Refinement in a Separation Context

Ivana Mijajlovic
Queen Mary, University of London

ivanam@adcs.gmul.ac.uk

ABSTRACT

A separation context is a client program which does not
dereference internals of the module with which it interacts.
We use precise relations to unambiguously describe the stor-
age of the module. We prove that separation contexts pre-
serve such relations, as well as interesting properties of sep-
aration contextst in connection with refinement.

1. INTRODUCTION

Pointers wreak havoc with data abstractions [8, 7, 1, 12].
Hoare’s treatment of refinement [6, 4] assumes a static-scope
based separation between the abstract data type and vari-
ables of the client. Pointers break those assumptions. For
example, a client, when interacting with a memory man-
ager, will typically retain pointers to malloc blocks it has
freed, which are then part of the supposedly hidden internal
representation of the memory manager. However, the client
must not use these pointers or otherwise its behaviour will
depend on the internal representation of the malloc module.

Previous approaches to these issues [1, 12, 3, 2, 7] are
based on linguistic mechanisms such as typing, to ensure
that a client cannot hold a pointer into internals of a module.
These solutions are limited and complex. In particular, the
requirement that there are no pointers to a module internals
is onerous.

Separation logic [13], on the other hand enables us to
check code of a client for safety, even though the client may
have pointers into the internals of a module [11].

This paper takes a first step towards bringing separation
logic into refinement. We present a model, but not yet a
logic, which ensures separation between a client and a mod-
ule, throughout the process of refinement of the module.
Even though at this stage we don’t have a logic, our model is
considerably simpler then ones given in [1, 12], and can eas-
ily handle examples with dangling pointers which are death
to linguistic approaches. We illustrate this with the nastiest
problem we know of - toy versions of malloc and free.

The paper is organized as follows. In Section 2, we give

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPACE' 04 January 12, 2004, Venice, Italy

Copyright 2004 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Noah Torp-Smith
The IT University of Copenhagen

noah@itu.dk

basic definitions regarding the programming language and
relations on states. This enables us to define unary sep-
aration contexts, and to prove properties about them. A
separation context is a client program that does not derefer-
ence pointers into module internals. The idea that a module
owns a part of the heap is described by a precise relation,
which is a special kind of relation that unambiguously iden-
tifies a specific portion of the heap. We show that separation
contexts respect these unary relations, where arbitrary con-
texts do not. Finally, in Section 4 we prove a simulation
theorem which asserts two things. The first part of the the-
orem states that any client that is a separation context with
respect to some abstract module, is also a separation context
with respect to any refinement of that module. The other
part of the theorem claims that, having one module being a
refinement of the other, the resulting programs obtained by
plugging in the modules into a separation context will be a
refinement of each other. This is a cousin of a classic logi-
cal relations or abstraction theorems. Again, it fails when
a context is not a separation context. We give pointers to
future work in Section 5 and conclude in Section 6.

2. PRELIMINARY DEFINITIONS

In this section, we first give a brief introduction to the
novel Separation Logic, and then we give relevant defini-
tions regarding relations in our storage model. The section
ends by giving a programming language and its semantics,
parametrized over the relations just defined.

2.1 An Introduction to Separation Logic

Separation logic uses the pointer model of [9] for BI [10] to
give a program logic for programs involving pointer manip-
ulations. It is an extension of Hoare logic, where heaps have
been added to the storage model and the assertion language.

For the storage model, we assume a countably infinite set
Var of variables given. We let S be the set of stacks (that
is, finite, partial maps from variables to integers), and we
let H be the set of heaps (finite, partial maps from pointers
(an infinite subset of the integers) to integers). Then, the
set of states is the set (S x H) of stack-heap pairs.

S =Var =g, Int H = Ptr —g, Int

States =S x H

To simplify matters, we assume that we are given two
disjoint sets of variables, Varyse, for the user language, and
Varmoq for the implementations of the modules. The set
Var is the disjoint union of these two sets. Therefore, a

state s,h € S x H can be written as s1 W s2, h, where s;
is a partial map from Varm.q to values and s2 is a partial
map from Varyser to values. We will use the notation h#h'
later to denote that the two heaps h and h' have disjoint
domains. If h#h', we can define the combined heap h * b’

as the map
o h(n) if n € dom(h)
" K (n) if n € dom(h')

