
Combining Generics, Pre-compilation and Sharing
Between Software-Based Processes

Andrew Kennedy Don Syme
Microsoft Research Microsoft Research

Cambridge, U.K. Cambridge, U.K.
akenn@microsoft.com dsyme@microsoft.com

ABSTRACT
We describe problems that have arisen when combining the
proposed design for generics for the Microsoft .NET Com-
mon Language Runtime (CLR) with two resource-related
features supported by the Microsoft CLR implementation:
application domains and pre-compilation. Application do-
mains are “software based processes” and the interaction
between application domains and generics stems from the
fact that code and descriptors are generated on a per-
generic-instantiation basis, and thus instantiations consume
resources which are preferably both shareable and recover-
able. Pre-compilation runs at install-time to reduce startup
overheads. This interacts with application domain unload-
ing: compilation units may contain shareable generated in-
stantiations. The paper describes these interactions and the
different approaches that can be used to avoid or ameliorate
the problems.

1. INTRODUCTION
Parametric polymorphism, also known as “generics”, is an

important new feature of the C] programming language [12,
6] and also the .NET Common Language Runtime (CLR) [7]
that underpins C] and other languages [9]. In previous
work, the authors presented the design and implementation
of generics for C] and the .NET CLR [10] — in this paper
we call this design Generic IL. The primary novelty of the
design is the integration of parameterized types and poly-
morphic methods into the type system of the intermediate
language (IL) implemented by a virtual machine, or runtime.
The implementation techniques described in [10] are novel
in many ways: they include “just-in-time” specialization of
classes and code, code-sharing between distinct instantia-
tions of generic classes, and the efficient implementation of
runtime types using dictionaries of type representations and
computations.

This paper describes the interaction between Generic IL
and two resource-related features supported by the Mi-
crosoft CLR implementation: code sharing between software-

isolated processes (known as application domains) and pre-
compilation.

In this section we describe Generic IL, application do-
mains and pre-compilation, both by reference to the way
these features appear in the prototype CLR implementation
performed by the authors and also by describing the under-
lying assumptions that are relevant to this paper.

1.1 Generic IL
Generic IL is a set of extensions to the instruction set,

metadata format and semantic rules for the Common IL of
the .NET Framework. In this paper we ignore most of the
design details of Generic IL and consider only the following
aspects of the system:

• We assume a high-level language ultimately executed
using native code (e.g. a high-level IL compiled using
JIT compilation).

• We assume the language allows named generic class
definitions, e.g. List<T>, and the instantiation of these
types in client code.

• We assume the language supports exact runtime type
semantics, i.e. casts and instance-of tests where cast-
ing to List<string> gives accurate results.

• We assume the language permits instantiations at non-
reference types, i.e. e.g. List<int>, with the expec-
tation that using these types gives “natural” perfor-
mance, i.e. that faster code is generated for these
types, and that expensive box/unbox operations are
not typically needed.

• We consider cases where execution can require the dy-
namic loading of components, where new components
may declare new instantiations of generic code.

• We assume IL code is arranged into components called
assemblies, which are the unit of software installation
and versioning. In this paper we use the words assem-
bly and component interchangeably.

It is possible to implement Generic IL in a number of funda-
mentally different ways, and the choice affects the severity
of the interactions described in this paper. However the in-
teractions never disappear altogether for any of the design
choices. Here we recap the primary implementation tech-
niques for Generic IL:

No Code Specialization (Uniform Representations)
There are several variations on this technique, with



a common pattern that there is a 1:1 correspondence
between generic code and native code, i.e. only
one copy of code is required for a generic type,
which is used by all instantiations. It is used in
many implementations of parametric polymorphism,
and also in GJ [5]. Under some variations of this
scheme, all values which are statically of variable
type are represented as heap-allocated values. The
advantage of this technique is that only one copy
of code need ever be generated, and this code can
be associated with the component which declares
the named generic type. However this design choice
has major ramifications for performance, especially
when generic collection classes are instantiated with
unboxed types. Furthermore, although only one
copy of code is needed, type descriptors may still be
required for each generic instantiation, in order to
implement exact runtime type semantics.

