
Typed Regions

Stefan Monnier

Département d’informatique et recherche opérationnelle
Université de Montréal

Montréal, QC, H3C 3J7, Canada

monnier@iro.umontreal.ca

Abstract
Standard type systems are not sufficiently expressive when applied
to low-level memory-management code. Such code often requires
some form ofstrong update(i.e. assignments that change the type
of the affected location) and needs to reason about the relative po-
sition of objects in memory. We present a novel type system which,
like alias types, provides a form of strong update, but with the ad-
vantage that it does not require the aliasing pattern to be statically
described. It can also provide operations over sequential memory
locations and allows covariant reference casts, both of which are
required to implement a type-preserving stop© garbage col-
lector that can properly collect cyclic data-structures. Finally, this
type system is able to keep track of almost arbitrary properties of
values and state, giving it a power formerly reserved to Hoare logic.

As the technology of certifying compilation and proof carrying
code [16, 1, 8] progresses, the need to ensure the safety of the run-
time system increases: if you go through the trouble of writing a
foundational proof of safety of your code, you would rather not
trust an unverified conservative garbage collector (GC) with your
data. For this reason, it is important to be able to write a type-safe
GC, but the state of the art in this matter is still completely im-
practical: it cannot even handle cyclic data-structures. This paper’s
main goals are thus:

• Argue that, in order to type-check a GC that can collect cyclic
data-structures, the type system has to provide a form of as-
signment that can change the type of a location (i.e. astrong
update[3]) even if the set of aliases to this location is unknown.

• Present a type system that provides such a facility. This type
system allows the programmer to choose any mix of linear or
intuitionistic typing of references and to seamlessly change this
choice over time to adapt it to the current needs.

Traditional type systems are not well-suited to reason about type
safety of low-level memory management such as explicit memory
allocation, initialization, deallocation, or reuse. Existing solutions
to these problems either have a very limited applicability or rely
on some form oflinearity constraint. Such constraints tend to be
inconvenient and a lot of work has gone into relaxing them. For
example, the alias-types system [22] is able to cleanly handle sev-
eral of the points above, even in the presence of arbitrary aliasing,
as long as the aliases can be statically tracked by the type system.

The reason why it is challenging to show type safety of low-level
memory management is that for this kind of code, we end up having
to prove some non-trivial properties about the code just to show its
type safety. For example, type safety of a generational GC depends
on the correct processing of the remembered-set (a data-structure
holding the set of pointers from the old generation to the new).

An alternative approach would be to use Hoare logic [10] to
show the correctness of the low-level code and then provide a type-
safe interface to it. But it is not clear how those two parts would
interact: the low-level code might be spread in pieces over a lot of
code and might need to propagate complex invariants to the various
pieces through the type-safe interface, as is the case for the code
that maintains the remembered-set in the mutator. Furthermore as
we start to encode more properties than basic type safety into our
type systems, the difficulties we are seeing here will start to appear
for more mundane code as well. This tendency can already be seen
in the Vault project which uses an approach taken from alias-types
to prove other properties of their code than just type safety.

The present work is thus an attempt to provide a middle ground
between Hoare logic and traditional type systems. Additionally to
the above stated goals, we make the following contributions:

• A language that subsumes traditional region calculi as well as
alias-types calculi to simultaneously combine the benefits of
traditionalintuitionistic references andlinear references.

• We introduce type cast on memory locations and strong update
operations that work in the absence of any static aliasing infor-
mation.

• Those operations generalize and enhance thewiden operator
used in [14] while relying on a much simpler soundness proof.

• We show how to use the calculus of inductive constructions
(CiC) to track properties of state. This extends the work of
Shao et al. [18] where they used CiC as their type language to
track arbitrary properties of values.

Section 1 gives a quick preview of the basic idea developed in
this paper. Section 2 introduces the problem of cyclic data-structures
as well as two type systems on which our work is built. Section 3
describes the new language. Section 4 shows some examples of
what the language can do. We then discuss related work and con-
clude.

1. Overview
The typed regions system presented in this paper is basically a

hybrid between traditional region systems and alias types systems.
In a traditional region system, the type of a pointer completely de-
termines the type of the object to which it points. In alias types
systems on the other hand, the type of the pointer does not carry
any information about the type of the object to which it points. In-
stead, the type of the pointer only indicates the location to which
it points, and a separate environment is used to look up the type of
that location. Typed regions combines those two such that the type
of a location is partly determined by the type of the pointers and
partly by a separate environment.

(types) σ ::= t | int | σ × σ | σ at ρ | ∀[∆]{Θ}(~σ) → 0

(values) v ::= x | i | (v, v) | ν.n | λ[∆]{Θ}(Γ).e
(ops) op ::= v | πiv | put[ρ] v | get v
(terms) e ::= v[~σ](~v) | halt v | let x = op in e | freergn ρ; e

| let r = newrgn in e | set v := v; e

(kinds) κ ::= Ω | R
(regions) ρ ::= r | ν
(kind env) ∆ ::= • | ∆, t :κ
(type env) Γ ::= • | Γ, x :σ
(heap type) Ψ ::= • | Ψ, ν.n 7→ σ
(region env) Θ ::= • | Θ, ρ

Figure 1: Syntax of a region-based language.

The key idea is to introduce the concept of theintended typeof
a memory location, which stays constant throughout the lifetime
of that location and thus corresponds to a traditional (intuitionis-
tic) type, supplemented with a non-constant map that translates the
intended type of each location to itsactual type.

The intended type of a location is typically a high-level view of
the type of objects that it can hold, that abstracts away time-varying
details such as the fact that some fields might be temporarily unini-
tialized, or that the object is currently replaced by a forwarding
pointer.

Let’s say we have a pointer of typeτ at ρ.n: 1 that means that
it points to an object of intended typeτ at locationn in regionρ.
Each region has a typeϕ. This type is a function that takes two
arguments, the locationn of an object and its intended typeτ , and
returns the actual type of the objectϕ n τ .

Because the intended types are reflected in the types of pointers,
they are kept immutable, since changing the intended type of a lo-
cation would require updating the type of all the pointers to that
location. On the other hand, assignments can change the actual
type of a location by modifying the region’s typeϕ.

If ϕ is a simple identity function that ignoresn, then intended
types and actual types are the same and we have basically a tradi-
tional region system. On the other hand, ifϕ ignoresτ and only
usesn to determine the actual type of a location, we have a system
reminiscent of alias types.

