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Abstract An alternative approach would be to use Hoare logic [10] to

Standard tvpe svstems are not sufficiently expressive when a Iiedshow the correctness of the low-level code and then provide a type-
Ype sy Y &xp PPU€0sate interface to it. But it is not clear how those two parts would

to low-level memory-management code. Such code often requ"esinteract' the low-level code might be spread in pieces over a lot of
some form ofStrong updatdi.e. assignments that change the type code aﬁd might need to pro agate comp lex invzfriants to the various
of the affected location) and needs to reason about the relative po- 9 propag P

sition of objects in memory. We present a novel type system which pieces t_hro_ugh the type-safe interfa_ce, as is the case for the code
like alias types, provides a form of strong update, but with the ad- that maintains the remembered-set in the mutator. Furthermore as

vantage that it does not require the aliasing pattern to be staticallyWe start to encode more properties than basic type safety into our

described. It can also provide operations over sequential memorytype systems, the difficulties we are seeing here will start to appear

. . . for more mundane code as well. This tendency can already be seen
locations and allows covariant reference casts, both of which are . 4 y

required to implement a type-preserving stop&copy garbage col- in the VaulthprOJect Wh.'Ch ufsis an agpr?]ach taken fromf alias-types

lector that can properly collect cyclic data-structures. Finally, this to prove other propertles oftheir code than JUSF type S‘.El ety.

type system is able to keep track of almost arbitrary properties of The present WO”? is thus an attempt to provide a m|d_d_|e ground

values and state, giving it a power formerly reserved to Hoare logic. between Hoare logic and traditional type systems. Add!t'on?”y to
As the technology of certifying compilation and proof carrying the above stated goals, we make the following contributions:

code [16, 1, 8] progresses, the need to ensure the safety of the run- ¢ A language that subsumes traditional region calculi as well as
time system increases: if you go through the trouble of writing a  alias-types calculi to simultaneously combine the benefits of
foundational proof of safety of your code, you would rather not traditionalintuitionistic references anlinear references.

trust an unverified conservative garbage collector (GC) with your o e introduce type cast on memory locations and strong update

data. For this reason, it is important to be able to write a type-safe  gperations that work in the absence of any static aliasing infor-
GC, but the state of the art in this matter is still completely im- mation.

practical: it cannot even handle cyclic data-structures. This paper’s

) e Those operations generalize and enhancewtiden operator
main goals are thus:

used in [14] while relying on a much simpler soundness proof.

e We show how to use the calculus of inductive constructions
(CiC) to track properties of state. This extends the work of
Shao et al. [18] where they used CiC as their type language to
track arbitrary properties of values.

e Argue that, in order to type-check a GC that can collect cyclic
data-structures, the type system has to provide a form of as-
signment that can change the type of a location (i.streng
update[3]) even if the set of aliases to this location is unknown.

e Present a type system that provides such a facility. This type Section 1 gives a quick preview of the basic idea developed in
system allows the programmer to choose any mix of linear or this paper. Section 2 introduces the problem of cyclic data-structures
intuitionistic typing of references and to seamlessly change this as well as two type systems on which our work is built. Section 3
choice over time to adapt it to the current needs. describes the new language. Section 4 shows some examples of

what the language can do. We then discuss related work and con-

Traditional type systems are not well-suited to reason about type clude.
safety of low-level memory management such as explicit memory
allocation, initialization, deallocation, or reuse. Existing solutions :
to these problems either have a very limited applicability or rely 1 Overview
on some form ofinearity constraint. Such constraints tend to be The typed regions system presented in this paper is basically a
inconvenient and a lot of work has gone into relaxing them. For hybrid between traditional region systems and alias types systems.
example, the alias-types system [22] is able to cleanly handle sev-In a traditional region system, the type of a pointer completely de-
eral of the points above, even in the presence of arbitrary aliasing, termines the type of the object to which it points. In alias types
as long as the aliases can be statically tracked by the type system. systems on the other hand, the type of the pointer does not carry

The reason why it is challenging to show type safety of low-level any information about the type of the object to which it points. In-
memory management is that for this kind of code, we end up having stead, the type of the pointer only indicates the location to which
to prove some non-trivial properties about the code just to show its it points, and a separate environment is used to look up the type of
type safety. For example, type safety of a generational GC dependsthat location. Typed regions combines those two such that the type
on the correct processing of the remembered-set (a data-structuref a location is partly determined by the type of the pointers and
holding the set of pointers from the old generation to the new). partly by a separate environment.
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Figure 1: Syntax of a region-based language.