The usual assertion language of Hoare logic is extended
with assertions that express properties about heaps. The
syntax of these assertions is

emp e1 > e2 Ax B V.p €Em. A

The first of these asserts that the heap is empty, the sec-
ond says that the current heap has exactly one pointer in
its domain, and the third is the separating conjunction and
means that the current heap can be split into two disjoint
parts for which A and B hold, respectively. Finally, the last
of the assertion forms is an iterated separating conjunction
over a finite set. More formally, the semantics of assertions
is given by a judgment

s,hlF A,

which asserts that the assertion A holds in the state (s, h).
We require that the free variables of A are included in the
domain of s. We give the semantics of the three new asser-
tion forms here

s,hlFemp iff dom(h)=o
s,hlFer ey iff dom(h) = {[ei]s} and
h([ei]ls) = [ez]s
s,hIF A+ B iff there exist hi,hs with
h1#ha, h = hy * h2,and
s,h1IF A and s,hs IF B
s,hIFV.pem. Aiff
{s,h”—emp fM=2
s,h I Alpy/p] = Alpr/p] if M ={p1,....px} ’
where M = [m]s

The programming language is also extended with con-
structs to manipulate the heap. See Sec. 2.3.

2.2 Relations

Definition 1. A relation M C S x H is precise if for any
state s, h there is at most one subheap ho C h, such that
(8, ho) € M.

We illustrate precise unary relations with an example. Let
a be a sequence of pairs of integers, let Is and le be pointers
to the beginning and the end of the list respectively, and
let start and end be the delimiters of the list. The predicate
dlist is taken from [13] and is defined by induction on « as
follows.

dlist € (Is, start, end, le) =
emp A ls = end A start = le
dlist (a,b) - a (Is,start,end, le) =
3j. ls — a, b, j, start x dlist « (4,1s, end, le).

where ¢ represents the emtpy sequence and - conses an ele-
ment (a, b) onto the front of a sequence . This is illustrated
in Figure 1.

Figure 1: Illustration of the predicate dlist

Now,
M = {(s,h) | s,h I dlist a (Is,nil, nil, le)}

is a precise unary relation.

Definition 2. Given a precise relation M and a state (s, h),
we write dom(s, h, M) for the domain dom(ho) of the unique
subheap ho C h such that (s, ho) € M, if it exists. Other-
wise, dom(s,h, M) = &. Note that this definition makes
sense only if M is precise.

Let M,M’ C S x H be two unary relations. Then we
define the separating conjuction of unary relations

M*M’ = {(S,h) | 3h0,h1.
ho#hi AN h=ho*hi A (s,ho) €M A (8,h1)€M’}.

Thus, we can split states into disjoint substates, such that
M holds in one substate and M’ holds in the other. As a
special case, let M C S x H be a precise relation, and let
T C S x H be the relation that contains all (s,h) € S x H.
Then,

M=T = {(s,h) | Jho, h1. ho#h1 A h = hoxh1 A(s,ho) € M},

i.e., M * T consists of states (s,h) where M holds in some
subheap of h

The denotation of programs will be given by binary re-
lations t C (S x H) x (S x H) W {wrong}. The relation
M C S x H is said to be preserved by such a relation ¢ if
for all (s,h),(s',h"), (s,h) € M and (s, h)[t](s',h'), imply
(s',h) € M.

Local Relations. We will consider relations on states that
obey a certain “Frame discipline” only. More formally, we
say that a relation ¢ C (S x H) x (S x H) W {wrong} is
local [11] if it satisfies the following two properties

e Safety Monotonicity: For all states (s, h) and heaps
h1 such that h#th, if
=(s, h)[tlwrong, then (s, h * h1)[tlwrong

e Frame Property: For all states (s, h) and heaps hq
with hithy, if =(s, h)[tjwrong and (s, h * h1)[t](s', h')
then there is a subheap hy T A’ such that ho#thi,

o *h1 = A’ and (s, h)[t](s", hp).

The properties are those needed to prove the important
Frame Rule from [9]. We will only consider local relations
in this paper.

2.3 The Language

The programming language is an extension of the sim-
ple while-language [5] with statements for manipulating the
heap. The user language has the following syntax:

Cuser 1= Skip
|z:=e
| @ :=[e]
| [e] :=e
| oper;, i €1
| C1;C2

| if e then c; else c2
| while e do ¢,

where
eux= int|var|e+e]
exel|e—e]|ele,
int € Int, var € Var

Int = {..—1,0,1,...}
Var = {z,y,...}
I — finite indexing set

Here, the z in the forms = := e and z := [e¢] may be taken
from the set Varyser only. Also, the expressions used in the
language may only use these variables. This means that for
any program c¢ without occurrences of oper; executed in the
state s,h = s1Wsa, hif c,s,h ~» s’ h’, then s’ can be written
as s1 W sh for some map s» : Varyser — Val. This is easily
verified by induction on the program c.