The difference in power between typed regions and alias types
is similar to the difference between destructive update and a sim-
ulation of it using functional update: when functionally updating
an element shared by several data-structures, one needs to rebuild
the spine that leads to this element for each data-structure where it
is used, which requires one to keep track of those spines, whereas
with destructive updates, the operation can be done without any
knowledge of where this object is currently referenced.

2. Background

2.1 Cyclic structures
In the course of writing thecopy routine of a garbage collector,

we discovered that although current type systems can handle the
case where the graph is acyclic, generalizing the code to properly
handle cycles proves difficult. After experimenting with various
algorithms, it became clear that the problem is more fundamental:
current type systems are unable to type-check some generic code
that can build arbitrary cyclic data-structures. Bygeneric, we mean
that it can apply to objects of any type. In other contexts, it could be
calledpolytypic, or intentionally polymorphic. The most obvious
examples aregccopy andunpickle.

1By convention, type-level expressions will use the meta-variable
ρ for regions,τ for intended types,σ for actual types, andϕ for
other kinds of types such as region types.

To see this, let us look at a classic example, a datatype for doubly-
linked lists:

datatype α dlist = Node of α ∗ α dlist ref ∗ α dlist ref

The SML type system allows us to declare this datatype and write
functions to manipulate it, but does not offer us any way to create
such an object because there is no base case to start from. But even
if we have a base case, the type system can get in the way. Let us
take another example:

datatype α tree = Node of α | Branch of α tree ref ∗ α tree ref

This time, we can construct such trees since we do have a base
case, but if we want to construct an “infinite” tree with no actual
Node in it, we still first need to build aNode. More specifically, in
order to create a cyclic data-structure, we always need a base case
to start from, even if the data-structure we want to get in the end
does not contain any node of this base case any more. But in the
above example, we can only build a base case if we have an object
of the proper typeα. Which means that a generic routine such as
an unpickler or a copying GC needs to be able to construct from
scratch the base case of any type that could be involved in a cyclic
data-structure. In the tree example above, that means creating a
Node of α for anyα. Clearly this is not possible.

OCaml provides special support to build cyclic data-structures,
such as thedlist example above, withval rec n = Node(0, n, n).
This helps for specific code, but it only works for pre-determined
cycles, whereas a copying GC simply does not even know when it
is creating cycles.

Type systems that can decouple allocation from initialization are
the key to solving this problem, but none of the systems developed
so far are sufficiently flexible to handle the case of a generic func-
tion such asunpickle. More specifically, none of them know how
to handle the case where the pointer to the allocated objectescapes
(i.e. is passed around and stored at arbitrary locations) before the
object is initialized: when we allocate a new object, we obviously
know its one and only alias, but we cannot fully initialize it yet be-
cause some of the values might not exist yet, and by the time we are
done unpickling the children such that initialization can complete,
there can be any number of aliases and we do not statically know
them because the function is generic.

In order to type-check a practical copying GC, we need a new
type system that is able to update the type (e.g. from uninitialized
to initialized) of all the aliases to a particular object even when
those aliases are not statically known.

2.2 Regions
Region-based type systems [20, 5] are the most practical systems

offering type-safe explicit memory management. They provide a
solution to the problem of safe deallocation, with a minimum of
added constraints. Even though they do not offer any help when
trying to type-check low-level code such as object initialization,
their practicality makes them very attractive as a starting point. The

2

(types) σ ::= t | int | ρ | ∀[∆]{Θ}(~σ) → 0

(values) v ::= x | i | ν | λ[∆]{Θ}(Γ).e
(ops) op ::= v | πiv
(terms) e ::= v[~σ](~v) | halt v | let x = op in e | free ρ; e

| let (r, x) = new n in e | set πiv := v; e

(kinds) κ ::= Ω | Heap | Loc
(locations) ρ ::= r | ν
(type env) Γ ::= • | Γ, x :σ
(kind env) ∆ ::= • | ∆, t :κ
(mem env) Θ ::= • | Θ, ρ 7→(σ, ..., σ)

Figure 2: Syntax of an alias-types language.

idea behind region calculi is to only provide bulk deallocation of a
whole region (group of objects) at a time. This way the type system
only needs to keep track of regions rather than individual objects:
the type of every pointer is simply annotated with the region that it
references.

Figure 1 shows an example of such a language.put[ρ] v allocates
v in regionρ; get v dereferencesv and returns the object it points
to; newrgn creates a new region;freergn deallocates it;set v1 :=
v2 placesv2 at the location to whichv1 points;ν.n is a pointer to
thenth object created byput in regionν and has typeσ at ν if the
object referenced has typeσ; λ[∆]{Θ}(Γ).e is a function of type
∀[∆]{Θ}(~σ) → 0; functions are fully closed and use continuation
passing style, so they never return (hence the→ 0 in the type);∆
is the list of type parameters;Θ lists the regions that need to be
live at the time of the call; and~σ andΓ lists the types of the value
parameters. A function callv[~σ](~v) passes types~σ and values~v
to functionv. Type variables can have two kinds, depending on
whether they range over the typesσ of kind Ω of objects or over
the typesρ of kind R of regions;Ψ does not appear in the terms but
is used in the typing rules (not shown here) where it keeps track of
the type of each memory location, such that for all reference value
ν.n its type isΨ(ν.n) at ν.

Region calculi do not all look like the above, of course. They do
not all use fully closed functions and continuation passing style, for
example, but a direct-style presentation would be more complex, as
is the correct treatment of closure allocation.

Here is a sample function that creates a cyclic node of thetree
datatype presented previously, assuming the language has been ex-
tended with support for datatypes:

mktree[r, t]{r}(x : t, k : ∀[r, t]{r}((tree t) at r) → 0)
= let y = put[r] (Node x) in

set y := Branch y y; k[r, t](y)

The function expects two type argumentsr andt, it expects the
regionr to be live, and expects an argumentx of type t (which is
only used temporarily to create the dummyNode) and a continua-
tion argumentk. The (omitted) kind ofr isR and the kind oft isΩ.
Theput operation allocates memory and temporarily puts a dummy
Node into it, while theset operation creates the actual cycle. The
continuationk also expects two typesr andt, it also expects region
r to be live and expects a single value argument which is a pointer
to a tree in regionr. If k’s type had{} in place of{r}, it would
force us to deallocate the regionr before calling it and it would
maken into a dangling pointer, which is allowed because liveness
of the region is only needed and checked when dereferencing with
get.

