points to a

5Shadow type information for words in memory are stored
in an equally-sized piece of shadow memory. Similarly, each
register has a corresponding shadow register.

distinguished shadow chunk (every word of which is set to
NONPTR) which non-buggy programs will never read from.
Each store is accompanied by a shadow store; when a chunk
is written to for the first time, a new shadow chunk is al-
located for it, and the appropriate pointer in the shadow
memory table is updated. Shadow memory thus slightly
more than doubles memory usage.

Sub-word writes to registers and memory will destroy any
pointer information in those words; the type for that word
becomes either n or u, depending on a range test. Thus,
any byte-by-byte copying of pointers to or from memory
will cause that information to be lost. (Fortunately, glibc’s
implementation of memcpy () does word-by-word copying.)

Similarly, metadata is not stored across word boundaries
in memory. With respect to metadata, an unaligned word-
sized write is handled as two sub-word writes; therefore any
pointer information will be lost, and the two aligned memory
words partially written to will be set to NONPTR or UNKNOWN,
depending on range tests. Fortunately, compilers are loathe
to do unaligned writes, so this does not come up very often.

3.3 Segment Management
3.3.1 Soring Segments

Segment structures are stored in a skip list [12], which
gives amortised log n insertion, lookup, and deletion, and is
much simpler to implement than a balanced binary tree.

3.3.2 Freeing Segments

When a memory block, such as a heap block, is freed, the
segment structure for that block is retained, but marked as
being freed. In this way, we can detect any accesses to freed
blocks via dangling pointers.

However, we need to eventually free segment structures
representing freed segments, otherwise our tool will have a
space leak. There are two ways to do this. The first is to
use garbage collection to determine which segment struc-
tures are still live. Unfortunately, the rootset is extremely
large, consisting of all the shadow registers and all of shadow
memory.® Therefore, collection pauses could be significant.

The second possibility is to use segment recycling. We
would start by allocating each new segment structure as
necessary, and then placing it in a queue when its segment
is freed. Once the queue reaches a certain size (say 1000
segments), we can start recycling the oldest structure seg-
ments. If the queue size drops to the threshold value, we
would re-start allocating new segments until it grew bigger
again.

Thus we would maintain a window of preserved freed-
segments. It is possible that a segment structure could be
recycled, and then memory could be accessed through a dan-
ging pointer that points to the freed segment. In this case,
the error message produced will mention the wrong segment.
Or, if we are exceedingly unlucky, the pointer will be within
the range of the new segment and the error will be missed.
The chance of this last event happening can be reduced by
ensuring old freed segments are only recycled into new seg-
ments with non-overlapping ranges.

In practice, since accesses through dangling pointers are
not that common, with a suitably large threshold on the

5This is a simplified garbage collection, as the traversals
will only be one level deep, since segment structures cannot
cannot point to other segment structures.



freed-queue this should happen extremely rarely. Also, re-
cycled segments could be marked, and error messages arising
from them could include a disclaimer that there is a small
chance that the range given is wrong.

Alternatively, since the p(X) representation is a pointer
to a segment structure, which is aligned, there are two bits
available in the pointer which could be used to store a small
generation number. If the generation number in the pointer
doesn’t match the generation number in the segment struc-
ture itself, a warning can be issued.

One other characteristic of recycling is worth mentioning.
If the program being checked leaks heap blocks, the corre-
sponding segments will also be leaked and lost by our tool.
This would not happen with garbage collection.

So the trade-off between the two approaches is basically
that garbage collection could introduce pauses, whereas re-
cycling has a small chance of causing incorrect error mes-
sages. Currently our prototype uses recycling, which was
easier to implement.

3.4 Static Segments

Section 2.4.2 described how being too aggressive in identi-
fying static array pointers can lead to false positives, e.g. when
dealing with array accesses like a[i-1]. In our implemen-
tation, by default we use aggressive static pointer identifi-
cation, but a command-line option can be used to revert to
conservative identification.

3.5 Stack Segments

Section 2.4.3 discussed how stack segments could be han-
dled by our technique. There would be no problem if we
knew exactly when stack frames were built and torn down;
more precisely, if we knew when functions were entered and
exited. Unfortunately, in practice this is quite difficult. This
is because functions are not always entered using the call
instruction, and they are not always exited using the ret
instruction; some programs do unusual things with jumps
to achieve the same effects. However, unusually enough,
tail-recursion will not really cause problems, as long as the
function returns normally once it completes. The tail-calls
will not be identified, and it will be as if every recursive
function invocation is part of a single function invocation.