Ift C(Sx H)x(Sx H)W{wrong} is a relation on states,
we say that t is constant on user variables, if for any two
states, (s,h) = (s1 Ws2,h) € S x H,s1: Varpes — Int,ss :
Varyser — Int and (s', h’) such that (s, k) [t] (s',h), (s, k")
can be written as s} W s2, A’ for some map s} from Var,oq
to values.

The operational semantics of the language is parameter-
ized by a precise relation M and a collection (oper;)icr
of binary relations that preserve M. It defines a big-step
transition relation ~» C (Comms x (S x H)) x (S x H) ¢
{wrong} W {av}) on configurations. Informally, wrong is a
state in which a user program dereferences a pointer which
is not in the domain of the current heap. Access violation
is denoted by av and is a state in which a user program
dereferences a pointer which belongs to the domain of the
current heap, but does not belong to the user’s part of the
heap, i.e. a pointer owned by the module. We use precise
relations to keep track of this. The operational semantics of
the language is given by the following inference rules:

skip, s,h ~> s, h

[els =n
z:=-¢e,8,h~ s(x+—n)h

leils=p Ap €dom(h) A p¢dom(s,h,M) [ex]s=mn
le1] :=e2, s,h~> s, h(p — n)

[eils=p A p¢ dom(h) [ei]ls=p A p € dom(s,h, M)
[e1] := e2, 8, h ~ wrong [e1] :=e2,8,h ~ av

[e]ls=p Ap € dom(h) A p¢dom(s,h, M) h(p)=n
z:=e],8,h~ s(z — n),h

[els=p A pé¢dom(h) [e]s=p A p€ dom(s,h, M)
z = [e], s, h ~ av

z := [e], 8, h ~ wrong

(s, h)[operi](s', h")
oper;,s,h~» s’

(s, h)[operilwrong
oper;, 8, h ~ wrong

c1,8,h~ s, b co,8,h ~ K

ci1;¢2,8,h~ K

c1, 8, h ~ wrong c1,8,h~ av

ci1;¢2,8,h ~ wrong ci;c2,8,h~ av

[e]ls=0 c2,8,h~ K lels#0 ci1,8,h~ K

if e then ¢; else ¢2,5,h ~ K if e then c; else ¢2,5,h~ K

[e]s=0
while e do ¢, s,h ~ s, h

[e]s=1 c¢;while e do ¢,s,h~ K
while e do ¢, 8,h ~ K

where K € (S x H) W {wrong} ¥ {av}.

We employ precise unary relations in order to uniquely
identify the storage of the module. This allows us to ex-
plicitely ask if a particular cell belongs to the part of the
heap described by the precise relation, i.e. to the module.

Remark 1. We are interested only in starting states which
are related by M % T, but the operational semantics is also
valid for commands starting in states not related by M * T.

3. UNARY SEPARATION CONTEXTS

Definition 3. Let M C S x H be a precise unary relation,
and for ¢ € I let oper; C (S x H) x (S x H) W {wrong}
preserve relation M x T. A program c is a unary separation
contert for M and (oper;);er if for all executions and all
(s,h) € M % T ¢,8,h 7 av and ¢, s, h 9> wrong.

The intuitive meaning of this definition is that M de-
scribes the set of pointers owned by the module, and even
though a user program may have the pointers to heap cells
owned by the module, if it is a separation context, it will
never dereference those pointers.

Remark 2. Tt is not the case that all subcommands of
commands that are separation contexts are separation con-
texts themselves. This can be seen from the counterexample
if 0 then c else z := 4, where ¢ is a command which results
in an access violation.

If a user program uses more than one module, then it is
a separation context if it is a separation context with re-
spect to all the modules. This approach is non-modular,
since, for all we know, two different modules might share
resources. This means that dereferencing internals of one
module might imply dereferencing internals of the other. In
future research, we will investigate the concept of “indepen-
dent modules”.

Unary separation contexts preserve precise unary rela-
tions. We say that a precise unary relation is independent
of user variables if (s,h) = ($m ¥ Sy, h) € M then for all
sy : Varyser — Int, (sm Wy, h) € M.

THEOREM 1. Let M C S x H be a precise relation in-
dependent on user variables, and for (i € I) let oper; C
S x H x (S x H)W {wrong} preserve M T, and let c be a
separation context for M and (oper;)icr. If (s,h) € M * T,
and c,s,h~» s' W', then (s',h') € M *T.

Proof: The proof is by induction on the command ¢. The
simplest cases are skip, z := e, and z := [e]; in these cases
we use the fact that M is independent of user variables.