2.3 Alias types
The alias-types system [19, 22] was developed precisely to han-

dle low-level code such as object initialization, memory reuse, and
safe deallocation at the object level. To that end, the type of pointers
is changed to carry no information about the type of the referenced

object. Instead, the type of a pointer is just the location it is pointing
to, so it does not need to change when the location’s type or live-
ness changes. While it provides a lot of power when dealing with
low-level code, it relies on an amount of static information which is
not always available and definitely not available in our copying GC:
if we had this information, we could also statically decide when to
deallocate, so we would not need a GC in the first place.

Figure 2 shows the syntax of a very simple alias-types language.
It can be thought of as a region-based language where the pointers
can only point to regions rather than to objects inside them, where
regions have been turned into tuples, and where objects inside re-
gions are instead just fields of those tuples.put has disappeared
since we cannot add fields to a tuple;get is replaced byπi; set now
only mutates a field of a tuple; pointersν now just have typeν. The
environmentΨ mapping locations to their types has been merged
into Θ. When dereferencing a pointer of typeρ, we thus have to
check the liveness and the type of the corresponding location by
looking upρ in Θ. let (r, x) = new n in e allocates a new object
of sizen and returns the location as both a valuex and a typer. We
could also have done this for regions so as to distinguish between
the region type and the region value passed toput at runtime, but
we conflated the two for simplicity.

Here is a sample code that takes a value of typet and creates an
infinite list of this element (a 1-element circular list):

mklist [ε, t]{ε}(x : t, k :∀[ε, t, r]{ε, r 7→ (t, r)}(r) → 0)
= let (r, n) = new 2 in

set π0n := x; set π1n := n; k[ε, t, r](n)

The function expects two argumentsε andt whereε has kindHeap;
it expects also thatε is live, and it expects two value argumentsx
of type t and k, the continuation. The type of the continuation
shows that it expects three type arguments, wherer is a location;
it expects the heapε to still be live and extended with a pair at
location r holding the infinite list; and it expects a single value
argument which is the pointer to that list. Sincenew only knows
about the size of the object, it can only do allocation and the type
at locationr is originally set to(int, int) and is then incrementally
updated by eachset operation to(t, int) and then(t, r).

The ability to update a location’s type is the key power of alias-
types. But for that it relies crucially on the fact that the type system
keeps track of pointer values. In particular, the types need to stati-
cally but precisely describe the shape of the heap. Witness the fact
in the above example that the type of the circular list is not justlist t
but instead explicitly describes a 1-element cycle and thus disal-
lows any other shape. The type language of [22] is of course much
richer than what we show here, providing a lot more flexibility in
the kind of heap shapes you can describe.

2.4 Calculus of inductive constructions
The calculus of inductive constructions (CiC) [17] that we use

as our type language is an extension of the calculus of construc-
tions (CC) [4], which is a higher-order typedλ-calculus. Addi-

3

(regions) ρ :R κ ::= r | ν
(types) σ :Ω ::= t | int | σ × σ | τ at ρ.n

| ∀[∆]{Θ}(~σ) → 0

(values) v ::= x | i | (v, v) | ν.n | λ[∆]{Θ}(Γ).e
(operations) op ::= v | πiv | get v
(terms) e ::= v[~ϕ](~v) | halt v | let x = op in e

| let x = put[ρ, τ] v in e
| let r = newrgn ϕ in e | freergn ρ; e

| set v
ϕ
:= v; e | cast[P] ρ 7→ ϕ; e

(sort) s ::= Kind | Kscm | Ext
(ptm) ϕ, τ, κ, P ::= s | x | λx :ϕ. ϕ | ϕ ϕ | Πx :ϕ. ϕ

| Ind(x :ϕ){~ϕ} | Ctor (i, ϕ)
| Elimϕ{~ϕ}

(memory) M ::= • | M, ν.n 7→ v
(heap type) Ψ ::= • | Ψ, ν.n 7→ τ
(type env) Γ ::= • | Γ, x :σ
(kind env) ∆ ::= • | ∆, t :κ
(region env) Θ ::= • | Θ, ρ 7→(ϕ, n)

Figure 3: Syntax of the language.

tionally to being a powerful programming language, CC can en-
code Church’s higher-order predicate logic via the Curry-Howard
isomorphism [11]. Understanding the details of this language is
not necessary for this paper, so we will only give a brief overview,
starting with its syntax (as a pure type system [2]):

(sort) s ::= Kind | Kscm | Ext
(ptm) ϕ ::= s | x | λx :ϕ. ϕ | ϕ ϕ | Πx :ϕ. ϕ

| Ind(x :ϕ){~ϕ} | Ctor (i, ϕ) | Elimϕ{~ϕ}

x is a variable;ϕ1 ϕ2 is a function application;λx : ϕ1. ϕ2 is a
function with argumentx of typeϕ1 and bodyϕ2; Πx : ϕ1. ϕ2 is
the type of a function taking an argument of typeϕ1 and returning
a value of typeϕ2. This is called a dependent product type and
subsumes both the usual function typeϕ1 → ϕ2 and the universal
quantifier∀x :ϕ1.ϕ2. When the bound variablex does not occur in
ϕ2, it can be abbreviatedϕ1 → ϕ2.

The formsInd, Ctor, andElim, allow to resp. define, construct,
and analyse inductive definitions, which are variants of ML datatypes
and can be used to define integers and lists, for example. We will
skip the details since in the remainder of this paper, we will use a
more familiar ML-style notations. We will also sometimes abuse
the BNF notation to informally define an inductive definition. We
will, however, retain theΠ notation, which can generally be read
as a “for all” quantifier.

CiC has been shown to be strongly normalizing [24], hence the
corresponding logic is consistent. It is supported by the Coq proof
assistant [12], which we used to experiment with a prototype of the
system presented in this paper.

3. Typed regions
Our new system of typed regions can be thought of as a hy-

brid between alias-types and the calculus of capabilities [5] sup-
plemented with the calculus of inductive constructions (CiC), sim-
ilarly to λH [18]. Where alias-types rely on alinear map of live
locations’s types and the calculus of capabilities relies on a linear
set of live regions, we rely on a linear map of regions’s types.

In a typical region calculus, the type of the object reachable from
a pointer (its target) is entirely given by the type of the pointer. In
contrast, in the alias-types system, the type of the pointer does not
provide any direct information about the type of the target; instead,
the target’s type is kept in a linearly managedtype mapindexed
by the pointer’s type, which is the singleton type holding the ob-
ject’s location. Our new type system mixes the two, such that the
pointer’s type holds both the location and some information (called
the intended type) about the object to which it points, while the re-
maining information is kept in a map of regions’s types. The type

of a region is a function that maps an object’s location and its in-
tended type to its actual type.