It might not be a problem if some entry/exit pairs were
not detected; then multiple stack frames could be treated by
our tool as a single frame. This could cause some errors to
be missed, but the basic technique would still work. How-
ever, even detecting matching function entries with exits is
difficult. The main reason is the use of longjmp(), which
allows a program to effectively exit any number of function
calls with a single jump. The obvious way to store stack seg-
ments is in a stack data structure. With longjmp(), it be-
comes necessary to sometimes pop (and mark as freed) mul-
tiple segments from this segment stack. If calls to longjmp ()
could be reliably spotted, this would not be a problem. How-
ever, GCC has a built-in non-function version of longjmp ()
that cannot be reliably spotted. Since we cannot even tell
when a longjmp() has occurred, we do not know when to
pop multiple frames. If we miss the destruction of any stack
frames, we will fail to mark their segment-types as freed,
and so our tool will not spot any erroneous accesses to them
via dangling pointers.

Stack-switching also causes big problems. If a program
being checked switches stacks, our tool should switch seg-

ment stacks accordingly. But detecting stack switches by
only looking at the dynamic instruction stream is difficult,
since it is often hard to distinguish a stack switch from a
large stack allocation.

We have tried various heuristics in an attempt to overcome
these problems. For example, after a longjmp() occurs, the
stack pointer will have passed several old frames in a single
step. This evidence can be used to determine that these
frames are now dead. However, we have not managed to
find any heuristics robust enough to deal with all the diffi-
culties. As a result, our tool currently does not track stack
segments at all. This is a shame, and we hope to resolve
these problems in the future.

3.6 RangeTests

As mentioned in Section 2.5, we can convert many u re-
sult types to m if they are definitely not pointers. In our
implementation, this test succeeds if a result value is less
than 0x01000000, or greater than 0xf£000000.

This is slightly risky, as a (strange) program could use
mmap () to map a file or create a memory segment below
0x01000000. Since Valgrind has complete control over mem-
ory allocation, we could ensure this never happens. Alter-
natively, we could track the lowest and highest addressable
addresses, and declare any value outside this range as a non-
pointer (with a suitable safety margin). In this case, for most
programs on typical x86/Linux systems, non-pointers would
be values below 0x8048000 (which is where the executable
is loaded) and above 0xc0000000 (which is reserved by the
kernel).

3.7 Pointer Differences

Section 2.5.4 suggested handling pointer differences be-
tween different segments precisely by generalising the n type
to a n(X,Y) type. We attempted this approach, but it was
a pain. It made the addition and subtraction operations
more complex; also, pointer differences are often scaled, so
n(X,Y) types would have to be propagated on multiplica-
tion, division, and shifting. Finally, having to free n(X,Y")
structures complicated segment structure storage.

A much easier solution was to introduce a new type b
(short for “bottom”). Any value of type b is not checked
when used as a pointer for a load or store, and the result of
any type operations involving b as an operand is b. Values
of type b are never changed to type n via a range test.

This is a blunt solution, but one that is not needed very
often—recall that intra-segment pointer differences, which
are much more common, are handled accurately.

3.8 System Calls

Valgrind does not trace into the OS kernel. However,
since system calls are well defined, it knows which arguments
are pointers, and what memory ranges will be read and/or
written by each system call. Valgrind tools thus know which
memory ranges will be written and/or read. Our prototype
does normal range checks on each of these, and so can find
bounds errors in system call arguments.

Most system calls return an integer error code or zero; for
these we set the return type to m. Some system calls can
produce pointers on success, notably mmap() and mremap ().
Our current approach is to give these results the value wu.
We originally tried tracking segments returned by mmap ()
like other segments, but abandoned this because they are



#include <stdlib.h>
int static_array[10];

int main(void)

{
int 1i;
int* heap_array = malloc(10 * sizeof (int));
for (i = 0; i <= 10; i++) {
heap_array [i] = O; // overrun: i==10
static_array[i] = 0; // overrun: i==10
}
free(heap_array) ;
heap_array[0] = 0; // block is freed
}

Figure 3: Sample Program: bad.c

difficult to deal with, since they are often resized, and can
be truncated or split by other calls to mmap() that overlap
the range. We decided this would not be a great loss, as
programs tend to use mmap () in straightforward ways, and
we suspect overruns of mapped segments are extremely rare.