The key idea is to introduce the concept of theended typef To see this, let us look at a classic example, a datatype for doubly-
a memory location, which stays constant throughout the lifetime linked lists:
of that location and thus corresponds to a traditional (intuitionis-
tic) type, supplemented with a non-constant map that translates the
intended type of each location to @stual type The SML type system allows us to declare this datatype and write

The intended type of a location is typically a high-level view of functions to manipulate it, but does not offer us any way to create
the type of objects that it can hold, that abstracts away time-varying such an object because there is no base case to start from. But even
details such as the fact that some fields might be temporarily unini- if we have a base case, the type system can get in the way. Let us
tialized, or that the object is currently replaced by a forwarding take another example:

datatype « dlist = Node of « * « dlist ref x o dlist ref

poll_netssl" say we have a pointer of typeat p.n: * that means that datatype « tree = Node of « | Branch of « tree ref * « tree ref

it points to an object of intended typeat locationn in region p. This time, we can construct such trees since we do have a base
Each region has a typg. This type is a function that takes two  case, but if we want to construct an “infinite” tree with no actual
arguments, the locatiom of an object and its intended type and Node in it, we still first need to build &Node. More specifically, in
returns the actual type of the objectn 7. order to create a cyclic data-structure, we always need a base case

Because the intended types are reflected in the types of pointers}o start from, even if the data-structure we want to get in the end
they are kept immutable, since changing the intended type of a lo- does not contain any node of this base case any more. But in the
cation would require updating the type of all the pointers to that above example, we can only build a base case if we have an object
location. On the other hand, assignments can change the actuapf the proper typex. Which means that a generic routine such as
type of a location by modifying the region’s type an unpickler or a copying GC needs to be able to construct from

If ¢ is a simple identity function that ignores then intended scratch the base case of any type that could be involved in a cyclic
types and actual types are the same and we have basically a tragidata-structure. In the tree example above, that means creating a

tional region system. On the other handyifgnoresr and only Node of o for anya. Clearly this is not possible.
usesn to determine the actual type of a location, we have a system OCaml provides special support to build cyclic data-structures,
reminiscent of alias types. such as thellist example above, withal rec n = Node(0,n, n).

The difference in power between typed regions and alias types This helps for specific code, but it only works for pre-determined
is similar to the difference between destructive update and a sim- €ycles, whereas a copying GC simply does not even know when it
ulation of it using functional update: when functionally updating IS creating cycles.
an element shared by several data-structures, one needs to rebuild Type systems that can decouple allocation from initialization are
the spine that leads to this element for each data-structure where itthe key to solving this problem, but none of the systems developed
is used, which requires one to keep track of those spines, whereasso far are sufficiently flexible to handle the case of a generic func-
with destructive updates, the operation can be done without any tion such asmpickle. More specifically, none of them know how
knowledge of where this object is currently referenced. to handle the case where the pointer to the allocated obgeetpes

(i.e. is passed around and stored at arbitrary locations) before the
object is initialized: when we allocate a new object, we obviously

2. BaCkg round know its one and only alias, but we cannot fully initialize it yet be-
cause some of the values might not exist yet, and by the time we are
21 Cyclic structures done unpickling the children such that initialization can complete,

there can be any number of aliases and we do not statically know

In the course of writing theopy routine of a garbage collector,  them because the function is generic.
we discovered that although current type systems can handle the |n order to type-check a practical copying GC, we need a new
case where the graph is acyclic, generalizing the code to properlytype system that is able to update the type (e.g. from uninitialized

handle cycles proves difficult. After experimenting with various g initialized) of all the aliases to a particular object even when
algorithms, it became clear that the problem is more fundamental: those aliases are not statically known.

current type systems are unable to type-check some generic code

that can build arbitrary cyclic data-structures. @nerig we mean 2.2 Regions
that it can apply to objects of any type. In other contexts, it could be
called polytypic or intentionally polymorphic The most obvious
examples argccopy andunpickle.

Region-based type systems [20, 5] are the most practical systems
offering type-safe explicit memory management. They provide a
solution to the problem of safe deallocation, with a minimum of
1By convention, type-level expressions will use the meta-variable @dded constraints. Even though they do not offer any help when

p for regions, for intended typesy for actual types, ang for trying to type-check low-level code such as object initialization,
other kinds of types such as region types. their practicality makes them very attractive as a starting point. The
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Figure 2: Syntax of an alias-types language.

idea behind region calculi is to only provide bulk deallocation of a object. Instead, the type of a pointer is just the location it is pointing
whole region (group of objects) at a time. This way the type system to, so it does not need to change when the location’s type or live-
only needs to keep track of regions rather than individual objects: ness changes. While it provides a lot of power when dealing with
the type of every pointer is simply annotated with the region that it low-level code, it relies on an amount of static information which is

references. not always available and definitely not available in our copying GC:
Figure 1 shows an example of such a language]p] v allocates if we had this information, we could also statically decide when to

v in regionp; get v dereferences and returns the object it points ~ deallocate, so we would not need a GC in the first place.