3.1 The language
The syntax of our language is shown in Fig. 3. The language uses

continuation passing style and fully closed functions.M, Ψ, Γ, ∆, Θ
are environments used in the typing rules and operational seman-
tics. Valuesv can be integers, pairs ((v1, v2) : σ1×σ2), references
(ν.n : τ at ν.n), and functions. The terms do the following:

halt v halt the machine, returningv as the result.
πiv selectith from tuplev.
v[~ϕ](~v) make a tail-call to functionv.
newrgn ϕ allocate a new region of typeϕ.
freergn ρ; e free the regionρ.
put[ρ, τ] v allocate objectv of intended typeτ in regionρ.
get v fetch the object pointed to byv.

set v1
ϕ
:= v2; e update locationv1 with valuev2.

ϕ is the new type of the location.
cast[P] ρ 7→ ϕ; e Set the type of regionρ to ϕ.

P is a proof thatϕ is a valid replacement.

The language is very similar to the simple region calculus pre-
sented before, except for the following differences:

• The type language is CiC. The kinds such asΩ (the kind of
typesσ) andR (the kind of regionsρ) along with the basic type
constructors ofσ are now defined directly as inductive defini-
tions in CiC.

• The region environmentΘ now contains not only a list of live
regions, but a map from live regions to their typeϕ and sizen.
The typeϕ is a CiC function that maps the index of a location
and itsintended typeto the actual type of that location.

• Pointer types have the formτ at ρ.n rather than justσ at ρ,
wheren is the offset inside the region. Such a pointer points
to an object ofintended typeτ but whose actual type can only
be discovered by an indirection through the region’s type: the
target’s type isϕ n τ whereΘ(ρ) = (ϕ, n).

• Just as before, a valueν.n has type(Ψ(ν.n)) at ν.n butΨ(ν.n)
is anintended typeand can be of any kind rather than onlyΩ.

• The region kindRnow takes a parameterκ specifying the kind
of intended types in this region. Ifρ :R κ, then the region’s type
ϕ will be of kind Nat → κ → Ω and the termτ in τ at ρ.n
will have to have kindκ.

• put takes an additional parameterτ and returns a pointer of
typeτ at ρ.n after checking thatv :ϕ n τ .

• set is now a strong update: it changes the type of the location
to ϕ which has kindκ → Ω. This type needs to be provided

4

(M ; Θ; let x = v in e) =⇒ (M ; Θ; e[v/x])

(M ; Θ; let x = πi(v1, v2) in e) =⇒ (M ; Θ; e[vi/x])

(M ; Θ; ν.n[~ϕ](~v)) where
M(ν.n) = λ[

−→
t :κ]{Θ′}(−−→x :σ).e

=⇒ (M ; Θ; e[~ϕ,~v/~t, ~x
])

(M ; Θ; let x = get ν.n in e) =⇒ (M ; Θ; e[M(ν.n)/x])

(M ; Θ, ν 7→(ϕ, n); freergn ν; e) =⇒ (M\ν; Θ; e)

(M ; Θ; let r = newrgn ϕ in e) =⇒ (M ; Θ, ν 7→ (ϕ, 0); e[ν/r])

(M ; Θ, ν 7→(ϕ, n)
; let x = put[ν, τ] v in e)

=⇒ (M, ν.n 7→ v
; Θ, ν 7→(ϕ, n+1); e[ν.n/x])

(M ; Θ, ν 7→(ϕ′, n′)

; set ν.n
ϕ
:= v; e)

=⇒ (M, ν.n 7→ v
; Θ, ν 7→(upd ϕ′ n ϕ, n′); e)

(M ; Θ, ν 7→(ϕ, n)
; cast[P] ν 7→ ϕ′; e)

=⇒ (M ; Θ, ν 7→(ϕ′, n); e)

Figure 4: Operational semantics of the language.

because there are many valid choices and they are not all equiv-
alent.

• newrgn now takes a parameterϕ which is the initial type of the
region.

• cast is a new operator made necessary by the fact that some of
our types are functions and since function equivalence is unde-
cidable in our type language, we sometimes need to manually
help the type-checker.

We have decided to manipulate whole objects rather than words
and not to split allocation from initialization. It is easy to change
the language to providealloc, load, andstore instead ofput, get,
andset, but the typing rules become more verbose and so does the
code in the examples.

3.2 Semantics
Figure 4 shows the typed operational semantics. The machine

state is defined as the 3-tuple(M ; Θ; e). The region environment
Θ is only marginally used input where we need to find the next
free location in the region. After type erasure,Θ would only keep
track of the size of each region. The rules use the auxiliary type
functionupd which takes a functionϕ taking an argument of type
Nat and returns a function equal to it, except at pointn where it
now returnsϕ′ instead:

upd ϕ n ϕ′ = λi.if (i = n) (ϕ′) (ϕ i)

Worth noting in the reduction rules is thatcast is indeed a no-op
which does not affect anything other than types. Also the typed
region environment after a function call isΘ rather thanΘ′: the
two should be equivalent ande has been type-checked usingΘ′,
but the use ofΘ makes it more obvious that the operation is just a
jump.

The formation rules for environments are given in Fig. 5 together
with the definition of a well-formed machine state` (M ; Θ; e).The
judgment∆ `CiC ϕ : κ used in those rules, taken directly from
CiC and not shown here, states thatϕ has kindκ in environment∆.
The judgment̀ ∆ is also taken directly from CiC. The judgment
` Ψ checks that each intended type has a kind consistent with its
region. The judgment∆ ` Γ checks that each variable’s type has
kindΩ. The judgment∆ ` Θ checks that the type of each region is
consistent with its kind and that each region has only one binding in

` Ψ memory typeΨ is well-formed
` ∆ type environment∆ is well-formed
∆ ` Θ region type envΘ is well-formed in context∆
∆ ` Γ value envΓ is well-formed in context∆
Ψ; Θ ` M memoryM is well formed inΨ andΘ
` (M ; Θ; e) machine state is well-formed

• `CiC ϕij : κ • `CiC νi : R κ

` ν0.0 7→ ϕ00, . . . , νm.n 7→ ϕmn ` •

` ∆ ∆ `CiC κ : s

` ∆, t :κ

∆ ` •

∆ ` Θ ρ 6∈ Dom(Θ) ∆ `CiC ρ : R κ
∆ `CiC ϕ : Nat → κ → Ω ∆ `CiC n : Nat

∆ ` Θ, ρ 7→(ϕ, n)

∆ `CiC σi : Ω

∆ ` x0 :σ0, . . . , xn :σn

∀i :0..n . ∀j :Nat . if j ≥ ni thenνi.j 6∈ Dom(Ψ)
elseΨ; •; Θ; • ` M(νi.j) : ϕi j (Ψ(νi.j))

Ψ;Θ = ν0 7→ (ϕ0, n0), . . . , νn 7→ (ϕn, nn) ` M

Ψ; Θ ` M • ` Θ ` Ψ Ψ; •; Θ; • ` e

` (M ; Θ; e)

Figure 5: Environment formation rules.