3.9 Custom Allocators

Our prototype handles the standard allocators called via
malloc(), new, new[], free(), delete, delete[]. Custom
allocators can be handled with a small amount of effort,
by inserting client requests into the program being checked.
These are macros that pass information to our tool about
the size and location of allocated and deallocated blocks.

3.10 Leniency

Some common programming practices cause bounds to
be exceeded. Most notably, glibc has heavily optimised
versions of functions like memcpy (), which read arrays one
word at a time. On 32-bit x86 machines, these functions can
read up to three bytes past the end of an array. In practice,
this does not cause problems. Therefore, by default we allow
aligned, word-sized reads to exceed bounds by up to three
bytes, although there is a command-line option to turn on
stricter checking that flags these as errors.

3.11 Examples

This section shows some example errors given by our pro-
totype. Figure 3 shows a short C program, bad.c. This
contrived program shows three common errors: two array
overruns, and an access to a freed heap block.

Figure 4 shows the output produced by our prototype.
The error messages are sent to standard error by default,
but can be redirected to any other file descriptor, file, or
socket.

Each line is prefixed with the running program’s process
ID. Each error report consists of a description of the error,
the location of the error, a description of the segment(s) in-
volved, and the location where the segment was allocated
or freed (whichever happened most recently). The func-
tions malloc() and free() are identified as being in the
file vg_replace_malloc.c because that is the file that con-
tains our tool’s implementations of these functions, which
override the standard ones.

The program was compiled with -g to include debugging

information. If it had not been, the code locations would
have been less precise, identifying only the code addresses
and file names, not actual line numbers. Also, the second
error involving the static array would not have been found,
as we discussed in Section 2.4.2.

3.12 Performance

This section presents some basic performance figures for
our prototype. All experiments were performed on an 1400
MHz AMD Athlon with 1GB of RAM, running Red Hat
Linux 9.0, kernel version 2.4.19. The test programs are a
subset of the SPEC2000 suite. All were tested with the
“test” (smallest) inputs.

Table 1 shows the performance of our prototype. Column
1 gives the benchmark name, column 2 gives its normal run-
ning time in seconds, and column 3 gives the slow-down fac-
tor. Programs above the line are integer programs, those
below are floating point programs.

Program | Time (s) Slow-down
bzip2 10.9 32.2
crafty 3.5 67.0
gap 1.0 39.5
gee 1.5 48.0
gzip 1.9 40.9
mcf 0.4 18.1
parser 3.7 31.8
twolf 0.3 35.4
vortex 6.6 80.7
ammp 19.3 29.0
art 28.5 14.7
equake 2.2 35.5
mesa 2.5 52.5
[ median | 35.5 ]

Table 1: Slow-down factor of prototype

As mentioned, this technique is heavyweight. Therefore,
the overhead is high and programs run much slower than
normal. However, the slow-down experienced is not dissim-
ilar to that with all thorough memory checking tools that
instrument a program at link-time or run-time. Also, we
have not yet tried optimising our prototype very much.

4. SHORTCOMINGS

Like all error-checking techniques, ours is far from perfect.
How well it does depends on the circumstances. Happily, it
exhibits “graceful degradation”; as the situation becomes
less favourable, more and more p(X) metavalues will be lost
and seen instead as u. Thus it will detect fewer errors, but
will not give more false positives.

4.1 Optimal Case

In the best case, the program will have all debug infor-
mation and symbol tables present. In that case, even if
implemented optimally, our technique will have problems in
the following cases.

e Certain operations, such as swapping pointers with the
bitwise-xor trick, cause p(X) metavalues to be “down-
graded” to w; erroneous accesses using those pointers
will not be caught. One could imagine beefing up the



==16884== Invalid write of size 4

==16884== at 0x8048398: main (bad.c:11)

==16884== Address 0x40D1C040 is O bytes after the expected range,
==16884==  the 40-byte heap block allocated

==16884== at 0x400216E7: malloc (vg_replace_malloc.c:161)
==16884== by 0x8048375: main (bad.c:8)