to; newrgn creates a new regioffiteergn deallocates itset v1 := Figure 2 shows the syntax of a very simple alias-types language.

v placesv: at the location to which; points;v.n is a pointer to It can be thought of as a region-based language where the pointers

then'™ object created byut in regiony and has type at v if the can only point to regions rather than to objects inside them, where

object referenced has type A[A]{©}(T).e is a function of type regions have been turned into tuples, and where objects inside re-

V[A{©}(&) — 0; functions are fully closed and use continuation gions are instead just fields of those tuplesit has disappeared

passing style, so they never return (hence-th@® in the type);A since we cannot add fields to a tupdet is replaced byr;; set now

is the list of type parameter® lists the regions that need to be only mutates a field of a tuple; pointersiow just have type. The
live at the time of the call; ané andT lists the types of the value  environment¥ mapping locations to their types has been merged

parameters. A function call[5](¢) passes type§ and valuess into ©. When dereferencing a pointer of typewe thus have to
to functionv. Type variables can have two kinds, depending on check the liveness and the type of the corresponding location by
whether they range over the typesof kind €2 of objects or over looking upp in ©. let (r,z) = new n in e allocates a new object

the types of kind R of regions;¥ does not appear in the terms but  of sizen and returns the location as both a vaiuend a type-. We
is used in the typing rules (not shown here) where it keeps track of could also have done this for regions so as to distinguish between
the type of each memory location, such that for all reference value the region type and the region value passegubat runtime, but
v.n its type is¥(v.n) at v. we conflated the two for simplicity.
Region calculi do not all look like the above, of course. Theydo  Here is a sample code that takes a value of typed creates an
not all use fully closed functions and continuation passing style, for infinite list of this element (a 1-element circular list):
example, but a direct-style presentation would be more complex, as . ) )
is the correct treatment of closure allocation. mklist(e, t}{c}(v : £, k:Vle,t,rl{e,r = (t,7)}(r) = 0)
. . . = let (r,n) = new 2 in
Here is a sample function that creates a cyclic node ofitte - L
. . set mon := x;set min := n; ke, t,r](n)
datatype presented previously, assuming the language has been ex-
tended with support for datatypes: The function expects two argumentandt wheree has kindHeap;
) . it expects also that is live, and it expects two value arguments
T’T::ee[f t}j:[i}(a&.\z;seg[ﬁt]{r}((tree t)atr) —0) of type ¢t and k, the continuation. The type of the continuation
N sety ~_—pBranch k[ 4](y) shows that it expects three type arguments, whegea location;
y= Yy R Uy it expects the heap to still be live and extended with a pair at

The function expects two type argumentandt, it expects the location r holding the infinite list; and it expects a single value
regionr to be live, and expects an argumanof typet (which is argument which is the pointer to that list. Sineav only knows
only used temporarily to create the dumiNgde) and a continua- about the size of the object, it can only do allocation and the type
tion argument. The (omitted) kind of- is R and the kind of is 2. at locationr is originally set to(int, int) and is then incrementally

Theput operation allocates memory and temporarily puts a dummy updated by eactet operation td(, int) and then(t, r).
Node into it, while theset operation creates the actual cycle. The The ability to update a location’s type is the key power of alias-
continuationk also expects two typesandt, it also expects region types. But for that it relies crucially on the fact that the type system
r to be live and expects a single value argument which is a pointer keeps track of pointer values. In particular, the types need to stati-
to a tree in regiorr. If k's type had{} in place of{r}, it would cally but precisely describe the shape of the heap. Witness the fact
force us to deallocate the regienbefore calling it and it would in the above example that the type of the circular list is notljust
maken into a dangling pointer, which is allowed because liveness but instead explicitly describes a 1-element cycle and thus disal-
of the region is only needed and checked when dereferencing with lows any other shape. The type language of [22] is of course much
get. richer than what we show here, providing a lot more flexibility in
. the kind of heap shapes you can describe.

