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ABSTRACT
We present extensive experimental results on our static anal-
ysis and source-level transformation [12, 11] that adds ex-
plicit memory-reuse commands into ML program text.

Our analysis and transformation cost is negligible (1,582
to 29,000 lines per seconds) enough to be used in daily pro-
gramming. The payoff is the reduction of memory peaks
and the total garbage collection time. The transformed pro-
grams reuse 3.8% to 88.6% of total allocated memory cells,
and the memory peak is reduced by 0.0% to 71.9%. When
the memory peak reduction is large enough to overcome the
costs of dynamic flags and the memory reuse in the genera-
tional garbage collection, it speeds up program’s execution
by up to 25.4%. Otherwise, our transformation can slow-
down programs by up to 42.9%. The speedup is likely only
when the portion of garbage collection time among the total
execution time is more than about 50%.

1. OVERVIEW
After observing promising yet preliminary experiment

numbers on our automatic insertion of explicit memory-
reuse commands into ML-like programs [12, 11], we need to
gather more extensive numbers on where, if any, the cost-
effectiveness of our analysis and transformation shines most.
Only after having identified such strength in practicality of
our analysis and transformation we can integrate them into
our nML compiler system [16] and guide the programmers
on when and for what they should turn on the optimization.

This paper reports experiment numbers regarding the fol-
lowing questions. How much effect does our transformation
have on the program’s memory behavior in terms of mem-
ory peak and garbage collection performance? How much
overhead does our transformation have on the program’s
execution time?

Before we summarize the numbers, let us briefly overview
our analysis, and how it is different from other related works.

Our static analysis and a source-level transformation [12]
adds explicit memory-reuse commands into program text
so that the program should not blindly request memory
when constructing data. The explicit memory-reuse is by
inserting explicit memory-free commands right before data-
construction expressions. Because the unit of both memory-
free and allocation is an individual cell, such memory-free
and allocation sequences can be implemented as memory
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reuses.

Example 1. Function call “insert i l” returns a new list
where integer i is inserted into its position in the sorted list
l.

fun insert i l =

case l of

[] => i::[] (1)

| h::t => if i<h then i::l (2)

else h::(insert i t) (3)

Let’s assume that the argument list l is not used after a
call to insert. If we program in C, we can destructively add
one node for i into l so that the insert procedure should
consume only one cons-cell. Meanwhile, the ML program’s
line (3) will allocate as many new cons-cells as that of the
recursive calls. Knowing that list l is not used anymore, we
can reuse the cons-cells from l:

fun insert i l =

case l of

[] => i::[]

| h::t => if i<h then i::l

else let z = insert i t

in (free l; h::z) (4)

In line (4), “free l” will deallocate the single cons-cell
pointed to by l. The very next expression’s data construc-
tion “::” will reuse the freed cons-cell.

The type systems [26, 25, 2] based on linear logic fail
to achieve Example 1 case because variable l is used twice.
Kobayashi [10], and Aspinall and Hofmann [1] overcome this
shortcoming by using more fine-grained usage aspects, but
their systems still reject Example 1 because variable l and
t are aliased at line (2)–(3). They cannot properly handle
aliasing: for “let x=y in e” where y points to a list, this
list cannot in general be reused at e in their systems. More-
over, Aspinall and Hofmann did not consider an automatic
transformation for reuse. Kobayashi provides an automatic
transformation, but he requires the memory system to book-
keep a reference counter for every heap cell.

Deductive systems like the separation logic [9, 17, 18] and
the alias-type system [19, 27] are powerful enough to reason
about shared mutable data structures, but they cannot be
used for our goal; they are not automatic. They need the
programmer’s help about memory invariants for loops or
recursive functions.



The region-based memory managements [23, 24, 4, 5, 7]
use a fixed partitioning strategy for recursive data struc-
tures, which is either implied by the programmer’s region
declarations or hard-wired inside the region-inference en-
gine [21, 22]. Since every heap cell in a single region has
the same lifetime, this “pre-determined” partitioning can
be too coarse; for example, transformations like the one in
Example 1 are impossible.

Blanchet’s escape analysis [3] and ours are both relational,
covering the same class of relations (inclusion and sharing)
among memory objects. The difference is the relation’s tar-
gets and deallocation’s granularity. His relation is between
memory objects linked from program variables and their
binding expression’s results. Ours is between memory ob-
jects linked from any two program variables. His dealloca-
tion is at the end of a let or function body. Transformations
like the one in Example 1 are impossible in his system. Har-
rison’s [8] and Mohnen’s [15] escape analyses have similar
limitation: the deallocations is at the end of function body.

Our experimental results show that for small to large ML
benchmark programs:

• Our analysis and transformation cost is small; 1,582
to 29,000 lines per seconds in Pentium4, 3Ghz.

• The programs reuse 3.8% to 88.6% of total allocated
memory cells. The small-ratio cases are for programs
that have too much sharings among memory cells.
Other than those “torturing” cases, our experimental
results are encouraging in terms of accuracy and cost.