If ¢ = [e1] := e2, we consider the inference rule

[eils=p Ap€dom(h) A p¢&dom(s,h, M) [e2],=n
[e1] :== e2,8,h ~> s,h(p — n)

)

supposing (s,h) € M = T. M is precise, which means that
there is at most one hg C h such that (s,ho) € M. Then
h = ho * h1 and (s,ho) € M. By the assumption p ¢
dom(s,h, M) = (s, ho). Now,

s,h(p n) = s, hoxhi(p— n) = s, hoxhi(p—n) € M=T,
and (s,ho) € M and (s,hi(p+— n)) € T.

In the case of oper;, we use the rule for oper; in the oper-
ational semantics, and the assumption that oper; preserves
MxT.

For the induction step, we first see that the cases of com-
position and if-branches are straightforward, noting that we
only need to consider one of the rules in the operational se-
mantics in each case. For the while loop, we do an inner
induction on the smallest derivation of while b do ¢, s, h ~
s,h'. O

3.1 Examples

We illustrate unary separation contexts with an example
and a non-example.

We define new() and dispose as the operations of the mem-
ory management module, in the following way.

new(z) = {((s,h), (s,)) |
s(f)=ZwW{n}As =s[z—n, f—= Z]A
h' = h[n s nil, nil]) v
(s(f) =2 An¢gdom(h)A
K =hxnw— nil,nil As' = s[z — n])}
(5,1, (5, 1)) | s() = Z C dom(B)A
s(z) =nAn € dom(h) An ¢ s(f)
s =s[f— Zw{n}} U
{(s;h),wrong) | s(z) =n A
n ¢ dom(h) V n € s(f)}

dispose(z) =

Now an example of a separation context interacting with
the memory management module is

Program User :
begin

z := new();

x = 47T;

dispose(z);
end

Here are two examples of programs which are not separation

Figure 2: Heap of module and User; after allocating
and disposing pointer in variable z

contexts:
Program User; : ProgramU sers :
begin begin
z := new(); z := new();
dispose(z); dispose(z);
[z] := 4T; dispose(z);
end end

In both examples, user program dereferences a pointer
which it does not own. Program User; after allocating a
new cell, calls procedure dispose, and thereby gives up the
ownership of the pointer denoted by x. Afterwards it deref-
erences variable z, which no longer belongs to the user pro-
gram which causes an access violation. In the second ex-
ample, Users after allocating and disposing a pointer held
in variable z, attempts to dispose the same pointer again,
which makes the program go wrong.

4. REFINEMENT AND SEPARATION

4.1 Binary Relations

Let R C (S x H) x (Sx H) be a binary relation on states.
We say that R is precise, if each of its two projections on
the set of states is precise; that is, R is precise if

e for any state (s, h) there is at most one h1 C h such
that there exists a state (s', h') such that (s, h1)[R](s’, h'),
and

e for any (s', h'), there is at most one A} C h' such that
there is a state (s, h) with (s, h)[R](s’, hY).

To illustrate precise binary relations with an example,
suppose we have two different implementations of a storage
manager module. In the first implementation we assume
that f is a set variable, which keeps track of all owned loca-
tions. In the second implementation, we let this information
be kept in a list. We use a list predicate list(q, Is, end), which
is defined inductively on the sequence « of integers, by

list(e,, j) L empAi=j
list(p- 4, §) i =p ATk i > — k * list(a, k, §)
Note that if s,h IF list(a, 4, 7), then there are no elements

occurring twice in a.

Now, a precise binary relation R relating these two imple-
mentations is given by

R={((s,h), (s, M) | (s,h IF YupE f.p—>— =) A
(s’ I list(a, Is,mil)) A set(a) = s(f)},

where set(a) is defined as the set of pointers in the sequence
Q.

Relation R relates pairs of states, such that one state can
be described as a set of different pointers, while the other
one is determined by the list of exactly the pointers that
appear in mentioned set.

For two binary relations R,R' C (S x H) x (S x H) on
states, we define their separating conjunction [12] as

RxR = {((S,h)7(5,’h,)) | 3517}7'1)325h275,17h’1,3’2,h,2'
h=hixhy AN s=s1Wsy A
A =hisxhy AN =siwsy A
(s1,h1) [R] (s1,h1) A (s2,h2) [R] (52, h2)}

Note that this set might be empty. The idea is that R and
R’ relate disjoint part of the states.