Full Code Specialization This technique generates a
new copy of code for each specialization. A prelim-
inary performance analysis of the tradeoffs vis-a-vis
full code sharing has been performed by Odersky et
al. [15]

Mixed Code Specialization/Sharing Mixed code shar-
ing/specialization places instantiations in equivalence
classes of compatible representations.1 For example,
two types may be considered compatible if they are
identical after erasing all reference types to ref (“ref-
erence type”), e.g. List<string> and List<Widget>

are compatible if both string and Widget are refer-
ence types. Here ref is known as a representation
type. Similar techniques have been applied in other
contexts [3, 19, 11].

The prototype CLR implementation modified by the authors
uses mixed code specialization/sharing. For most of this pa-
per we simply assume that some kind of code specialization
is being used, however in Section 5 we consider why code
sharing helps to reduce the severity of the issues described
in this paper.

1.2 Application Domains
Application domains are the CLR’s notion of “in-process

process” and can be unloaded, reclaiming the memory used
by code and other VM data structures (which we will col-
lectively refer to as simply “resources”).2 Isolation between
application domains is ensured by type safety, and in many
situations communication between application domains (e.g.
remoted calls) can be performed more efficiently than be-
tween traditional operating system processes. They give
large performance gains when used correctly, e.g. when used

1This kind of code sharing is orthogonal to the main kind
of resource sharing considered in this paper, i.e. resource
sharing between application domains.
2“Other VM data structures” is used in this paper to cover
the range of supporting vtables, caches, lookup tables and
thunks used in a VM implementation, especially to imple-
ment features such as remote invocation and code access
security. About all that one needs to know is the affinity of
these structures to particular IL declarations, e.g. that these
structures can be variously per-thread, per-method, per-
instantiation, per-type-definition, per-assembly, per-domain
or per-process.

as part of a long-running server process, or when used as a
temporary site of computation for code generated on the fly
(complex regular expressions are evaluated in this way on
the CLR). Typically objects may not migrate between do-
mains, but application domains do share a common garbage
collected heap. Application domains are also related to the
management of code-access security permissions, and they
are widely used in server-side programming.

Software components (assemblies) can be loaded as
“shared” (also called domain neutral) and the native code
for these components is shared between application domains.
Shared components must form a strongly connected graph.
Different application domains may have different sharing
policies, an additional complexity not addressed in this pa-
per.

Each application domain has its own copy of each static
field — this is required to ensure domain isolation. This
means that when shared code executes an instruction such
as a “load-static-field” the results depend on the current ap-
plication domain, and a domain local store (DLS) operation
is needed, typically implemented as a table lookup based
on an index stored in data private to the currently execut-
ing thread. Thus shared code incurs a performance penalty,
with the aim that this is not significant in comparison to
the savings achieved by reduced memory consumption in
multi-application-domain scenarios. In the prototype CLR
implementation modified by the authors these DLS opera-
tions are highly optimized but are still slower than the cor-
responding non-DLS actions — for example a DLS lookup
for a static field might take 12 processor clock cycles, where
the corresponding direct lookup would take 1.3 While few
computations are completely dominated by such accesses,
the costs may still be incurred on dominant paths such as
main loops.

There is a large body of work on supporting features sim-
ilar to application domains in the context of other virtual
machine designs, most recently those related to Java, but
also many older projects such as SPIN (Modula-3) [4]. An
excellent summary is provided in [2], where a huge range
of systems is described, and in particular Alta, K0 and the
J-Kernel [18]. Some entire operating systems are based on
virtual machines [8]. All of these designs typically combine
a process model with protection, resource management and
communication. On some occasions these designs aim for
more stringent accounting of resource usage than is provided
by application domains, e.g. hard limits can be placed on
the memory usage of software processes [1], or a GC may be
modified to track and limit the dynamic memory used by an
application [16].

1.3 Pre-compilation
Pre-compilation is a compilation operation typically run

at install-time and was designed originally to reduce startup
overheads related to JIT compilation. More recently, the
increasing use of CLR-based code has seen an increase in
the number of virtual machine processes that are likely to
be running on any one machine, and pre-compilation is a
convenient route to enable code and other pre-compiled VM
data structures to be shared between multiple VM processes,

3These “indicator” figures do not, of course, directly reflect
the true costs of operations in modern memory hierarchies,
e.g. an increase in pipeline stalls and/or cache misses.



since pre-compilation produces shareable DLLs.4

Pre-compilation is an emerging area of virtual machine
implementation, and the architectural choices involved
supporting a mixture of pre-compiled and dynamically-
generated code have only recently begun to be explored, for
example see the “quasi-static compilation” supported by the
QuickSilver system [17]. (The pre-compilation techniques
implemented by the Microsoft CLR implementation deserve
study in their own right, partly because of the install-time
nature of the service, and partly because of the care that has
to be taken with regard to the interactions with versioning,
security and other aspects of the VM design.)