Θ (a linearity constraint). This is important because in order to be
able to free regionρ or to change its type, we need to be sure that the
same physical region is not referred to somewhere else under some
other name. The judgmentΨ;Θ ` M is the one that expresses the
invariant that needs to hold so that intended types, actual types and
region types are all consistent with one another. It checks that the
actual type of each object inM indeed matches the result of ap-
plying to its intended type (stored inΨ) the corresponding region’s
type (stored inΘ). In a simple region system, the well-formedness
of M is sometimes written as̀ M : Ψ so in our case the judgment
Ψ;Θ ` M could be thought of as̀ M : Θ(Ψ) whereΘ is taken as
a function that interprets the intended memory typeΨ and returns
an actual memory type. An important detail about the rule is that it
verifies thatΨ has no binding for not-yet-allocated locations. This
is needed because the intended type is immutable, soΨ can only
be extended but none of its existing bindings can be modified.

Figure 6 shows the formation rules for types and terms. The
equivalence ruleΘ / Θ′ is used to formalize the fact thatΘ is not
ordered. In the rule for pointer valuesν.n, dangling pointers to
dead regions can have any type (because the rule forget prevents
dereferencing them), but pointers past the allocation line of a region
are disallowed by checking that they have a binding inΨ. This way,
pointers are live iff their region is live. In the rule for functions, the
function is forced to be fully closed by typing its body in an envi-
ronment that does not includeΓ or∆′. Note that typed regions only
have an impact on the typing of references and function values: any
other standard types such as sum types or existential packages can
be added without any difficulty.

The rule for the trivial operation whereop is v is not shown but
just delegates to the rule for values. The auxiliary rule forv 7→ σ

5

∆ ` ~σ :
−→
t :κ actual type arguments~σ match formal arguments

−→
t :κ

Θ ∼ Θ′ Θ is equivalent toΘ′

∆ `CiC σ : κ ∆ ` ~σ :
−→
t :κ[σ/t]

∆ ` σ, ~σ : t :κ,
−→
t :κ Θ ∼ Θ

Θ ∼ Θ′

Θ, ρ 7→(ϕ, n) ∼ Θ′, ρ 7→(ϕ, n)

Ψ;∆;Θ; Γ ` v : σ valuev has typeσ
Ψ;∆;Θ; Γ ` v 7→ σ valuev is a pointer to an object of typeσ
Ψ;∆;Θ; Γ ` op : σ operationop returns a value of typeσ

Ψ;∆;Θ; Γ ` n : int

Ψ; ∆;Θ; Γ ` vi : σi

Ψ;∆;Θ; Γ ` (v1, v2) : σ1 × σ2 Ψ;∆;Θ; Γ ` x : Γ(x)

ν ∈ Dom(Θ) ⇒ τ = Ψ(ν.n)

Ψ;∆; Θ; Γ ` ν.n : τ at ν.n

` ∆ ∆ ` Θ ∆ ` −−→x :σ Ψ;∆;Θ;−−→x :σ ` e

Ψ;∆′; Θ′; Γ ` λ[∆]{Θ}(−−→x :σ).e : ∀[∆]{Θ}(~σ) → 0

Θ(ρ) = (ϕ, m)
Ψ; ∆;Θ; Γ ` v : τ at ρ.n

Ψ;∆; Θ; Γ ` v 7→ ϕ n τ

Ψ;∆;Θ; Γ ` v 7→ σ

Ψ;∆; Θ; Γ ` get v : σ

Ψ;∆; Θ; Γ ` v : σ1 × σ2

Ψ;∆;Θ; Γ ` πiv : σi

Ψ;∆;Θ; Γ ` e expressione is well-formed

Ψ;∆;Θ; Γ ` op : σ Ψ;∆; Θ; Γ, x :σ ` e

Ψ;∆;Θ; Γ ` let x = op in e

Ψ; ∆; •; Γ ` v : int
Ψ;∆; •; Γ ` halt v

∆ `CiC ρ : R κ ∆ `CiC τ : κ Ψ;∆;Θ; Γ ` v : ϕ n τ
Ψ;∆;Θ, ρ 7→(ϕ, n+1); Γ, x :τ at ρ.n ` e

Ψ;∆;Θ, ρ 7→(ϕ, n); Γ ` let x = put[ρ, τ] v in e

Ψ;∆;Θ; Γ ` v 7→ ∀[−→t :κ]{Θ′}(~σ) → 0

∆ ` ~ϕ :
−→
t :κ Θ ∼ Θ′[~ϕ/~t

] Ψ;∆;Θ; Γ ` vi : σi[
~ϕ/~t

]

Ψ;∆; Θ; Γ ` v[~ϕ](~v)

Ψ;∆;Θ; Γ ` e

Ψ;∆;Θ, ρ 7→(ϕ, n); Γ ` freergn ρ; e

Ψ;∆;Θ, ρ 7→(ϕ, n); Γ ` v : τ at ρ.m
Ψ;∆;Θ, ρ 7→(ϕ, n); Γ ` v′ : ϕ′ τ
Ψ;∆; Θ, ρ 7→(upd ϕ m ϕ′, n); Γ ` e

∆ `CiC ρ : R κ ∆ `CiC ϕ′ : κ → Ω

Ψ;∆; Θ, ρ 7→(ϕ, n); Γ ` set v
ϕ′
:= v′; e

∆ `CiC ϕ : Nat → κ → Ω
Ψ; ∆, r :R κ; Θ, r 7→(ϕ, 0); Γ ` e

Ψ;∆; Θ; Γ ` let r = newrgn ϕ in e

∆ `CiC P : Πi :0..n−1. Πt :κ. (ϕ i t) = (ϕ′ i t)
Ψ;∆;Θ, ρ 7→(ϕ′, n); Γ ` e ∆ `CiC ρ : R κ

Ψ;∆;Θ, ρ 7→(ϕ, n); Γ ` cast[P] ρ 7→ ϕ′; e

Figure 6: Static semantics of the language.