• The memory peak is reduced by 0.0% to 71.9% which
is co-related to the memory reuse ratio in most cases.
A high memory reuse ratio usually means a large re-
duction of memory peak. However, if the memory
reuses are restricted only to those that contribute to
the memory peak, even a small reuse ratio can result
in a substantial reduction of memory peak. Similarly,
if the memory reuses are frequent but are restricted
only to those that do not contribute to the memory
peak, even a large reuse ratio can result in a negligible
reduction of memory peak.

• The garbage collection time has 88.0% speedup to 1.6%
slowdown. The slowdown is when the shift of the
garbage collection points due to the memory reuses
meets more live cells than the original case.

• The runtime has 25.4% speedup to 42.9% slowdown.
The speedup is due to the reduction of garbage col-
lection time and the slowdown is due to the cost to
handle dynamic flags and the cost of memory reuses
in the generational garbage collection.

We can observe three co-relations:

• If our transformation reuses much then it consistently
results in much reduction in the total garbage collec-
tion time.

• If our transformation reuses much then it results in
much reduction in memory peak. But, some excep-
tions are possible; if reuses focus on those not con-
tributing to the memory peak they can result in small
reduction in memory peak.

• If our transformation reuses much and the portion of
the garbage collection time is big, then program’s ex-
ecution time reduction occurs.

Our analysis and transformation cost is negligible enough
to be used in daily programming. The payoff is very likely in
reduction in memory peaks and the total garbage collection
time. Reduction in program’s execution time is likely only
when the portion of garbage collection time among the total
execution time is more than about 50%.

2. ANALYSIS AND TRANSFORMATION
We first briefly explain our analysis and transformation

that adds safe memory reuse commands into ML-like pro-
grams [12]. The features of our analysis and transformation
are:

• Partitioning of heap cells is pivoted by two axes: one
by structures (e.g. heads and tails for lists, roots and
subtrees for trees, etc.) and the other by set exclusions
(e.g. cells A excluding B). This double-axed partition-
ing is expressive enough to isolate proper reusable cells
from others.

• Sharing information among heap cells is maintained,
in order to find the disjointness properties between two
partitions of heap cells. An analysis result consists of
terms called “multiset formula.” A multiset formula
symbolically manifests an abstract sharing relation be-
tween heap cells.

• The parameterized analysis result of a function is in-
stantiated at each function call, in order to finalize
the disjointness properties for the function’s input and
output. This polyvariant analysis is not done by re-
analyzing a function body multiple times.

• Dynamic flags are inserted to functions in order to
condition their memory-free commands on their call
sites. Dynamic flags are simple boolean expressions.

Section 2.1 intuitively presents the features of our method
for an example program. Section 2.2 presents the key ab-
stract domain (memory-types) for our analysis. Section 2.3
shows, for the same example as in Section 2.1, a more de-
tailed explanation on how our analysis and transformation
works. The exact definition of our analysis and transforma-
tion is in [12].

2.1 Exclusion Among Heap Cells and Dynamic
Flags

The accuracy of our algorithm depends on how precisely
we can separate the two sets of heap cells: cells that are safe
to deallocate and others that are not. If the separation is
blurred, we hardly find deallocation opportunities.

For a precise separation of such two groups of heap cells,
we have found that the standard partitioning by structures
(e.g. heads and tails for lists, roots and subtrees for trees,
etc.) is not enough. We need to refine the partitions by
the notion of exclusion. Consider a function that builds a
tree from an input tree. Let’s assume that the input tree
is not used after the call. In building the result tree, we
want to reuse the nodes of the input tree. Can we free every
node of the input? No, if the output tree shares some of
its parts with the input tree. In that case, we can free only



those nodes of the input that are not parts of the output. A
concrete example is the following copyleft function. Both
of its input and output are trees. The output tree’s nodes
along its left-most path are separate copies from the input
tree and the rest are shared with the input tree.

fun copyleft t =

case t of

Leaf => Leaf

| Node (t1,t2) => Node (copyleft t1, t2)

The Leaf and Node are the binary tree constructors. Node

needs a heap cell that contains two fields to store the lo-
cations for the left and right subtrees. The opportunity
of memory reuse is in the case-expression’s second branch.
When we construct the node after the recursive call, we can
reuse the pattern-matched node of the input tree, but only
when the node is not included in the output tree. Our anal-
ysis maintains such notion of exclusion.

Our transformation inserts free commands that are con-
ditioned on dynamic flags passed as extra arguments to func-
tions. These dynamic flags make different call sites to the
same function have different deallocation behavior. By our
free-commands insertion, above copyleft function is trans-
formed to:

fun copyleft [β, βns] t =

case t of

Leaf => Leaf

| Node (t1,t2) =>

let p = copyleft [β ∧ βns, βns] t1

in (free t when β; Node (p,t2))

Flag β is true when the argument t to copyleft can be
freed inside the function. Hence the free command is con-
ditioned on it: “free t when β.” By the recursive calls, all
the nodes along the left-most path of the input will be freed.
The analysis with the notion of exclusion informs us that,
in order for the free to be safe, the nodes must be excluded
from the output. They are excluded if they are not reachable
from the output. They are not reachable from the output
if the input tree has no sharing between its nodes, because
some parts (e.g. t2) of the input are included in the output.
Hence the recursive call’s actual flag for β is β ∧ βns, where
flag βns is true when there is no sharing inside the input
tree.