2.3 Alias types . . .

The alias-types system [19, 22] was developed precisely to han-2'4 Calculus of inductive constructions

dle low-level code such as object initialization, memory reuse, and  The calculus of inductive constructions (CiC) [17] that we use
safe deallocation at the object level. To that end, the type of pointersas our type language is an extension of the calculus of construc-
is changed to carry no information about the type of the referenced tions (CC) [4], which is a higher-order typedcalculus. Addi-
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Figure 3: Syntax of the language.

tionally to being a powerful programming language, CC can en- of a region is a function that maps an object’s location and its in-
code Church’s higher-order predicate logic via the Curry-Howard tended type to its actual type.

isomorphism [11]. Understanding the details of this language is

not necessary for this paper, so we will only give a brief overview, 3.1 The language

starting with its syntax (as a pure type system [2]): The syntax of our language is shown in Fig. 3. The language uses
continuation passing style and fully closed functioh, ¥, T', A, ©

are environments used in the typing rules and operational seman-
tics. Valuesv can be integers, pairéuy, v2) : o1 X 02), references

(sort) s ::= Kind | Kscm | Ext
(ptm) p =5 |z [ Az:p. 0| p @ | TTzip.

| Ind(z:0){F} | Ctor (i, ¢) | Elim[p](0){F} (v.n : 7 at v.n), and functions. The terms do the following:

x is a variabley; ¢ is a function applicationdz : ¢1. 2 is a halt v halt the machine, returningas the result.
function with argument: of type p1 and bodyyps; Iz : 1. @2 is T selectit® from tuplew.
the type of a function taking an argument of typeand returning |3 (7) make a tail-call to function.
a value of typeps. This is called a dependent product type and newrgn ¢ allocate a new region of type.
subsumes both the usual function typge — 2 and the universal freergn p; e free the regiom.
qua_ntifieer 1p1.2. _When the bound variabledoes not occur in put[p, 7] v allocate object of intended typer in regionp.
(2, it can be abbreviateg) — ¢o. get v fetch the object pointed to by

The formsind, Ctor, andElim, allow to resp. define, construct,
and analyse inductive definitions, which are variants of ML datatypes
and can be used to define integers and lists, for example. We will
skip the details since in the remainder of this paper, we will use a
more familiar ML-style notations. We will also sometimes abuse
the BNF notation to informally define an inductive definition. We
will, however, retain thdI notation, which can generally be read
as a “for all” quantifier.

CiC has been shown to be strongly normalizing [24], hence the e The type language is CiC. The kinds such(agthe kind of
corresponding logic is consistent. It is supported by the Coq proof typeso) andR (the kind of regiong) along with the basic type
assistant [12], which we used to experiment with a prototype of the constructors of are now defined directly as inductive defini-
system presented in this paper. tions in CiC.

e The region environmer® now contains not only a list of live
. regions, but a map from live regions to their typand sizen.

3. Typed regions The typey is a CiC function that maps the index of a location
and itsintended typeo the actual type of that location.

e Pointer types have the form at p.n rather than just at p,
wheren is the offset inside the region. Such a pointer points
to an object ointended type- but whose actual type can only
be discovered by an indirection through the region’s type: the
target's type isp n T where©(p) = (¢, n).

et vy 1= vose update location; with valuewvs.
 is the new type of the location.
cast[P] p — ¢; e Set the type of regiop to .
P is a proof thatp is a valid replacement.

The language is very similar to the simple region calculus pre-
sented before, except for the following differences:

Our new system of typed regions can be thought of as a hy-
brid between alias-types and the calculus of capabilities [5] sup-
plemented with the calculus of inductive constructions (CiC), sim-
ilarly to A [18]. Where alias-types rely onlaear map of live
locations’s types and the calculus of capabilities relies on a linear
set of live regions, we rely on a linear map of regions’s types.

In a typical region calculus, the type of the object reachable from ® Justas before, a valuen has type(¥ (v.n)) at v.n but¥(v.n)

a pointer (its target) is entirely given by the type of the pointer. In is anintended typand can be of any kind rather than ofily
contrast, in the alias-types system, the type of the pointer does not ® The region kinck now takes a parameterspecifying the kind
provide any direct information about the type of the target; instead, ~ Of intended types in this region. 4. R «, then the region’s type
the target’s type is kept in a linearly managgpe mapindexed ¢ Will be of kind Nat — x — € and the termr in 7 at p.n

by the pointer’s type, which is the singleton type holding the ob- will have to have kind.

ject's location. Our new type system mixes the two, such that the e put takes an additional parameterand returns a pointer of
pointer's type holds both the location and some information (called ~ typer at p.n after checking that:  n 7.

theintended typpabout the object to which it points, while the re- e set is now a strong update: it changes the type of the location
maining information is kept in a map of regions’s types. The type to ¢ which has kindk — . This type needs to be provided
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region.
e cast is a new operator made necessary by the fact that some of U;0FM  eF©O FU Uie 00t e
our types are functions and since function equivalence is unde- F (M;©;e)

cidable in our type language, we sometimes need to manually
help the type-checker.