==16884==

==16884== Invalid write of size 4

==16884== at 0x80483A2: main (bad.c:12)

==16884== Address 0x80495E8 is O bytes after the expected range,
==16884==  a 40-byte static array in the main executable
==16884==

==16884== Invalid write of size 4

==16884== at 0x80483C5: main (bad.c:15)

==16884== Address 0x40D1C018 is O bytes inside the once-expected range,
==16884==  the 40-byte heap block freed

==16884== at 0x40021CE9: free (vg_replace_malloc.c:187)
==16884== by 0x80483BE: main (bad.c:14)

Figure 4: Sample Output

type system to handle such cases, but the cost/benefit
ratio would be very high.

e Directly out-of-bounds accesses to static and stack data
objects (e.g. accessing a[10] in an array of ten ele-
ments) cannot be detected if they happen to fall within
a nearby data object. Also, pointers not to the start of
arrays must either be ignored, missing potential errors,
or handled, causing potential false positives.

4.2 Implementation

Our implementation suffers from a few more shortcom-
ings, mostly because the optimal case is too complex to im-
plement.

e Pointer-types are lost if pointers are written unaligned
to memory.

e Likewise, pointer-types are lost if pointers are copied
byte-by-byte between registers and/or memory words.
(Fortunately, as mentioned in Section 3.2, glibc’s im-
plementation of memcpy () does word-by-word copying.
If it didn’t, we could just override it with our own that
did not use byte-by-byte copying.)

e The use of b for inter-segment pointer differences will
cause some errors to be missed.

e The implementation uses debugging information about
types in only simple ways. For example, it does not
try at all to break up heap blocks into sub-segments.
Also, the only static data objects it constructs segment
structures for are arrays (not for structs or basic data
types).

e Stack segments are currently not handled at all, al-
though we hope to rectify this soon.

4.3 No Debugging I nfor mation

If debugging information is not present, no static checking
can be performed, as we cannot recognise pointers to static
data objects.” Also, if we were checking stack frames, we

"We could check the bounds of entire static data segments,
since that information is known without debugging informa-
tion.

would have to fall back to using unlimited-size segments, as
discussed in Section 2.4.3.

4.4 No Symbols

If a program has had its symbol tables stripped, error
checking might degrade further. This is because, if our im-
plementation did stack checking, it would rely on symbols
being present for detecting function entry and exit points.®

4.5 Avoiding Shortcomings

A lot of the shortcomings arise because the information
available in a program binary at run-time is less than that
present in the original program. Debugging information and
symbol tables help represent some of this information, but
there are still some things that our tool would like to know
about.

The obvious way to improve the situation is to involve
the compiler producing the programs; a lot of checking can
be done purely dynamically, but some things clearly require
static help.

First, a compiler could promise, in certain circumstances,
to avoid generating code that causes problems for our tool.
For example, it could ensure that all pointer reads and writes
are aligned; it could ensure where possible that array ac-
cesses are done via the array’s base pointer, rather than
pre-computing offsets.

Second, a compiler could embed extra information into
programs for our tool to use. In our implementation, it
could use client requests (mentioned in Section 3.9 for han-
dling custom allocators) to do this. This information might
be simple, for example, indicating that a particular memory
access is intended to be to a particular segment; or signalling
when a longjmp() occurs. Or it could be more complex, for
example, indicating that all memory accesses within a par-
ticular function or module need not be checked—this might
be suitable if our tool was used in conjunction with a static

8The other obvious alternative—detecting entry from the
dynamic instruction stream—is in practice extremely diffi-
cult. Some compilers can produce “debugging grade” code
which includes hooks that tell tools when functions are en-
tered and exited. This would make things much simpler,
but no Linux compilers we know of provide this.



bounds checker (see Section 5.2 for a description of some).

Third, users could embed information themselves man-
ually, although this option is only really practical for rare
events, such as stack switches.

Finally, some bounds errors that our tool cannot find
should arguably be found by a compiler. In particular,
directly out-of-bounds accesses to static and stack arrays
(e.g. accessing element a[10] of a ten-element array) could
easily be found by the compiler.

Our technique has some very nice characteristics, but it
clearly also has some significant shortcomings. A hybrid
static/dynamic techniques may be more effective; this is an
area worthy of future work.