2.2 The Abstract Domain for Heap Objects
Our analysis and transformation uses what we call memory-

types to estimate the heap objects for expressions’ values.
Memory-types are defined in terms of multiset formulas.

To simplify the presentation, we consider only binary trees
for heap objects. A tree is implemented as linked cells in the
heap memory. The heap consists of binary cells whose fields
can store locations or a Leaf value. For instance, a tree
Node (Leaf, Node (Leaf, Leaf)) is implemented in the heap
by two binary cells l and l′ such that l contains Leaf and l′,
and l′ contains Leaf and Leaf. We explain how we handle
arbitrary algebraic data types in Section 3.

2.2.1 Multiset Formula
Multiset formulas are terms that allow us to abstractly

reason about disjointness and sharing among heap locations.
We call “multiset formulas” because formally speaking, their
meanings (concretizations) are multisets of locations, where
a shared location occurs multiple times.

The multiset formulas L express sharing configuration in-
side heap objects by the following grammar:

L ::= A | R | X | π.root | π.left | π.right

| ∅ | L ṫL | L ⊕̇L | L\̇L

Symbols A’s, R’s, X’s and π’s are just names for multisets
of locations. A’s symbolically denote the heap cells in the
input tree of a function, X’s the newly allocated heap cells,
R’s the heap cells in the result tree of a function, and π’s for
heap objects whose roots and left/right subtrees are respec-
tively π.root, π.left, and π.right. ∅ means the empty multi-
set, and symbol ⊕̇ constructs a term for a multiset-union.
The “maximum” operator symbol ṫ constructs a term for
the join of two multisets: term L ṫL′ means to include two
occurrences of a location just if L or L′ already means to

include two occurrences of the same location. Term L\̇L′

means multiset L excluding the locations included in L′.
Figure 1 shows the formal meaning of L in terms of ab-

stract multisets: a function from locations to the lattice
{0, 1,∞} ordered by 0 v 1 v ∞. Note that we consider
only good instantiations η of name X’s, A’s, and π’s in Fig-
ure 1. The pre-order for L is:

L1 v L2 iff ∀η. goodEnv(η) =⇒ [[L1]]η v [[L2]]η.

2.2.2 Memory-Types
Memory-types are in terms of the multiset formulas. We

define memory-types µτ for value-type τ using multiset for-
mulas:

µtree ::= 〈L, µtree, µtree〉 | L
µtree→tree ::= ∀A.A → ∃X.(L, L)

A memory-type µtree for a tree-typed value abstracts a set
of heap objects. A heap object is a pair 〈v, h〉 of a value v
and a heap h that contains all the reachable cells from v.
Intuitively, it represents a tree reachable from v in h when v
is a location; otherwise, it represents Leaf. A memory-type
is either in a structured or collapsed form. A structured
memory-type is a triple 〈L, µ1, µ2〉, and its meaning (con-
cretization) is a set of heap objects 〈l, h〉 such that L, µ1,
and µ2 abstract the location l and the left and right subtrees
of 〈l, h〉, respectively. A collapsed memory-type is more ab-
stract than a structured one. It is simply a multiset formula
L, and its meaning (concretization) is a set of heap objects
〈v, h〉 such that L abstracts every reachable location and its
sharing in 〈v, h〉. The formal meaning of memory-types is
in Figure 1.

For a function type tree → tree, a memory-type describes
the behavior of functions. It has the form of ∀A.A →
∃X.(L1, L2), which intuitively says that when the input tree
has the memory type A, the function can only access lo-
cations in L2 and its result must have a memory-type L1.
Note that the memory-type does not keep track of deallo-
cated locations because the input programs for our analysis
are assumed to have no free commands. The name A de-
notes all the heap cells reachable from an argument location,
and X denotes all the heap cells newly allocated in a func-
tion. The pre-order for memory-types for functions is the
pointwise order of its result part L1 and L2.