_ ) _ Figure 5: Environment formation rules.
We have decided to manipulate whole objects rather than words

and not to split allocation from initialization. It is easy to change
the language to provid&loc, load, andstore instead ofput, get,
andset, but the typing rules become more verbose and so does the© (a linearity constraint). This is important because in order to be

code in the examples. able to free regiop or to change its type, we need to be sure that the
. same physical region is not referred to somewhere else under some
3.2 Semantics other name. The judgmenit; © - M is the one that expresses the

invariant that needs to hold so that intended types, actual types and

region types are all consistent with one another. It checks that the

actual type of each object it/ indeed matches the result of ap-

plying to its intended type (stored ih) the corresponding region’s

type (stored ir®). In a simple region system, the well-formedness

of M is sometimes written as M : ¥ so in our case the judgment

U; © - M could be thought of as M : ©(¥) where® is taken as

a function that interprets the intended memory tyipand returns

an actual memory type. An important detail about the rule is that it
upd o n @' = Mi.if (i =n) (¢') (¢ 1) verifies thatl has no binding for not-yet-allocated locations. This

is needed because the intended type is immutabl&; san only
Worth noting in the reduction rules is thadst is indeed a no-op be extended but none of its existing bindings can be modified.
which does not affect anything other than types. Also the typed Figure 6 shows the formation rules for types and terms. The

Figure 4 shows the typed operational semantics. The machine
state is defined as the 3-tufl&/; ©; e). The region environment
© is only marginally used iput where we need to find the next
free location in the region. After type erasuéewould only keep
track of the size of each region. The rules use the auxiliary type
function upd which takes a functiorp taking an argument of type
Nat and returns a function equal to it, except at poinvhere it
now returnsy’ instead:

region environment after a function call & rather than®’: the equivalence rul® < ©’ is used to formalize the fact thét is not

two should be equivalent andhas been type-checked usify, ordered. In the rule for pointer valuesn, dangling pointers to

but the use 0B makes it more obvious that the operation is just a dead regions can have any type (because the rulgetoprevents

jump. dereferencing them), but pointers past the allocation line of a region
The formation rules for environments are given in Fig. 5 together are disallowed by checking that they have a binding inThis way,

with the definition of a well-formed machine statg M; ©; e).The pointers are live iff their region is live. In the rule for functions, the

judgmentA F¢ o : k used in those rules, taken directly from  function is forced to be fully closed by typing its body in an envi-

CiC and not shown here, states thatas kinds in environmentA. ronment that does not includeor A’. Note that typed regions only

The judgment- A is also taken directly from CiC. The judgment have animpact on the typing of references and function values: any
F W checks that each intended type has a kind consistent with its other standard types such as sum types or existential packages can
region. The judgmeni + I" checks that each variable’s type has be added without any difficulty.

kind Q. The judgmeniA F © checks that the type of each region is The rule for the trivial operation whek is v is not shown but
consistent with its kind and that each region has only one binding in just delegates to the rule for values. The auxiliary ruledoer o
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0~0 © is equivalent t®’
AFCC ok ARG tr[) On~6
A"J,Eltllﬂ,ﬁi ©~0 @,p»—>(g0,n)~@’,p»—>(<p,n)
U:A;0;TFv:o valuev has typer
A0 Fv—o valuev is a pointer to an object of type
U:A;0;TFop:o operationop returns a value of type
U A;0;T ooy v € Dom(®) = 7 = ¥(v.n)
U:A;0;T'Fn:int U;A;0;T F (v1,v2) : 01 X 02 U, A;0;T () U, A;0;T'Frn:Tatvn
O(p) = (¢, m)
FA AFO AFZzo U;A;0;z0Fke U A;0; v :Tatpn VA0 TFv—o
U; A 04T F AN[A{O}(7:0).e : V[A{O}(F) — 0 A0 T Fv—pnT U;A;0; T Fgetv:o
U:A;0;'Fv:o1 X o2
U:A;0;T - mv: oy
U;A;0;CkHe | expressior is well-formed
U:A;0;TFop:o U:A;0;T,z:0F e U:A;e; T Fw:int
U;A;0;Fletxz =opine U:A;e; '+ haltv
) ) AO- I Nz
AFYC p: Rk AFYC 1k U A0 FvipnT \IJ’_Aj@’PF?TV[t'KH@}(U)_)O -
U;A;0,p—(p,n+1);Tz:Tatpnte AFg:t:k ©~06 [L’D/ﬁ U A0 T - ;e Ui["p/t‘}
U;A;0,p—(p,n); T Fletx = put[p, 7] vine U; A; 0; T F o[g](0)

U;A;0,p—(o,n);TFo:Tatpm
U A0;0,p—=(p,n);DEV 19" 1

U:A;0,p—(upd p m @', n);T ke AFCC o :Nat —» k — Q
U:A;0;T ke AFCC p:Rk AFCC Y k- Q U; A r:RK;0,r—(0,0);T Fe
U A;0,p— (p,n); T F freergn p; e W, A; 0, p (p,n); T b set v :90:/ Ve U:A;0;T k- letr = newrgn pine