5. RELATED WORK

This section describes several tools that find bounds er-
rors for C and C++ programs, and compares them to our
technique. No single technique is best; each has its strengths
and weaknesses, and they complement each other.

5.1 Redzones

The most common kinds of bounds-checking tools dynam-
ically check accesses to objects on the heap. This approach
is common because heap bounds-checking is easy to do.
The simplest approach is to replace the standard versions
of malloc(), new, and new[] to produce heap blocks with
a few bytes of padding at their ends (redzones). These red-
zones are filled with a distinctive values, and should never
be accessed by a program. When the heap block is freed
with free(), delete or delete[], the redzones are checked,
and if they have been written to, a warning is issued. The
documentation for mpatrol [13] lists many tools that use this
technique.

This technique is very simple, but it has many shortcom-
ings.

1. It only detects small overruns/underruns, within the
redzones—larger overruns or completely wild accesses
could access the middle of another heap block, or non-
heap memory.

2. It only detect writes that exceed bounds, not reads.

3. It only reports errors when a heap block is freed, which
causes two problems: first, not all heap blocks will
necessarily be freed, and second, this gives no infor-
mation about where the overrun/underrun occurred.
Alternatively, calls to a heap-checking function can be
inserted, but that requires source code modification,
will cause pauses while the entire heap is checked, and
still does not give precise information about when an
€rror 0ccurs.

4. Accesses to freed heap blocks via dangling pointers are
not detected, unless they happen to hit another block’s
redzone (even then, identifying the problem will be
difficult).

5. It does not work with heap blocks allocated with cus-
tom allocators (although the technique can be built
into custom allocators).

6. It only works with heap blocks—stack and static blocks
are pre-allocated by the compiler, and so redzones can-
not (without great difficulty) be used for them.

This technique has too many problems to be considered fur-
ther. All these problems are avoided by techniques that
track pointer bounds, such as ours.

Some of these shortcomings are overcome by Electric Fence
[11], another malloc() replacement that uses entire virtual
pages as redzones. These pages are marked as inaccessi-
ble, so that any overruns/underruns cause the program to
abort immediately, whereupon the offending instruction can
be found using a debugger. This avoids problems 2 and 3
above, and mitigates problem 1 (because the redzones are so
big). However, it increases virtual memory usage massively,
making it impractical for use with large programs.

A better approach is used by the Valgrind tool Mem-
check [9], and Purify [5]. They too replace malloc() et
al with versions that produce redzones, but they also main-
tain addressability metadata about each byte of memory,
and check this metadata before all loads and stores. Be-
cause the redzones are marked as inaccessible, all heap over-
runs/underruns within the redzones are spotted immedi-
ately, avoiding problems 2 and 3 above. If the freeing of
heap blocks is delayed, this can mitigate problem 4. These
tools also provide hooks that a custom allocator can use to
tell them when new memory is allocated, alleviating prob-
lem 5.

Purify is also capable of inserting redzones around static
variables in a pre-link step, in certain circumstances, as ex-
plained in the Purify manual:

Purify inserts guard zones into the data section
only if all data references are to known data vari-
ables. If Purify finds a data reference that is rel-
ative to the start of the data section as opposed
to a known data variable, Purify is unable to
determine which variable the reference involves.
In this case, Purify inserts guard zones at the
beginning and end of the data section only, not
between data variables.

Similarly, the Solaris implementation of Purify can also
insert redzones at the base of each new stack frame, and so
detect overruns into the parent frame. We do not know the
details of how Purify does this, but we suspect that the way
the SPARC stack is handled makes it much easier to do than
on x86.

Redzones and addressability tracking works very well, which
accounts for the widespread use of Memcheck and Purify.
However, the remaining shortcomings—1 and particularly 6
(even with Purify’s partial solution)—are important enough
that tools tracking pointer bounds are worth having.

5.2 Fat Pointers

A different technique is to augment each normal pointer in
a program with bounds metadata—typically the minimum
and maximum address it can be used to access—giving a fat
pointer. All accesses through fat pointers are checked, which
gives very thorough checking, and avoids all the problems
of the tools described in Section 5.1. But there are other
significant disadvantages.

In earlier implementations, every pointer was replaced
with a struct containing the pointer, plus the bounds meta-
data (e.g. [1]). This approach has several major problems.