2.3 The Insertion Algorithm
We explain our analysis and transformation using the

copyleft example in Section 2.1:



Semantics of Multiset Formulas

lattice Labels
∆
= {0, 1,∞}, ordered by 0 v 1 v ∞

lattice MultiSets
∆
= Locations → Labels, ordered pointwise

For all η mapping X’s, A’s, R’s, π.root’s, π.left’s, and π.right’s to MultiSets,

[[∅]]η
∆
= ⊥

[[V ]]η
∆
= η(V ) (V is X, A, R, π.root, π.left, or π.right)

[[L1 ṫL2]]η
∆
= [[L1]]η t [[L2]]η

[[L1 ⊕̇L2]]η
∆
= [[L1]]η ⊕ [[L2]]η

[[L1\̇L2]]η
∆
= [[L1]]η \ [[L2]]η

where

⊕ and \ : MultiSets × MultiSets → MultiSets

S1 ⊕ S2

∆
= λl. if S1(l)=S2(l)=1 then ∞ else S1(l) t S2(l)

S1 \ S2

∆
= λl. if S2(l) = 0 then S1(l) else 0

Requirements on Good Environments

goodEnv(η)
∆
= for all different names X and X ′ and all A,

η(X) is a set disjoint from both η(X ′) and η(A); and
for all π,

η(π.root) is a set disjoint from both η(π.left) and η(π.right)

Semantics of Memory-Types for Trees

v ∈ Values
∆
= {Leaf} ∪ Locations

h ∈ Heaps
∆
= Locations

fin
→ {(v1, v2) | vi is a value}

For all η mapping X’s, A’s, R’s, π.root’s, π.left’s, and π.right’s to MultiSets,

[[〈L, µ1, µ2〉]]tree η
∆
= {〈l, h〉 | h(l) = (v1, v2) ∧ [[L]]η l w 1 ∧ 〈vi, h〉 ∈ [[µi]]tree η }

[[L]]tree η
∆
=



〈l, h〉

˛

˛

˛

˛

l ∈ dom(h) ∧ ∀l′. let n = number of different paths from l to l′ in h
in (n ≥ 1 ⇒ [[L]]η l′ w 1) ∧ (n ≥ 2 ⇒ [[L]]η l′ = ∞)

ff

∪ {〈Leaf, h〉 |h is a heap}

Figure 1: The Semantics of Multiset Formulas and Memory-Types for Trees.

fun copyleft t =

case t of

Leaf => Leaf (1)

| Node (t1,t2) => let p = copyleft t1 (2)

in Node (p,t2) (3)

We first analyze the memory-usage of all expressions in the
copyleft program; then, using the analysis result, we insert
safe free commands to the program.

2.3.1 Step One: The Memory-Usage Analysis
Our memory-usage analysis computes memory-types for

all expressions in copyleft. In particular, it gives memory-
type ∀A.A → ∃X.(A ṫX, A) to copyleft itself. Intuitively,
this memory-type says that when A denotes all the cells
in the argument tree t, the application “copyleft t” may
create new cells, named X in the memory-type, and returns
a tree consisting of cells in A or X; but it uses only the cells
in A.

This memory-type is obtained by a fixpoint iteration. We
start from the least memory-type ∀A.A → ∃X.(∅, ∅) for a
function. Each iteration assumes that the recursive function
itself has the memory-type obtained in the previous step,

and the argument to the function has the (fixed) memory-
type A. Under this assumption, we calculate the memory-
type and the used cells for the function body. To guarantee
the termination, the resulting memory-type and the used
cells are approximated by “widening” after each iteration.

We focus on the last iteration step. This analysis step
proceeds with five parameters A, X2, X3, X, and R, and
with a splitting name π: A denotes the cells in the input
tree t, X2 and X3 the newly allocated cells at lines (2) and
(3), respectively, X the set of all the newly allocated cells in
copyleft, and R the cells in the returned tree from the re-
cursive call “copyleft t1” at line (2); the splitting name π
is used for partitioning the input tree t to its root, left sub-
tree, and right subtree. With these parameters, we analyze
the copyleft function once more, and its result becomes
stable, equal to the previous result ∀A.A → ∃X.(A ṫX, A):

• Line (1): The memory-type for Leaf is ∅, which says
that the result tree is empty.

• Line (2): The Node-branch is executed only when t

is a non-empty tree. We exploit this fact to refine the
memory-type A of t. We partition A into three parts:
the root cell named π.root, the left subtree named



π.left, and the right subtree named π.right, and record
that their collection is A: π.root ṫ (π.left ⊕̇π.right) =
A. Then t1 and t2 have π.left and π.right, respectively.

The next step is to compute a memory-type of the re-
cursive call “copyleft t1.” In the previous iteration’s
memory-type ∀A.A → ∃X.(A ṫX, A) of copyleft, we
instantiate A by the memory-type π.left of the argu-
ment t1, and X by the name X2 for the newly allo-
cated cells at line (2). The instantiated memory-type
π.left → (π.left ṫX2, π.left) says that when applied to
the left subtree t1 of t, the function returns a tree
consisting of new cells or the cells already in the left
subtree t1, but uses only the cells in the left subtree
t1. So, the function call’s result has the memory-type
π.left ṫX2, and uses the cells in π.left. However, we
use name R for the result of the function call, and
record that R is included in π.left ṫX2.

• Line (3): While analyzing line (2), we have com-
puted the memory-types of p and t2, that is, R and
π.right, respectively. Therefore, “Node(p,t2)” has the
memory-type 〈X3, R, π.right〉 where X3 is a name for
the newly allocated root cell at line (3), R for the left
subtree, and π.right for the right subtree.