AFYC P T:0.n—1. 10tk (@i t) = (o' i t)
U, A;0,p—(¢,n);TFe  AFYCYp:Rk
U A; 0, p—(p,n); T Fcast[P] p — ¢';e

Figure 6: Static semantics of the language.



is used byget and by function calls to make sure that the pointer
is not dangling and also to find out the actual type at that location.
The rule forput checks that the region is live, with appropriate

type, and updates the size. The rule for function calls checks that
the arguments have the proper kind and type and also that the cur-

rent region environment is equivalent to the one expected by the
function. The rule forcast checks that the region is live and that
P indeed proves that the new typéis equivalent to the old type

for all the live locations and for all possible intended types. It does

not pay attention to which intended types are actually used at those

e Tell set that the region’s type is left unchanged. At first it seems
like using\t.t for the type annotatiop is enough. But then the
type of the region afteset is:

Aiif (i = n) (AL.t) (NiAEL) ©)
{ which reduces tol}
Xiif (i = n) (At.t) (At.t)

wheren is the location referenced by the pointer. But this is
not equal to\i.\t.t, SO we need to add @st to reshape the
region’s type to what we need:

locations because those intended types are, in general, not known

yet when type-checking. The rule fireergn checks that the region

is live before and that the rest of the code does not use the region

any more. The rule foset does not use the auxiliary rule— o

because it does not care about the actual type before assignment,

since it will overwrite the location. Instead it just checks that the
pointer is live and that the new value matches the new type.

3.3 Properties of the language

We state here a few important properties of the language. The
proofs can be found in [13]. Since our type language is CiC, we
know it is strongly normalizing and confluent.

Lemma 3.1 (Type Preservation)
If - (M;©;e) and (M; ©;e) = (M';0';¢'), then
F(M';0';¢€).

Lemma 3.2 (Progress)
If = (M; ©;€), eithere = halt v or (M; 0;e) = (M';0’;€’).

Lemma 3.3 (Complete Collection)

If - (M;©;e) andVv.n € Dom(M) . v € Dom(©) and
(M;0;e) = (M';0';¢€'), then

VYv.n€Dom(M') . v € Dom(®"). In particular, if e’ = halt v
thenM’ = e.

PrROOF The proof follows trivially from inspection of the re-

duction rules. The corollary fdralt v uses additionally the preser-
vation lemma to verify that (M';0';¢’). [

4. Examples

cast[P] p — Ai.\t.t;e
And P needs to show equivalence between the two types:

P :10i:0.n—1.1It: k. (Ai.if (2 = n) (Att) (ALt)) i t) = ((AiAL.t) 4
I
P :11i:0.n—1.1¢t: k. ((if (0 =n) (At.t) (MEt)) t) =1t

4
P = NAL< Ab((if b (At.t) (M) £) =t >
if (i =n) (refl_equal t) (refl_equal t)

Where ‘refl_equal ¢” is the proof ofp = ¢ and where < f>

if b1 2" is a proof of f bif ¢1 is a proof off true andyp; is

a proof of f false.

Pointer typesr at p need to be turned inte at p.n, but since
we do not known we have to hide it with an existential pack-
age:3n.o at p.n.

For convenience, let’s define the two type functidgds= A¢.t
andidr = \i.id. The example from the introduction becomes:

mktree[r,n, t|{r— (idr,n)}(z:t, k : V[r, n, t]{r— (idr,n) } ((tree t) at r.(n

= let y = put|[r, tree t] (Node z) in
sety 2 Branch y y; cast[P] r — idr; k[r,n+1,t](y)

Here we avoided using existential packages by making the actual
address of the new tree passed to the continudtierplicit. To
make writing such code easier, one would define a sewthat
does a traditional weak update by coupling tlee and thecast
above. The burden of keeping track of the allocation limis not

as bad as it seems since each function is actually a basic block with
a fixed number of allocations in it.

4.2 Stacks

We can use a typed region to represent a contiguous stack of

To get an idea of how the language is used, here are some examobjects. More specifically, a stack is a regi®of kind R Unit. The

ples of how you can simulate the behavior of other systems in this locations in a stack have no intended type, so we use the dummy
language. Unit kind which has a single element denofgdA function using

such a stack will have the following shape:

A[S:R Unit, st: ST, sp, ss: Nat, .. .|
{S+(st,ss),...}

4.1 Simple regions
Given the differences between the simple region system pre-

sented before and the typed region system, here is what we have sp:() at S.sp
to do to translate a program written in the simple region system: k:V[st’:ST,.. ]
{S+— (An.if (n < sp)(stn)(st’ n),ss),...}
e Add region types and region sizes @ Assuming that in- (...)—0

tended types are always the same as actual types, the regions’s
types will always be\i.At.t. On the other hand their size will
keep changing, so it needs to be passed around as extra typ

argument ,Of kmd_\lat' ) ) ] Q where the second argument, of kiblait, is unused. The type