1. It requires compiler support, or a pre-compilation trans-
formation step.



2. All code must be recompiled to use fat pointers, in-
cluding libraries. In practice, this can be an enormous
hassle.

Alternatively, parts of the program can be left un-
recompiled, so long as interface code is produced that
converts fat pointers to normal pointers and vice versa
when moving between the two kinds of code. Pro-
ducing this code requires a lot of work, as there are
many libraries used by normal programs. If this work
is done, two kinds of errors can still be missed. First,
pointers produced by the library code may lack the
bounds metadata and thus not be checked when they
are used in the “fat” code. Second, library code will
not check the bounds data of fat pointers when per-
forming accesses.

3. Changing the size of a fundamental data type will
break any code that relies on the size of pointers, for
example, code that casts pointers to integers or vice
versa, or C code that does not have accurate function
prototypes.

4. Support may be required in not only the compiler, but
also the linker (some pointer bounds cannot be known
by the compiler), and possibly debuggers (if the fat
pointers are to be treated transparently).

Jones and Kelly describe a better implementation in [6].
Each pointer’s metadata is stored separately from the pointer
itself, so it preserves backward compatibility with existing
programs, avoiding problem 3, and reducing problem 4.°
Patil and Fischer [10] also store metadata separately, in or-
der to perform the checking operations on a second proces-
sor. We believe that if library code was handled better, this
technique would be much more widely used.

Both these approaches require compiler support, and the
checking is only done within modules that have been recom-
piled by the compiler, and on pointers that were created
within these recompiled modules.

Our technique has the same basic idea of tracking a pointer’s

bounds, but the implementation is entirely different, as it
works on already-compiled code, and naturally covers the
entire program, including libraries. It also works with pro-
grams written in any language; this is useful for systems
written in a mix of C or C++ and another language. Our
technique is less accurate, however, and the overhead is
much greater.

5.3 Static Checking

CCured [8] is a tool for making C programs type-safe,
implemented as a source code transformer. It does a sophis-
ticated static analysis of C source code, then adds bounds
metadata, and inserts dynamic bounds-checks, for any point-
ers for which it cannot prove correctness statically. It suf-
fers from problems 1-3 described in Section 5.2. These ad-
ditional checks slow performance; published figures range
from 10-150%. Also, on larger programs, one “has to hold
CCured’s hand a bit” for it to work; getting such programs
to work can take several days’ work [4]. Again, non-coverage
of library code is a problem.

Compuware’s BoundsChecker Professional tool [3] inserts
memory checks into source code at compile-time. It seems to

®In practice, very small numbers of source code changes are
needed.

be similar to CCured, but without the clever static analysis
to avoid unnecessary checks, and so can suffer much larger
slow-downs.

By comparison, our technique is entirely dynamic, and
does not require any recompilation or source code modifica-
tion. It does find fewer errors, though.

5.4 Runtime Type Checking

We know of two systems that perform run-time type check-
ing. Hobbes [2] maintains run-time type metadata about
every value in a program. It gives warnings on run-time
type violations, e.g. if two pointers are added. It can also
detect bounds errors if they lead to run-time type errors.
Implemented via an x86-binary interpreter, its slow-down
factor was in the range 50-175. RTC [7] is similar, but only
works for C programs as it uses a source-to-source transfor-
mation to add the checks. Slow-downs when using it are
in the range 6-130. These tools use heap block padding
to find some overrun errors, but as we saw in Section 5.1,
our technique is more precise for finding bounds errors as it
associates an explicit range with each pointer.

6. FUTURE WORK AND CONCLUSION

We have described a technique for dynamically checking
pointer usage, which finds many but not all bounds errors.
It effectively converts program pointers into fat pointers,
without requiring programs to be modified, recompiled, or
relinked, and works with programs written in any language.
It also checks library code just as well as non-library code,
without any extra effort. We have a prototype implementa-
tion of the technique which performs many of the possible
checks.

Further improvements to the prototype would be desir-
able, particular to make it faster, and to include bounds
checking on the stack. In the long-term, we hope hybrid
static/dynamic techniques may be able to produce new, bet-
ter bounds-checking tools that overcome the weaknesses of
our technique, and other existing ones.

We have also found that there is a tendency for a large
number of a program’s values to decay to type u, even in
fairly simple programs. A clear direction for future work is
to identify why type information is being lost, and how to
avoid it.
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