As a special case, let R C (S x H) x (S x H) be a precise
binary relation, and let Id C (S x H) x (S x H) be the
identity relation. Then,

RxId = {((s,h),(s',h")) | 3so,s1, ho, h1, 8o, ho-
h=hoxh1 AN s=soWs1 A
W =hy*xht A s =s5Ws1A
(s0,ho) [R] (50, 7o)}

4.2 Refinement and Separation Contexts

In this section, we will formally express what it means
for one module to be an implementation (or refinement) of
another. For simplicity, we will assume that there is only
one operation of the module, i.e., that the index set I from
the syntax of the user language is singleton. In [4], our
definition of refinement is called upward simulation.

Definition 4. We define opers C (S x H) x (S x H) ¥
{wrong} to be a refinement of oper1 C (Sx H) x (Sx H) ¥
{wrong} with respect to R C (S x H) x (S x H), if

o for all states (s1, h1), (52, h2), (s, h%) such that (s1,h1)
[R x Id] (s2,h2) and (s2, h2) [opera] (sh, hy) there ex-
ists a state (s], h}) such that (s1, h1)[oper1](st, h}) and
(sh,)[R * Id](sh, hb), and

e for all states (s1, h1), (s2, h2), if (s1, h1)[R*Id](s2, h2),
then (s2, h2)[opera]wrong implies (s1, h1)[operiJwrong.

This can be illustrated by the following diagrams.

(s1,h1) =<—> (s, k%) (s1,h1) <> wrong
RxId 1R*Id RxId
(2, ha) <> (sh, hb) (2, ha) <% wrong

For the following theorem, we let R C (Sx H) X (Sx H) be
a precise binary relation independent of user variables, and
let opers C (S x H) x (S x H)W{wrong} be a refinement of
oper1 C (Sx H) x (S x H)W{wrong} with respect to R. Let
¢ be a program, and let ¢; C (Sx H) x (S x H)W{wrong} be
a relation denoted by ¢ in the operational semantics defined
by R; and oper;, i = 1,2, where R; is the ith projection of
R onto (S x H).

THEOREM 2 (SIMULATION THEOREM). Let R, oper;, c,
¢; be as above. Then, if c1 is a separation context for Ry and

operi, then c2 is a separation context for Ry and opers and
for all (s1,h1), (82, h2), (s, hy) if (s1,h1) [R = Id] (s2,h2)
and (82, h2)[c2](sh, h) then there exists a state (si,h}) such
that (s1,h1)[c1](s1, h1) and (sh, hY)[R * Id](s%, h2).

To prove Theorem 2, we prove a lemma similar to it. For
this, we need the following definition.

Definition 5. Let M C (S x H) x (S x H) be a precise
unary relation on states, let oper C (S x H) x (S x H) &
{wrong} be an operation, and let (s,h) be a state. We
say that the command c is safe at (s,h) with respect to
(M,oper), if ¢,s,h 76 wrong and ¢, s,h 4 av, where ~
is the operational semantics defined by oper and M.

LEMMA 1. Let R, operi, ¢, ¢; be as above, and suppose
(81, h1)[R * Id](s2, h2). Then, if c1 is safe at (s1,h1) with
respect to (Ri,operi), c2 is safe at (s2,h2) with respect to
(R2,0per2), and if (82, ha)[c2](sh, hb) then there exists a state
(sh,hh) such that (s1, h1)[c1](sh, hh) and (s, hY)[R+Id] (s, h).

Proof: The proof is by induction on the program c. We
will make use of diagrams in the argumentation, since these
convey good understanding of refinement conditions. The
cases for skip and x := e are easy and the case for oper just
uses the assumption that the semantic opers are refinements
of each other.

Next, we consider the case where cis = := [e], and suppose
(s1, h1)[R+1Id](s2, h2). By assumptions about user variables,
si(z) = sa2(z), and [e]s1 = [e]s2 = n. Since ¢; is safe at
(s1,h1) with respect to (Ri,oper:1), n € dom(hi2) (see the
diagram below), and we let n' = hi2(n). Since heap lookup
does not alter the heap, c2 is safe at (s2, h2) with respect to
(R2, oper2), and we have the following diagram.

—— (51, h1) <% (51w > 0], o)

R*Id1 1R*Id

(32, h2) ?M (32[x = nl]7 h2)

(811, h11) * (812, h12)

(821, h21) * (512, h12)

‘We have that the rightmost states in this diagram are related
by R * Id because the heaps are unchanged and the stacks
are only changed on a user variable. The case where c is
[e1] := e2 is similar to this case.