After analyzing the branches separately, we join the re-
sults from the branches. The memory-type for the Leaf-
branch is ∅, and the memory-type for the Node-branch is
〈X3, R, π.right〉. We join these two memory-types by first
collapsing 〈X3, R, π.right〉 to get X3 ṫ (R ⊕̇π.right), and
then joining the two collapsed memory-types X3 ṫ (R ⊕̇
π.right) and ∅. Note that when combining X3 and R ⊕̇π.right,
we use ṫ instead of ⊕̇ : it is because a root cell abstracted
by X3 cannot be in the left or right subtree. So, the function
body has the memory-type X3 ṫ (R ⊕̇π.right).

How about the cells used by copyleft? In the Node-
branch of the case-expression, the root cell π.root of the tree
t is pattern-matched, and at the function call in line (2),
the left subtree cells π.left are used. Therefore, we conclude
that copyleft uses the cells in π.root ṫπ.left.

The last step of each fixpoint iteration is widening: reduc-
ing all the multiset formulas into simpler yet more approx-
imated ones. We widen the result memory-type X3 ṫ (R ⊕̇
π.right) and the used cells π.root ṫπ.left with the records
B(R) = π.left ṫX2 and B(π) = A which means R v π.left ṫ
X2 and π.root ṫ (π.left ⊕ π.right) v A.

X3 ṫ (R ⊕̇π.right)
v X3 ṫ ((π.left ṫX2) ⊕̇π.right) (R v π.left ṫX2)
= X3 ṫ (π.left ⊕̇π.right) ṫ (X2 ⊕̇π.right)

( ⊕̇ distributes over ṫ )
v X3 ṫA ṫ (X2 ⊕̇π.right) (π.left ⊕̇π.right v A)
v X3 ṫA ṫ (X2 ⊕̇A) (π.right v A)
= X3 ṫA ṫX2 ṫA (A and X2 are disjoint)

Finally, by replacing all the newly introduced Xi’s by a fixed
name X and by removing redundant A and X, we obtain
A ṫX. The used cells π.root ṫπ.left is reduced to A because
π.root ṫπ.right v A

Although information is lost during the widening step,
important properties of a function still remain. Suppose
that the result of a function is given a multiset formula L
after the widening step. If L does not contain the name
A for the input tree, the result tree of the function cannot

overlap with the input.1 The presence of ⊕̇ and A in L
indicates whether the result tree has a shared sub-part: if
neither ⊕̇ nor A is present in L, the result tree cannot have
shared sub-parts, and if A is present but ⊕̇ is not, the result
tree can have a shared sub-part only when the input has.2

2.3.2 Step Two: Free Commands Insertion
Using the result from the memory-usage analysis, our

transformation algorithm inserts free commands, and adds
boolean parameters β and βns (called dynamic flags) to each
function. The dynamic flag β says that a cell in the argu-
ment tree can be safely deallocated, and βns that no sub-
parts of the argument tree are shared. We have designed
the transformation algorithm based on the following princi-
ples:

1. We insert free commands right before allocations be-
cause we intend to deallocate a heap cell only if it can
be reused immediately after the deallocation.

2. We do not deallocate the cells in the result.

Our algorithm transforms the copyleft function as fol-
lows:

fun copyleft [β, βns] t =

case t of

Leaf => Leaf (1)

| Node (t1,t2) =>

let p = copyleft [β ∧ βns, βns] t1 (2)

in (free t when β; Node (p,t2)) (3)

The algorithm decides to pass β ∧ βns and βns in the re-
cursive call (2). To find the first parameter, we collect con-
straints about conditions for which heap cells we should not
free. Then, the candidate heap cells to deallocate must be
disjoint with the cells to preserve. We derive such disjoint-
ness condition, expressed by a simple boolean expression.
A preservation constraint has the conditional form b ⇒ L:
when b holds, we should not free the cells in multiset L be-
cause, for instance, they have already been freed, or will be
used later. For the first parameter, we get two constraints
“¬β ⇒ A” and “true ⇒ X3 ṫ (R ⊕̇π.right).” The first con-
straint means that we should not free the cells in the ar-
gument tree t if β is false, and the second that we should
not free the cells in the result tree of the copyleft function.
Now the candidate heap cells to deallocate inside the recur-

sive call’s body are π.left\̇R (the heap cells for t1 excluding
those in the result of the recursive call). For each constraint
b ⇒ L, the algorithm finds a boolean expression which guar-

antees that L and π.left\̇R are disjoint if b is true; then, it
takes the conjunction of all the found boolean expressions.

• For “¬β ⇒ A,” the algorithm concludes that A and

π.left\̇R may overlap because π.left v A. Thus the
algorithm takes “¬β ⇒ false,” equivalently, β.