* Add the kind of intended types to region kin8s Since the  fynction st, maps the locations in the stack to their current type.
intended types are the same as actual types, the region kind istpe top of the stack is kept isp, both as a value and a type. The
RQ. size of the stack is kept in the type variaBlke The type of the

e Annotateput with the type of the allocated object. continuationk specifies that the stack when we return td has

eI'he kind of the stack type is defined 88 = Nat — Unit —



the same type as before for all elements betpwwhile the rest
can be changed at will and described by the type function

their location using an existential wrappétn.o at p.n. A code
equivalent to théocus construct will then look like:

When pushing a new element on the stack, we somehow need to

find the address of the next consecutive element in refjidret us
extend the language with such afacility, cali®éxt v (z,t . e1) (e2)
that simply takes a pointer, checks whether it is the last element
in the region, if so continues wité,, otherwise continues witk,

let (n,x) = open e; in eg; cast[P] p — idr;...

Wheree; has typedn.o at p.n andzx has thus type at p.n. Within
e, strong update can be used at will orbut before reachingast

with 2 bound to a pointer to the next consecutive element in the the actual type at location needs to be reset 1. Remember

region andt bound to its intended type. Now pushing an object on
the stack is done by:

set sp g v;ifnext sp (sp, - . €) (halt 0)

wheree is the rest of the computation,indicates that we do not
care about this argument (it will always ¢ anyway), o is the

type ofv, and where we could do something more clever in case of

stack overflow.

Popping elements is simply done implicitly by reverting to a pre-
viously saved value afp.

Before returning to the continuatidgnhwe need to find an appro-
priate st’, and show that the current type 6fis indeed the one
expected by the continuation. This proof will be passed tasa
operation just before jumping ta The first part is trivial since the
current stack type is exactly what we need to pass’a¥he second
part requires proving thatn.if (n < sp)(st n)(st’ n) is equivalent
to st’. The type ofS at that point will have the following shape:

st” = An.if (n = sp) (A_.o1)
(if (n = sp+1) (A-.02)
(if ...(stn)))
The proof mainly entails showing that andst’ (i.e. the old and

the new stack types) are equal w.r.t. locations bedpywwhich is
easy to show since pushing only modifies locations alpve

4.3 Adoption and focus

The Vault language [6] uses a mix of alias types and traditional

that focus had the additional constraint that other references to
could temporarily not be used. In our case, we can still use them,
although we will not be able to do anything useful with them unless
we know their aliasing relationship with

4.4 Garbage collection

While traditional type systems can be used to implement a type-
preserving GC [14], those GCs suffer from significant restrictions.
In order to implement a realistic type-preserving GC, the type sys-
tem needs to be able to handle operations such as scanning a region
of memory, tracking various complex properties, or, as argued ear-
lier, strong update in the presence of unknown aliasing patterns.

4.4.1 Scanning regions

Creating a new reference out of a reference to an adjacent object
in order to scan a region of memory can be done safely in region
systems since liveness is a property of regions rather than objects.
But in traditional region systems, the new reference cannot be used
because nothing is known about its type. It would typically have
typedt.t at p.

In a typed region system, the new reference will have a type
apparently just as uselesst.t at p.n. But the difference is that
we know that the object ai.n will not just have any type but
instead will have a type of the forma n ¢. It is then possible for
the programmer to ensure thagives enough information to carry
on the scan.

types to provide a powerful user-level language used to write device 4.4.2 Generational GC
drivers, where the type system is used among other things to check

the correct ordering of operations suchoagn, write, close. They
do that by allowing some types to leacked meaning that they
behave linearly like alias types. Operations on objects of tracke

To see how the strong update is used, let us sketch the types of
a generational GC. Let us assume that the source language whose

g heap we want to collect only has integers, immutable pairs, and

types can update their type, so the type system can keep track 01mutable ref-cells. Let us take a very simple case where we have

their state.

In a subsequent paper [7], the authors extended the language wit

adoptionwhich allows to “untrack” a tracked object so it behaves
intuitionistically andfocuswhich does the reverse. This allows

them to use intuitionistic references while at the same time being
able to temporarily strengthen them to a linear reference, using the

focus construct:
let x = focus e1 in es

The expressior; has an intuitionistic type, but while inside,

the variabler to which it is bound has a linear type and can thus be
modified using strong update. To guarantee soundness, they impose 7 o y (int)
the restriction that even though strong update can modify the type

of the object referred to by, its type should be the same at the
end ofe, as it was at its beginning, so the type modification is
only temporary. Also any other object in the same region;as
temporarily unavailable.