6

is used byget and by function calls to make sure that the pointer
is not dangling and also to find out the actual type at that location.
The rule forput checks that the region is live, with appropriate
type, and updates the size. The rule for function calls checks that
the arguments have the proper kind and type and also that the cur-
rent region environment is equivalent to the one expected by the
function. The rule forcast checks that the region is live and that
P indeed proves that the new typeσ′ is equivalent to the old type
for all the live locations and for all possible intended types. It does
not pay attention to which intended types are actually used at those
locations because those intended types are, in general, not known
yet when type-checking. The rule forfreergn checks that the region
is live before and that the rest of the code does not use the region
any more. The rule forset does not use the auxiliary rulev 7→ σ
because it does not care about the actual type before assignment,
since it will overwrite the location. Instead it just checks that the
pointer is live and that the new value matches the new type.

3.3 Properties of the language
We state here a few important properties of the language. The

proofs can be found in [13]. Since our type language is CiC, we
know it is strongly normalizing and confluent.

Lemma 3.1 (Type Preservation)
If ` (M ; Θ; e) and(M ; Θ; e) =⇒ (M ′; Θ′; e′), then
` (M ′; Θ′; e′).

Lemma 3.2 (Progress)
If ` (M ; Θ; e), eithere = halt v or (M ; Θ; e) =⇒ (M ′; Θ′; e′).

Lemma 3.3 (Complete Collection)
If ` (M ; Θ; e) and∀ν.n∈Dom(M) . ν∈Dom(Θ) and
(M ; Θ; e) =⇒ (M ′; Θ′; e′), then
∀ν.n∈Dom(M ′) . ν ∈ Dom(Θ′). In particular, if e′ = halt v
thenM ′ = •.

PROOF. The proof follows trivially from inspection of the re-
duction rules. The corollary forhalt v uses additionally the preser-
vation lemma to verify that̀ (M ′; Θ′; e′).

4. Examples
To get an idea of how the language is used, here are some exam-

ples of how you can simulate the behavior of other systems in this
language.

4.1 Simple regions
Given the differences between the simple region system pre-

sented before and the typed region system, here is what we have
to do to translate a program written in the simple region system:

• Add region types and region sizes toΘ. Assuming that in-
tended types are always the same as actual types, the regions’s
types will always beλi.λt.t. On the other hand their size will
keep changing, so it needs to be passed around as extra type
argument of kindNat.

• Add the kind of intended types to region kindsR. Since the
intended types are the same as actual types, the region kind is
R Ω.

• Annotateput with the type of the allocated object.

• Tell set that the region’s type is left unchanged. At first it seems
like usingλt.t for the type annotationϕ is enough. But then the
type of the region afterset is:

λi.if (i = n) (λt.t) ((λi.λt.t) i)
⇓ which reduces to⇓

λi.if (i = n) (λt.t) (λt.t)

wheren is the location referenced by the pointer. But this is
not equal toλi.λt.t, so we need to add acast to reshape the
region’s type to what we need:

cast[P] ρ 7→ λi.λt.t; e

And P needs to show equivalence between the two types:

P : Πi :0..n−1. Πt :κ. ((λi.if (i = n) (λt.t) (λt.t)) i t) = ((λi.λt.t) i t)
⇓

P : Πi :0..n−1. Πt :κ. ((if (i = n) (λt.t) (λt.t)) t) = t
⇓

P = λi.λt.< λb.((if b (λt.t) (λt.t)) t) = t >
if (i = n) (refl equal t) (refl equal t)

Where “refl equal ϕ” is the proof ofϕ = ϕ and where “<f>
if b ϕ1 ϕ2” is a proof off b if ϕ1 is a proof off true andϕ2 is
a proof off false.

• Pointer typesσ at ρ need to be turned intoσ at ρ.n, but since
we do not known we have to hide it with an existential pack-
age:∃n.σ at ρ.n.

For convenience, let’s define the two type functionsid = λt.t
andidr = λi.id. The example from the introduction becomes:

mktree[r, n, t]{r 7→(idr, n)}(x : t, k : ∀[r, n, t]{r 7→(idr, n)}((tree t) at r.(n−1)) → 0)
= let y = put[r, tree t] (Node x) in

set y
id
:= Branch y y; cast[P] r 7→ idr; k[r, n+1, t](y)

Here we avoided using existential packages by making the actual
address of the new tree passed to the continuationk explicit. To
make writing such code easier, one would define a newset that
does a traditional weak update by coupling theset and thecast
above. The burden of keeping track of the allocation limitn is not
as bad as it seems since each function is actually a basic block with
a fixed number of allocations in it.

4.2 Stacks
We can use a typed region to represent a contiguous stack of

objects. More specifically, a stack is a regionS of kindR Unit. The
locations in a stack have no intended type, so we use the dummy
Unit kind which has a single element denoted(). A function using
such a stack will have the following shape:

λ[S :R Unit, st :ST, sp, ss :Nat, . . .]
{S 7→(st, ss), . . . }

sp : () at S.sp
k :∀[st’ :ST, . . .]

{S 7→(λn.if (n < sp)(st n)(st’ n), ss), . . .}
(. . .) → 0

. . .

 .

. . .

The kind of the stack type is defined asST = Nat → Unit →
Ω where the second argument, of kindUnit, is unused. The type
function st, maps the locations in the stack to their current type.
The top of the stack is kept insp, both as a value and a type. The
size of the stack is kept in the type variabless. The type of the
continuationk specifies that the stackS when we return tok has

7

the same type as before for all elements belowsp, while the rest
can be changed at will and described by the type functionst’.

When pushing a new element on the stack, we somehow need to
find the address of the next consecutive element in regionS. Let us
extend the language with such a facility, calledifnext v (x, t . e1) (e2)
that simply takes a pointerv, checks whether it is the last element
in the region, if so continues withe2, otherwise continues withe1

with x bound to a pointer to the next consecutive element in the
region andt bound to its intended type. Now pushing an object on
the stack is done by:

set sp
λ .σ
:= v; ifnext sp (sp, . e) (halt 0)

wheree is the rest of the computation,indicates that we do not
care about this argument (it will always be() anyway),σ is the
type ofv, and where we could do something more clever in case of
stack overflow.