• For “true ⇒ X3 ṫ (R ⊕ π.right),” the algorithm finds
out that flag βns ensures that X3 ṫ (R ⊕ π.right) and

π.left\̇R are disjoint:

1This disjointness property of the input and the result is
related to the usage aspects 2 and 3 of Aspinall and Hof-
mann [1].
2This sharing information is reminiscent of the “polymor-
phic uniqueness” in the Clean system [2].



– X3 and π.left\̇R are disjoint because π.left v A,
and X3 and A are disjoint;

– R and π.left\̇R are disjoint because R is excluded

in π.left\̇R; and

– π.right and π.left\̇R are disjoint when βns is true
because π.right ⊕ π.left v A and βns ensures no
sharing of argument A’s sub-parts.

Thus the algorithm takes “true ⇒ βns,” equivalently,
βns.

Therefore the conjunction β∧βns becomes the condition for
the recursive call body to free a cell in its argument t1.

For the second boolean flag in the recursive call (2), we
find a boolean expression that ensures no sharing of a sub-
part inside the left subtree t1. We use the memory-type
π.left of t1, and find a boolean expression that guarantees
no sharing inside the multiset π.left; βns becomes such an
expression because π.left v A and βns ensures no sharing of
argument A’s sub-parts.

The algorithm inserts a free command right before “Node
(p,t2)” at line (3), which deallocates the root cell of the
tree t. But the free command is safe only in certain cir-
cumstances: the cell should not already have been freed by
the recursive call (2), and the cell is neither freed nor used
after the return of the current call. Our algorithm shows
that we can meet all these requirements if the dynamic flag
β is true; so, the algorithm picks β as a guard for the in-
serted free command. The process to pick β as its guard is
similar to find the first dynamic flag at line (2).

3. EXPERIMENT NUMBERS
We experimented our insertion algorithm with ML bench-

mark programs which use various data types such as lists,
trees, and abstract syntax trees. We first pre-processed
benchmark programs to monomorphic and closure-converted
[14] programs, and then applied the algorithm to the pre-
processed programs.

We extended the algorithm to treat programs with more
features:

• Our implementation supports more data constructors
than just Leaf and Node. It analyzes heap cells with
different constructors separately, and it inserts twice
as many dynamic flags as the number of constructors
for each parameter.

• For functions with several parameters, we made the
dynamic flag also keep the alias information between
function parameters so that if two parameters share
some heap cells, both of their dynamic flags β are
turned off.

• For higher-order cases, we simply assumed the worst
memory-types for the argument functions. For in-
stance, we just assumed that an argument function,
whose type is tree→ tree, has memory-type ∀A.A →
∃X.(L, L) where L = (A ⊕̇A) ṫ (X ⊕̇X).

• When we have multiple candidate cells for dealloca-
tion, we chose one whose guard is weaker than the
others. For incomparable guards, we arbitrarily chose
one.

3.1 Analysis Cost, Memory Reuse Ratio, and
Memory Peak

The cost of the analysis and transformation ranges from
1,582 to 29,000 lines per seconds in Pentium4 (column A in
Figure 2.(a)). The graph (b) in Figure 2 indicates that the
analysis and transformation cost can be less than square in
the program size in practice although the worst-case com-
plexity is exponential.

Our analysis and transformation achieves the memory reuse
ratio of 3.8% to 88.6% (column C in Figure 2.(a)). For the
two cases whose reuse ratio is low (queens and kb), we found
that they have too much sharing. The kb program heavily
uses a term-substitution function that can return a shared
structure, where the number of shares depends on an ar-
gument value (e.g. a substitution item e/x has every x in
the target term share e). Other than such cases, our ex-
perimental results are encouraging in terms of accuracy and
cost.

Our transformation reduces the memory peak from 0.0%
to 71.9% (column E in Figure 2.(a)). The memory peak
is the maximum number of live cells during the program
execution. For sieve, merge, qsort, and msort, both reuse
ratios and peak reductions are high. For queens and kb,
both reuse ratios and peak reductions are low. But for life
and mirage, reuse ratios and peak reductions do not match.
For mirage, its reuse ratio is high (84.4%) whereas its peak
reduction is low (2.6%). This is because, as seen in the
graph (f) of Figure 3, the transformed mirage fails to reduce
several peaks in the second phase. For life, the situation
is reversed. This is because, as seen in the graph (g) of
Figure 3, it always reuses only those cells that contribute to
the memory peak.

3.2 Garbage Collection and Execution Over-
head

The GC portion of execution time of the benchmark pro-
grams ranges from 1.1% to 81.3% and our transformation
reduces the GC time by −1.6% to 88.5%. The reduction
of GC time by our transformation is co-related to memory
reuse ratio: the reduction of total GC time is high when the
reuse ratio is high. See column C in Figure 4.(a) and (b),
and graph (c) in Figure 4.