3 regions: all the ref-cells go into regid®, whereas the pairs are

hdivided between the nursety and the old spac@. Since all data

Is immutable except for ref-cells, we can take tReegions as a
conservative approximation of the remembered-set.
We will use the source-level types for the intended types:

Tu=int| 7T X7 |ref T

To translate those source-level types into their low-level represen-
tation (their actual type), we create a type functdrwhich takes
the three regions and the source type as parameters:

= int
Mroy(ref7) = 3In:Natratr.n
Mroy(mi X 12) = 3zxe{o,y}.In:Nat.(11, 72) at z.n

The translation of a ref-cell is an intuitionistic reference to region
R, as sen by the use of an existential package to hide the actual

We can encode something similar. Let's assume we have a regionlocation insideR. For the translation of a pair, we assume that
p like the ones used in the simple regions example above. Its typethe language is also extended with bounded-existential packages
is idr, i.e. it does not depend on the location of a given object to represent the fact that the reference can be to either r&gion
just as is the case in intuitionistic systems. So references will hide or regionY. The detailed description of such an extension can be



found in [13]. The regions’s types while the mutator is running are:

Y — /\ﬂ.)\(t1,t2),(MROYt1) X (MROYtQ)
O~ A’I’L.)\(thtz).(M ROO t1) X (M ROO tz)
R—AnX.MROYt

Note how the type 0O calls M with both parameters andy set

to O such that those objects cannot refeiytpthus enforcing the
generation barrier. When the collection takes place, the GC, start-
ing from the roots, copies objects fromto O. Once this is done,

it needs to go through the rememberedRetnd redirect any ref-
erence still pointing td”. To make it possible to fre¥, the type

of R should end up as:

R—AMAMMROOt

so as to reflect the fact that no objectYnis reachable from ref-
cells in R. The redirection is done by scannidgyand updating
each ref-cell at a time. The type &f needs to be kept uptodate as
this proceeds, of course, recording the progress of the boundary
between the ref-cells already redirected and the ones left to process

R—dnXtletr=if (m>n)(O)(Y)inM ROt

Note how the type oRR needs to be updated with each redirection
step, requiring a strong update, even though no static information
about which other data iR or O might point to the same location
we are updating.

5. Related work

The calculus of capabilities [5] was the first calculus to provide
safe explicit memory deallocation while allowing dangling point-
ers. The linear handling of our regions was strongly influenced by
that work.

In the work on TAL [15], the authors showed a simple way to
handle the problem of separating allocation from object initializa-
tion, without resorting to any form of linearity.

Alias types [19, 22] was also a major source of inspiration for
our system. It's a type system designed specifically to handle low-
level code. In that work, strong update is the only form of update
available. Separating object initialization from allocation is very
easy, as is explicit deallocation and memory reuse.

The Vault language [6] took the work on alias types and both

extended it and gave it a surface syntax (so as to enable the pro-

grammer to give that needed aliasing information). In the first
paper, they mostly showed how to integrate classical intuitionis-
tic references with alias-types-style statically tracked references.
They also showed that tracking references to region objects allows

Monnier et al. [14] extended Wang and Appel's work by using
intensional type analysis [9] to provide a genexdpyfunction and
to use existential packages to encode closures. The also presented
a very primitive form of generational collection and a formally
sound, though very ad-hoc, treatment of forwarding pointers. We
build directly on their work.

Vanderwaart and Crary [21] design a type system that enforces
that the programs correctly manipulate the details of the stack lay-
out required by a particular GC which is kept implicit. The system
is designed for a sophisticated GC which uses a static table indexed
by the return address to describe the activation frames, much like
stack-walking implementations of exception handling. The type
system checks among other things that the table provided by the
program is correct and used consistently.

Shao et al. [18] proposed to use CiC as the type calculus of a pro-
gramming language. This allows sophisticated type manipulation
and enables programs to express arbitrary properties of the values
manipulated. We reuse their idea with the same purpose but by
virtue of the rest of the type system we can additionally capture
arbitrary properties of the state.

6. Conclusion

We have presented a novel type system that offers an unusual
flexibility to play with the typing of memory locations. This type
system offers the ability to choose any mix of linear or intuitionistic
typing of references and to change this choice over time to adapt it
to the current needs. It is able to handle strong update of memory
locations even in the presence of unknown aliasing patterns. The
reliance on CiC allows very sophisticated type manipulations.

We have shown how to encode the features of other systems in
this language. We have also developed a prototype implementa-
tion of an extension of this language, using Coq, in which we have
written a type-preserving generational garbage collector that can
handle cycles and that allows the mutator to perform destructive
assignment.
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