For the induction step, the case for if-branches is easy
when we use the fact that R is independent of user variables
again. For the case of composition, assume that c is ¢';c”.
Since c1 is safe at (s1,h1) with respect to (R1,operi), ¢} is
too. By the induction hypothesis, this implies that ¢} is safe
at (s2, ho) with respect to (R, opers:), suppose ch, 2, ha ~»
sy, hy. Then we have that there is a state (s7,hY) such
that ¢, s1,h1 ~ s, hy and (s7,hY)[R * Id](s%,h3), by the
induction hypothesis. ¢ is safe at (s{,h}) with respect
to (R1,o0peri), since ¢1 was safe at (s1,h1) with respect to
R1,0per1, so we can use the induction hypothesis and repeat
the argument to get the following diagram.

"

(s1,h1) <> (s}, h}) <—— (s}, h})

R*IdI R*Id1 1R*Id

(52, h2) <—— (83, h3) <> (82, h3)
2 2

When c is while b do ¢/, and c; is safe at (s1,h1) with
respect to (Ri,operi), we prove by induction that for all
(s1, h1)[R % Id](s2, ho) and derivations c1, s1, b1 ~» 81, b} of
depth n, there is a state (s, h%) such that ¢z, 52, ha ~»> sh, hY
and (s1, h})[R * Id](sh, h3). When n = 0, we use the rule

[els=0
C1,S1,h1 A S1,h1,

and it is easy to see that nothing happens for the program
¢ either, so the conditions for the theorem are clearly ful-
filled. Now, suppose that the last step in the derivation is
an application of the rule

U " " 'J n / !
[6]s1 =1 ci,s1,h1~> sY,hY c1,87,hT ~ s1,h1

! !
c1y 81, h1 ~ 81, A

By the outer induction hypothesis, c) is safe at (s2, ha) with
respect to (R2, opers), and there is a state (s%, h%) such that
the left part of the diagram below “commutes”.

CI
(s1,h1) ~—— (s, 1Y) <2 (s}, h})

R*IdI 1R*Id 1R*Id

(s2,h2) ~ (s, h3) <> (s2, h2)
The derivation in the upper right corner of this diagram is
shorter, so the inner induction hypothesis gives us that there
is a state (sh, hy) with c2,s5,hs ~» sh, hy and (s}, h))[R *
Id](s%, h%). This means that c is safe at (s2, h2) with re-
spect to (R2,oper2). We also have that when cs, 85, b ~»
(s5, h%), the diagram gives us a (s}, h}) with the desired
properties. This completes the proof of the lemma. [

The proof of Theorem 2 is easy using Lemma 1. The
meaning of Theorem 2 is the following: if a user program c
is a separation context for an abstract module, then it is a
separation context for any refinement of that module. For
any separation context c, the concrete denotation cz of ¢
refines the abstract denotation c¢; of c.

4.3 Example

We have three implementations of malloc, one which is
completely abstract, one which is more concrete, but still
has a certain degree of abstractness to it, and finally, a “con-
crete” one that uses a free-list. We will argue that the “in-
termediate” implementation is a refinement of the abstract
one and that the concrete implementation is a refinement
of the intermediate one. For each of the implementations,
we exhibit relations which implement the operations new
and dispose. In the following, we assume that heaps map
pointers to pairs of integers. We use n — —, — to denote a
singleton heap.

For the abstract implementation, we have the following
relations.
newi(z) = {((s,h),(s",h")) | n ¢ dom(h)A
K =hxnw— nil,nil As' = s[z — n]}
dispose; (z) = {((s,h),(s',h')) | n € dom(h)A
s(z) =n AR =h\{(n,h(n))}} U
{((s, h),wrong) | s(x) ¢ dom(h)}

The intention is that the abstract module does not own
any of the locations, but when a user program asks for a

new location, the module also asks for a location from the
system. When the user program gives up on a location, it is
immediately returned to the system. Therefore, the resource
invariant of the module is emp.

For the intermediate implementation, we have the follow-
ing relations.

news(z) = {((s,h),(s',n)) |

(s(FH)=Zw{n}As =slz—=n, f—= Z]A
B = hn > nil, nil]) v

(s(f) =2 An ¢&dom(h)A
K =h*nw— nil,nil As' = sz — n])}

dispose,(z) = {((s,h),(s",h)) | s(f) = Z C dom(h)A

s’(w) =nAn€dom(h)An ¢ s(f)
s =s[f—>Zy{n}]} U
{(s,h),wrong) | s(x) =n A
n ¢ dom(h) V n€ s(f)}

The intention is that we keep a set of owned locations in
the module. If this set becomes empty, we call a “system
routine” (like sbrk) to get a new location.