The runtime overhead of the added dynamic flags are not
much; it ranges from −2.4% to 8.3% of the program’s to-
tal execution time. See column D of Figure 4.(a) and (b).
We isolated the overhead by measuring the execution time of
transformed program without executing the memory reuses.
We implemented a set of dynamic flags as a bit-vector but we
did not do any other optimization such as a constant prop-
agation on dynamic flags. We, at the moment, have no ex-
planation about the unexpected case that the dynamic flags
actually improve the execution time up to 2.4% (k-eval,
column D of Figure 4.(b)). We suspect some pressure on
the entangled code generation for the Sun’s UltraSparc has
been released by the extra flag parameters to functions.

Our transformation has a mixed influence on the pro-
gram’s total execution time. See column E of Figure 4.(a)
and (b), and the graph (d) in Figure 4. Our transformation
can improve the program’s execution time by up to 25.4%,
and can also slowdown the execution by up to 42.9%. For
qsort whose both reuse ratio and the GC portion in the to-
tal execution time are high, our transformation shortens the
runtime by 25.4%. For mirage whose reuse ratio is high but



program lines A B C C/B D E (D-E)/E
analysis cost allocation reuse memory peak memory peak (reuse)

sievea 29 0.001 30829 26423 85.7% 690 300 56.5%
mergeb 40 0.001 5860 2930 50.0% 1197 606 49.4%
qsortc 41 0.001 35997 30148 83.7% 1189 334 71.9%
queensd 44 0.003 34641 1807 5.2% 255 255 0.0%
msortc 73 0.003 21506 19064 88.6% 714 321 55.0%
miragee 245 0.015 20381 16857 84.4% 1398 1361 2.6%
lifef 366 0.017 10036 875 8.7% 2346 1746 25.6%
k-evalg 645 0.220 52894 16684 31.5% 1044 944 9.6%
kbf 808 0.095 24473 940 3.8% 27125 26501 2.3%
nucleicf 3019 0.488 31092 5491 17.7% 103677 89352 13.8%

(a) Analysis cost, memory reuse ratio, and memory peak reduction
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A seconds: the cost of our analysis and transformation, which is compiled by the Objective Caml 3.06 native com-
piler [13] and executed in Intel Pentium4 3GHz, Linux RedHat 9.0.

B kilo words: the amount of total allocated heap cells during the execution of original programs.
C kilo words: the amount of reused heap cells by our transformation.
D words: the maximum number of live cells during the execution of the original programs. It is profiled by our

interpreter which has the same memory layout as that of Objective Caml 3.06 compiler [13]. In order to profile it in
our interpreter, we reduce the parameters of benchmark programs.

E words: the maximum number of live cells during the execution of the programs transformed by our algorithm.
a prime number computation by the sieve of Eratosthenes (size = 30000, iteration=50)
b merging two ordered integer lists to an ordered list (size = 10000, iteration=50)
c quick/merge sort of an integer list (size=10000, iteration=50)
d eight queen problem (iteration=300)
e an interpreter for a tiny non-deterministic programming language (iteration=100)
f the benchmark programs from Standard ML of New Jersey [20] benchmark suite: life (generation=5, itera-

tion=100), kb (iteration=5), and nucleic.
g an interpreter for a tiny imperative programming language (iteration=200)

Figure 2: Experimental results.

GC portion is almost nothing, our transformation increases
its runtime by 42.9%.

The memory reuse speeds up five benchmark programs by
reducing the GC time. merge, qsort, and msort become fast
(74.6%–96.6%) because our transformation reduces much
(38.4%–88.5%) of their big GC portion (50.7%–81.3%). The
cases of nucleic and sieve are similar but they become
slightly fast or slow due to the overhead of dynamic flags
and memory reuses (98.4%–114.1%).

In our implementation, a memory reuse is more expensive
than an allocation. We modify Objective Caml compiler [13]
to initialize every new memory cell as mutable cell, and to
translate a memory reuse command into the mutable-cell-

update operator (<-) in Objective Caml. In the Objective
Caml compiler, a mutable-cell-update takes more cost than
an allocation does. It is compiled into codes for a function
call that does many bookkeepings. Since Objective Caml
employs a two generational garbage collection which main-
tains a reference table to keep pointers from the old gener-
ation to the young generation, in order to store a pointer
to the young generation into a cell in the old generation,
we have to update the reference table. Moreover, since the
old generation heap of Objective Caml has an incremen-
tal mark-and-sweep garbage collector, in order to remove a
pointer to a cell in the old generation, we have to modify the
cell’s marking tag. Although our current implementation is
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Figure 3: The memory peak behavior: the numbers of live memory cells from start to the end. The upper

dotted lines are the original program’s and the lower solid lines are those of the programs transformed by

our algorithm.