Popping elements is simply done implicitly by reverting to a pre-
viously saved value ofsp.

Before returning to the continuationk we need to find an appro-
priate st’, and show that the current type ofS is indeed the one
expected by the continuation. This proof will be passed to acast
operation just before jumping tok. The first part is trivial since the
current stack type is exactly what we need to pass asst’. The second
part requires proving thatλn.if (n < sp)(st n)(st’ n) is equivalent
to st’. The type ofS at that point will have the following shape:

st’ = λn.if (n = sp) (λ .σ1)
(if (n = sp+1) (λ .σ2)

(if . . . (st n)))

The proof mainly entails showing thatst andst’ (i.e. the old and
the new stack types) are equal w.r.t. locations belowsp, which is
easy to show since pushing only modifies locations abovesp.

4.3 Adoption and focus
The Vault language [6] uses a mix of alias types and traditional

types to provide a powerful user-level language used to write device
drivers, where the type system is used among other things to check
the correct ordering of operations such asopen, write, close. They
do that by allowing some types to betracked, meaning that they
behave linearly like alias types. Operations on objects of tracked
types can update their type, so the type system can keep track of
their state.

In a subsequent paper [7], the authors extended the language with
adoptionwhich allows to “untrack” a tracked object so it behaves
intuitionistically andfocuswhich does the reverse. This allows
them to use intuitionistic references while at the same time being
able to temporarily strengthen them to a linear reference, using the
focus construct:

let x = focus e1 in e2

The expressione1 has an intuitionistic type, but while insidee2,
the variablex to which it is bound has a linear type and can thus be
modified using strong update. To guarantee soundness, they impose
the restriction that even though strong update can modify the type
of the object referred to byx, its type should be the same at the
end of e2 as it was at its beginning, so the type modification is
only temporary. Also any other object in the same region ase1 is
temporarily unavailable.

We can encode something similar. Let’s assume we have a region
ρ like the ones used in the simple regions example above. Its type
is idr, i.e. it does not depend on the location of a given object
just as is the case in intuitionistic systems. So references will hide

their location using an existential wrapper:∃n.σ at ρ.n. A code
equivalent to thefocus construct will then look like:

let 〈n, x〉 = open e1 in e2; cast[P] ρ 7→ idr ; ...

Wheree1 has type∃n.σ at ρ.n andx has thus typeσ at ρ.n. Within
e2, strong update can be used at will onx, but before reachingcast
the actual type at locationn needs to be reset toσ. Remember
that focus had the additional constraint that other references toρ
could temporarily not be used. In our case, we can still use them,
although we will not be able to do anything useful with them unless
we know their aliasing relationship withx.

4.4 Garbage collection
While traditional type systems can be used to implement a type-

preserving GC [14], those GCs suffer from significant restrictions.
In order to implement a realistic type-preserving GC, the type sys-
tem needs to be able to handle operations such as scanning a region
of memory, tracking various complex properties, or, as argued ear-
lier, strong update in the presence of unknown aliasing patterns.

4.4.1 Scanning regions
Creating a new reference out of a reference to an adjacent object

in order to scan a region of memory can be done safely in region
systems since liveness is a property of regions rather than objects.
But in traditional region systems, the new reference cannot be used
because nothing is known about its type. It would typically have
type∃t.t at ρ.

In a typed region system, the new reference will have a type
apparently just as useless:∃t.t at ρ.n. But the difference is that
we know that the object atρ.n will not just have any typet but
instead will have a type of the formϕ n t. It is then possible for
the programmer to ensure thatϕ gives enough information to carry
on the scan.

4.4.2 Generational GC
To see how the strong update is used, let us sketch the types of

a generational GC. Let us assume that the source language whose
heap we want to collect only has integers, immutable pairs, and
mutable ref-cells. Let us take a very simple case where we have
3 regions: all the ref-cells go into regionR, whereas the pairs are
divided between the nurseryY and the old spaceO. Since all data
is immutable except for ref-cells, we can take theR regions as a
conservative approximation of the remembered-set.

We will use the source-level types for the intended types:

τ ::= int | τ × τ | ref τ

To translate those source-level types into their low-level represen-
tation (their actual type), we create a type functionM which takes
the three regions and the source type as parameters:

M r o y (int) ⇒ int
M r o y (ref τ) ⇒ ∃n :Nat.τ at r.n
M r o y (τ1 × τ2) ⇒ ∃x∈{o, y}.∃n :Nat.(τ1, τ2) at x.n

The translation of a ref-cell is an intuitionistic reference to region
R, as sen by the use of an existential package to hide the actual
location insideR. For the translation of a pair, we assume that
the language is also extended with bounded-existential packages
to represent the fact that the reference can be to either regionO
or regionY . The detailed description of such an extension can be

8

found in [13]. The regions’s types while the mutator is running are:

Y 7→ λn.λ(t1, t2).(M R O Y t1)× (M R O Y t2)
O 7→ λn.λ(t1, t2).(M R O O t1)× (M R O O t2)
R 7→ λn.λt.M R O Y t

Note how the type ofO callsM with both parameterso andy set
to O such that those objects cannot refer toY , thus enforcing the
generation barrier. When the collection takes place, the GC, start-
ing from the roots, copies objects fromY to O. Once this is done,
it needs to go through the remembered-setR and redirect any ref-
erence still pointing toY . To make it possible to freeY , the type
of R should end up as:

R 7→ λn.λt.M R O O t

so as to reflect the fact that no object inY is reachable from ref-
cells in R. The redirection is done by scanningR and updating
each ref-cell at a time. The type ofR needs to be kept uptodate as
this proceeds, of course, recording the progress of the boundarym
between the ref-cells already redirected and the ones left to process:

R 7→ λn.λt.let r = if (m > n) (O) (Y) in M R O r t

Note how the type ofR needs to be updated with each redirection
step, requiring a strong update, even though no static information
about which other data inR or O might point to the same location
we are updating.

5. Related work
The calculus of capabilities [5] was the first calculus to provide

safe explicit memory deallocation while allowing dangling point-
ers. The linear handling of our regions was strongly influenced by
that work.

In the work on TAL [15], the authors showed a simple way to
handle the problem of separating allocation from object initializa-
tion, without resorting to any form of linearity.

Alias types [19, 22] was also a major source of inspiration for
our system. It’s a type system designed specifically to handle low-
level code. In that work, strong update is the only form of update
available. Separating object initialization from allocation is very
easy, as is explicit deallocation and memory reuse.