In this case, the resource invariant is determined by the
variable f:

Vi€ fopr—> — —

The concrete implementation is the more realistic one. We
keep a free-list of the cells that have been disposed by the
user program. When the user calls new, we return the first
element in the list, if it is not empty. If it is empty, we call
a system routine like in the intermediate implementation.
The list is singly linked, and the delimiters are Is and nil.
Here are the relations for this implementation.

news(z) =

{((s,h), (', 1)) |
(8" = s[z = s(ls),Is = h(s(ls)).2,a — tI(s(a))] A
k' = h[s(ls) — nil,nil] A s(a) #e)V
(s(1s) = 8'(Is) =nil A n¢gdom(h) A s(a)=¢ A
K =hsnw—nil,nil A s =s[z— n])}

dispose, (z) =

{((s,h),(s',h")) | s(z) =nAnedom(h) An ¢ s(a) A
s’ = sla— s(z) - s(a),ls— s(z)] A
R = h[s(z).2 = s(Is)]} U {((s, h), wrong) | s(z) =n
An ¢ dom(h) V n € set(a)}

where set(a) is the set of pointers in the sequence «.The
resource invariant for this implementation is the variant of
the well-known list predicate defined in Section 4.1.

To show that the intermediate implementation is a refine-
ment of the abstract one, we exhibit a binary relation on
states and argue that the intermediate is a refinement of the
abstract one with respect to this relation.

The binary relation R; C (S x H) x (S x H) is:

Ry = {((s,h), (s, 1)) |
s,hlFempAs h' IFVip € f.prs— —}

Suppose (81, h1)[R1*Id](s2, h2), and (s2, ho) [newa(z)](sh, hb).
We must argue that there exists a state (si,h}) such that
(1, o)news (2)](s}, hY) amd (sh, hL) [Rs * Xd](sh, hb). From
(s2, h2)[newz(z)](sh, h2), we have that n € dom(hz), and
hYy = ha[n > nil, nil], which means that location n is in the
current heap, but not in the user’s part of the heap, or n ¢

O o) (‘?
o) O @]
o Abstract
o o o
Intermediate
ls —"—F—T"—FH——F—={" Concrete

Figure 3: An illustration of the three representa-
tions of the memory management module.

dom(h2) and h = ha * n — nil, nil, in which case, n does
not belong to the current heap. In both cases, n evidently
does not belong to the domain of the user’s part of the heap
h2, and because of the assumption (s1,h1)[R * Id](s2, h2),
n can not be in the user’s part of the heap h; either. So,
n must be owned by the system, and we construct a state
(s1, k1) such that A} = h1 * n — nil,nil and s} = sifz —
n]. It is not hard to see that (si, h1)[new;(z)](s1, 1) and
(sh, h)[R = Id](sh, hY), as desired.

We omit the proof for dispose.

Next, we show that the concrete implementation is a re-
finement of the intermediate one. This will imply that the
concrete implementation is a refinement of the abstract,
since the refinement relation is easily seen to be transitive.
We show the claim in the same way as before, namely by
giving a binary relation on states and show that the concrete
implementation is a refinement of the intermediate one with
respect to this relation.

The binary relation R» is given by

{((s;h), (s", 1)) | (s,h Ik Vup € f.pr> — =) A
(8", B I list(a,ls,nil)) A set(a) = s(f)},

Ry =

Suppose (82, h2)[R2+Id](s3, hs), and (s3, hs)[new(z)](s5, h3).
There are two cases

If s = ss[z — s3(ls),ls = hs(ss3(ls)).2,a — tl(s3(a))],
h3 = hs[s3(ls) — nil, nil], and s5(a) # €, we have s3(Is) =
hd(ss(a)) € s2(f) because of the definition of R>. We can
therefore construct the state

(sh,hy) =

(s2[x > s3(ls), f — s2(f) \ {s3(Is)}], ha[ss(ls) — nil, nil]),

and we see that this state has the desired properties, namely
(52, h2)[Ro * Id](s3, h3) and (s2, ha)[news (z)](s2, h2).

The other case is when s5 = s3[z — n], s(Is) = nil, h =
hg * n > nil,nil, n ¢ dom(hs), and s3(a) = €. In this case,
we have s2(f) = &, so the state

(s, hy) = (s[x > n], he * n > nil, nil)

has the desired properties.

5. FUTURE WORK

We already mentioned that our approach is non-modular,
in the sense that we have only dealt with one module and
have not considered resources that are shared between mod-
ules, nor explored the situation where there is more than one
module in play at the same time.

We defined ¢ to be a unary separation context if under
certain conditions, starting from any state, ¢ does not access
violate and does not go wrong. This actually means that ¢
has a precondition true and that ¢ has to build a heap for
itself before dereferencing any heap locations, or in other
words, to always have a valid initialization.