program reuse A B B/A C (B−C)/B D (A−D)/A E (A−E)/A
ratio runtime GC time GC time (reuse) runtime (flags) runtime (reuse)

sieve 85.7% 0.78 0.388 49.7% 0.159 59.0% 0.81 -3.8% 0.89 -14.1%
merge 50.0% 0.24 0.172 71.7% 0.106 38.4% 0.26 -8.3% 0.23 4.2%
qsort 83.7% 0.67 0.468 69.9% 0.054 88.5% 0.70 -4.5% 0.50 25.4%
queens 5.2% 0.33 0.126 38.2% 0.128 -1.6% 0.34 -3.0% 0.35 -6.1%
msort 88.6% 0.39 0.212 54.4% 0.048 77.4% 0.40 -2.6% 0.35 10.3%
mirage 84.4% 0.21 0.011 5.2% 0.002 81.8% 0.22 -4.8% 0.30 -42.9%
life 8.7% 0.49 0.008 1.6% 0.008 0.0% 0.51 -4.1% 0.54 -10.2%
k-eval 31.5% 0.41 0.007 1.7% 0.006 14.3% 0.42 -2.4% 0.48 -17.1%
kb 3.8% 0.40 0.122 30.5% 0.118 3.3% 0.42 -5.0% 0.43 -7.5%
nucleic 17.7% 0.45 0.187 41.6% 0.135 27.8% 0.45 0.0% 0.45 0.0%

(a) Intel Pentium4 3Ghz, Linux RedHat 9.0

program reuse A B B/A C (B−C)/B D (A−D)/A E (A−E)/A
ratio runtime GC time GC time (reuse) runtime (flags) runtime (reuse)

sieve 85.7% 7.15 2.817 39.4% 1.224 56.5% 7.44 -4.1% 7.11 0.6%
merge 50.0% 1.69 1.374 81.3% 0.777 43.4% 1.75 -3.6% 1.42 16.0%
qsort 83.7% 4.97 3.205 64.5% 0.385 88.0% 5.08 -2.2% 4.10 17.5%
queens 5.2% 2.82 0.950 33.7% 0.954 -0.4% 2.99 -6.0% 3.01 -6.7%
msort 88.6% 2.96 1.501 50.7% 0.346 76.9% 3.10 -4.7% 2.86 3.4%
mirage 84.4% 1.85 0.073 3.9% 0.016 78.1% 2.00 -8.1% 2.25 -21.6%
life 8.7% 5.19 0.057 1.1% 0.057 0.0% 5.21 -0.4% 4.86 6.4%
k-eval 31.5% 3.78 0.044 1.2% 0.039 11.4% 3.69 2.4% 3.97 -5.3%
kb 3.8% 2.85 0.727 25.5% 0.727 0.0% 2.96 -3.9% 2.99 -4.9%
nucleic 17.7% 2.70 1.158 42.9% 0.797 31.2% 2.71 -0.4% 2.70 0.0%

(b) Sun UltraSparc 400Mhz, Solaris 2.7
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A seconds: the runtime of Objective Caml 3.06 native code of the original program.
B seconds: the cost of garbage collection of the original program.
C seconds: the cost of garbage collection of the program transformed by our algorithm.
D seconds: the runtime of the program transformed by our algorithm without memory reuses.
E seconds: the runtime of the program transformed by our algorithm.

Figure 4: Runtime changes by memory reuses.

not optimized, we think that it is in general impossible to
implement memory reuses cheaper than an allocation in the
Objective Caml compiler.

We think that mirage becomes slow (142.9% in Pentium4,
121.6% in UltraSparc) because of such expensive implemen-
tation of memory reuses. The reuse ratio of mirage is high
(84.4%) but its GC time is almost nothing (3.9–5.2%). Thus
our transformed mirage reuses many memory cells resulting
in a much accumulated mutable-cell-update overhead that
are not offset. For the same reason, k-eval and life be-

come slow, but their slowdown are not so much as in mirage

because their reuse ratios are not so high as mirage’s.

3.3 Co-relations

• Graph (c) in Figure 2: if our transformation reuses
much then it results in much reduction in memory
peak. But some exceptions are possible; if reuses fo-
cus on those not contributing to the memory peak they
can result in small reduction in memory peak.



• Graph (c) in Figure 4: if our transformation reuses
much then it results in much reduction in the total
garbage collection time.

• Graph (d) in Figure 4: if our transformation reuses
much and the portion of the garbage collection time is
big, then program’s execution time reduction occurs.

4. FUTURE WORK
We are currently implementing the analysis and transfor-

mation inside our nML compiler [16] to have it used in daily
programming. The main issue in the implementation is to
extend our method to handle polymorphism and mutable
data structures. To extend our method for polymorphism,
we need a sophisticated mechanism for dynamic flags. For
instance, a polymorphic function of type ∀α. α → α can
take a value with two constructors or one with three con-
structors. So, this polymorphic input parameter does not fit
in the current method because currently we insert twice as
many dynamic flags as the number of constructors for each
parameter. Our tentative solution is to assign only two flags
to the input parameter of type α and to take conjunctions
of flags in a call site: when a function is called with an input
value with two constructors, instead of passing the four dy-
namic flags β, βns, β′, and β′

ns, we pass β ∧β′ and βns ∧β′

ns.
For mutable data structures, we plan to take a conservative
approach similar to that of Gheorghioiu et al. [6]: heap cells
possibly reachable from modifiable cells cannot be reused.
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