The Vault language [6] took the work on alias types and both
extended it and gave it a surface syntax (so as to enable the pro-
grammer to give that needed aliasing information). In the first
paper, they mostly showed how to integrate classical intuitionis-
tic references with alias-types-style statically tracked references.
They also showed that tracking references to region objects allows
their system to subsume a region type system. The main difference
compared to our work is that you have to choose once and for all
whether a reference should be intuitionistic or linear (i.e.tracked).

In a subsequent paper [7] they addressed that limitation by in-
troducing the operatorsadoption, which allows the user to make a
linear reference intuitionistic, andfocus, which does the converse.
This significantly increases the expressiveness of their user-level
language. Sadly, these constructs are not applicable to our GC
problem for two reasons: First,adoptionis too high-level for us and
seems difficult to adapt to a low-level language. Second, although
focusdoes allow some of what we need (such as strong update in
the presence of arbitrary aliasing), it requires the type change to be
transient, limited to the scope of the construct.

Wang and Appel [23] built a tracing garbage collector on top of
a region-based calculus, thus providing both type safety and com-
pletely automatic memory management.

Monnier et al. [14] extended Wang and Appel’s work by using
intensional type analysis [9] to provide a genericcopyfunction and
to use existential packages to encode closures. The also presented
a very primitive form of generational collection and a formally
sound, though very ad-hoc, treatment of forwarding pointers. We
build directly on their work.

Vanderwaart and Crary [21] design a type system that enforces
that the programs correctly manipulate the details of the stack lay-
out required by a particular GC which is kept implicit. The system
is designed for a sophisticated GC which uses a static table indexed
by the return address to describe the activation frames, much like
stack-walking implementations of exception handling. The type
system checks among other things that the table provided by the
program is correct and used consistently.

Shao et al. [18] proposed to use CiC as the type calculus of a pro-
gramming language. This allows sophisticated type manipulation
and enables programs to express arbitrary properties of the values
manipulated. We reuse their idea with the same purpose but by
virtue of the rest of the type system we can additionally capture
arbitrary properties of the state.

6. Conclusion
We have presented a novel type system that offers an unusual

flexibility to play with the typing of memory locations. This type
system offers the ability to choose any mix of linear or intuitionistic
typing of references and to change this choice over time to adapt it
to the current needs. It is able to handle strong update of memory
locations even in the presence of unknown aliasing patterns. The
reliance on CiC allows very sophisticated type manipulations.

We have shown how to encode the features of other systems in
this language. We have also developed a prototype implementa-
tion of an extension of this language, using Coq, in which we have
written a type-preserving generational garbage collector that can
handle cycles and that allows the mutator to perform destructive
assignment.

References
[1] A. W. Appel. Foundational proof-carrying code. InAnnual

Symposium on Logic in Computer Science, pages 247–258, June
2001.

[2] H. P. Barendregt. Lambda calculi with types. In S. Abramsky,
D. Gabbay, and T. Maibaum, editors,Handbook of Logic in
Computer Science (volume 2). Oxford Univ. Press, 1991.

[3] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and
structures. InSymposium on Programming Languages Design and
Implementation, pages 296–310, New York, NY, 1990. ACM Press.

[4] T. Coquand and G. P. Huet. The calculus of constructions.
Information and Computation, 76:95–120, 1988.

[5] K. Crary, D. Walker, and G. Morrisett. Typed memory management
in a calculus of capabilities. InSymposium on Principles of
Programming Languages, pages 262–275, San Antonio, TX, Jan.
1999.

[6] R. DeLine and M. F̈ahndrich. Enforcing high-level protocols in
low-level software. InSymposium on Programming Languages
Design and Implementation, May 2001.

[7] M. Fähndrich and R. DeLine. Adoption and focus: Practical linear
types for imperative programming. InSymposium on Programming
Languages Design and Implementation. ACM Press, May 2002.

[8] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A
syntactic approach to foundational proof-carrying code. InAnnual
Symposium on Logic in Computer Science, pages 89–100,
Copenhagen, Denmark, July 2002.

[9] R. Harper and G. Morrisett. Compiling polymorphism using
intensional type analysis. InSymposium on Principles of

9

Programming Languages, pages 130–141, Jan. 1995.
[10] C. A. R. Hoare. An axiomatic basis for computer programming.

Communications of the ACM, 12(10):576–580, Oct. 1969.
[11] W. A. Howard. The formulae-as-types notion of constructions. InTo

H.B.Curry: Essays on Computational Logic, Lambda Calculus and
Formalism. Academic Press, 1980.

[12] G. Huet, C. Paulin-Mohring, et al. The Coq proof assistant reference
manual. Part of the Coq system version 6.3.1, May 2000.

[13] S. Monnier.Principled Compilation and Scavenging. PhD thesis,
Yale University, 2003.

[14] S. Monnier, B. Saha, and Z. Shao. Principled scavenging. In
Symposium on Programming Languages Design and Implementation,
pages 81–91, May 2001.

[15] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to
typed assembly language. InSymposium on Principles of
Programming Languages, pages 85–97, Jan. 1998.

[16] G. C. Necula. Proof-carrying code. InSymposium on Principles of
Programming Languages, Jan. 1997.

[17] C. Paulin-Mohring. Inductive definitions in the system Coq—rules
and properties. In M. Bezem and J. Groote, editors,Proc. TLCA.
LNCS 664, Springer-Verlag, 1993.

[18] Z. Shao, B. Saha, V. Trifonov, and N. Papaspyrou. A type system for
certified binaries. InSymposium on Principles of Programming
Languages, pages 217–232, Jan. 2002.

[19] F. Smith, D. Walker, and G. Morrisett. Alias types. InEuropean
Symposium on Programming, 2000.

[20] M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value
λ-calculus using a stack of regions. InSymposium on Principles of
Programming Languages, pages 188–201, Jan. 1994.

[21] J. C. Vanderwaart and K. Crary. A typed interface for garbage
collection. InTypes in Language Design and Implementation, New
Orleans, LA, Jan. 2003.

[22] D. Walker and G. Morrisett. Alias types for recursive data structures.
In International Workshop on Types in Compilation, Aug. 2000.

[23] D. C. Wang and A. W. Appel. Safe garbage collection = regions +
intensional type analysis. Technical Report TR-609-99, Princeton
University, 1999.

[24] B. Werner.Une Th́eorie des Constructions Inductives. PhD thesis, A
L’Université Paris 7, Paris, France, 1994.

10