A similar result would be achieved if we required a certain
precondition to hold before executing c. The corresponding
definition might be:

Definition 6. Let M, P C S x H be unary relations, and
let M be precise. Let oper; C (S x H) x (S x H)W {wrong}
preserve relation M = T. A program c is a unary separation
context for (M, P) if for all (s,h) € M * P ¢,s,h 7 av and
¢, 8, h o wrong.

This means that ¢ can be executed in a state in which
resources available to ¢ already exist.

O’Hearn et al. have given criteria for proving specifica-
tions of programs under the assumption of already proven
specifications for modules, by introducing and proving sound
the Hypothetical Frame Rule [11]. For practical purposes, it
would be desirable to have a similar rule for showing prop-
erties about refinement. Letting

oper,
{R % 1d} oper, {R x1d}

denote the condition in Def. 4, it seems plausible that a rule
of the following form should hold.

{Ap*R} () {Aq*R} {P}k{Q}F {A}c{B}

{A4* R} jﬁ;;g {AB * R} ,
where Ap denotes the binary relation Id N (P x P), and
cler /k] is ¢ with all occurences of k replaced by c¢1. We
will investigate under which conditions a rule like the above
is valid.! A rule like the above could also give syntactic
criteria to decide when a program is a separation context
for a module. This would be expressible using judgments of
the form

{P} k{Q} F{A} ¢ {B}.

In our present setting we assume that we have the same
heap model at abstract and concrete level. We will explore
refinement where heap model at the concrete and abstract
level are not necessarily the same.

!We are aware that the rule, as it is defined here is not valid.

6. CONCLUSIONS

There are at least two reasons why separation contexts
are interesting. The first reason is that separation contexts
do not dereference implementation modules’ internals. This
is formalized using * and precise relations without any re-
strictions to reachability. The other reason is that once it
is proved that a user program is a separation context with
respect to some data structure, it is a separation context for
all its refinements.

The work in this paper is a first step towards a theory
of refinement in the setting of separation logic. We have
mentioned a desirable rule that would pave the way for for-
mal development of refinement results and correct programs.
This also could be used for reasoning about equivalence of
different implementations of data structures, that involve
complex pointer manipulations.

Acknowledgements

This work was initiated by ideas of Prof. Peter O’Hearn and
his influence was invaluable throughout the development of
the paper. We would also like to thank Richard Bornat,
Hongseok Yang and Cristiano Calcagno for insightful discus-
sions. Noah Torp-Smith’s research was partially supported
by Danish Natural Science Research Council Grant 51-00—
0315 and Danish Technical Research Council Grant 56-00—
0309.

7. REFERENCES

[1] A. Banerjee and D. A. Naumann. Representation
independence, confinement and access control
[extended abstract]. In POPL 02, 2002.

[2] L. S. C. Boyapati, B. Liskov. Ownership types for
object encapsulation. In POPL’03.

[3] D. G. Clarke, J. Noble, and J. M. Potter. Simple
ownership types for object containment. In Proc.
European Conference on Object-Oriented
Programming, June 2001.

[4] J. He, C. A. R. Hoare, and J. W. Sanders. Data
refinement refined (resume). In B. Robinet and
R. Wilhelm, editors, ESOP 86, European Symposium
on Programming, volume 213 of Lecture Notes in
Computer Science, pages 187 — 196. Springer Verlag,
1986.

[5] C. A. R. Hoare. An axiomatic approach to computer
programming. Communications of the ACM,
12(583):576 — 580, 1969.

[6] C. A. R. Hoare. Proof of correctness of data
representations. Acta Informatica, 1:271-281, 1972.

[7] J. Hogg. Islands: Aliasing protection in
object-oriented languages.

[8] J. Hogg, D. Lea, A. Wills, D. deChampeaux, and
R. Holt. The geneva convention on the treatment of
object aliasing. OOPS Messenger, 1992.

[9] S. Ishtiaq and P. W. O’Hearn. BI as an assertion
language for mutable data structures. In Principles of
Programming Languages, volume 28, London, 2001.
ACM - SIGPLAN.

[10] P. O’Hearn and D. J. Pym. The logic of bunched
implications. Bulletin of Symbolic Logic, 5(2), June
1999.

[11] P. O’Hearn, H. Yang, and J. C. Reynolds. Separation
and information hiding. In POPL’04, 2003.

[12] U. S. Reddy and H. Yang. Correctness of data
representations involving heap data structures. In
P. Degano, editor, Proc. of the 12th European
Symposium on Programming, ESOP 2003, pages 223 —
237. Springer Verlag, 2003.

[13] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Proceedings of Logic in
Computer Science, volume 17, pages 55 — 74,
Copenhagen, July 2002. IEEE.