In this paper we assume a model of pre-compilation where
each component installed on the machine is pre-compiled
at install-time.5 Furthermore (and this is significant) we
assume that the pre-compilation of each component must
produce exactly one native binary that is suitable for man-
agement by the OS (e.g. a DLL on a Windows platform).

1.4 Aims of this paper and some additional
assumptions

This paper describes problems that arise when you must
support generics, application domains and pre-compilation
within a virtual machine, under various assumptions about
each of these features. We also make some additional as-
sumptions about the nature of the VM implementation in
question. These assumptions are true of the prototype CLR
implementation and are typical of other implementations of
OO languages. (We discuss the ramifications of these as-
sumptions in Section 5):

Unique type descriptors Implementations of OO lan-
guages typically feature both compiled code and type
descriptors. We assume type descriptors can be com-
pared for equality by pointer comparison. In particu-
lar, we assume descriptors for constructed types such
as int[] or List<int> need to be “hash-consed” even
if they appear in multiple dynamically loaded assem-
blies. We assume this property need only hold true
within each application domain, i.e. that different ap-
plication domains may use different type handles for
the same constructed type.

Type descriptors are Method Tables. We assume
that type descriptors point to code, e.g. that type
descriptors are traditional vtable-like structures. This
is relevant because it means that type descriptors
cannot outlive the code they point to.

No GC of code or descriptors. Application domains
address the problem of resource reclamation, and
garbage collection techniques an appealing alternative
approach to this kind of problem. However, just
as processes in an OS do not require sophisticated

4This kind of inter-process sharing is distinct from the inter-
app-domain/intra-process sharing referred to elsewhere in
this paper
5It can be assumed that versioning is correctly managed,
i.e. that all dependent assemblies are available at install-
time, and if any updates to installed assemblies then any
native images are invalidated and/or regenerated. Fortu-
nately generics do not seem to create any extra difficulties
with regard to the management of native image in the pres-
ence of versioning.

GC techniques, so application domains can be im-
plemented without applying GC techniques to code
or descriptors: unloading an application domain
simply involves freeing all the data structures used
by that domain. Furthermore shared components can
also be unloaded when all application domains that
reference those components have been unloaded —
this only requires simple reference counting on shared
assemblies. This is a relatively simple structural
approach, and the aim of this paper is to investigate
the choices when combining this simple approach with
constructed types.

There are a range of solutions to the problems described
here, with various tradeoffs with regard to throughput,
memory usage, completeness and complexity. Additional
possibilities arise if one is willing to change some of the
assumptions indicated in the preceding sections. In order
to keep things tractable we have concentrated on the tech-
niques we have actively explored while implementing these
features with a prototype Common Language Runtime.

1.5 An example of the problems that can occur
We now use a small example to illustrate some of the prob-

lems that can occur when combining the features described
so far. We use C] syntax. First, let us define type defini-
tions and some code fragments that occur in three shared
components:

Shareable Assembly 0 (SA0)

class List<T>

{
T[] elems;

void List(T[] _elems) { elems = _elems; }
}

Shareable Assembly 1 (SA1)

class SortAlgorithms1

{
static void Sort1(List<int> x) ...

static void Sort2(List<string> x) ...

}

Shareable Assembly 2 (SA2)

class SortAlgorithms2

{
static void Sort(List<int> x)

{ ... SortAlgorithms1.Sort1(x) ... }
}

We assume execution involves generating native code
for each instantiation of the List constructor, and gen-
erating unique type descriptors for List<int>, int[],
List<string> and string[]. Next assume we have two ap-
plications which are loaded as different application domains.
The resources for these are not shared.

Application 1 (App1)

class App1

{
static void Main()

{
int[] a = new int[] { 4,3 };
List<int> b = new List<int>(a);

SortAlgorithms1.Sort(b);



string[] a2 = new string[] { "4","3" };
List<string> b2 = new List<string>(a2);

SortAlgorithms1.Sort2(b2);

}
}

Application 2 (App2)

class Complex

{
Complex(float _x, float _y) { x = _x; y = _y; }
float x;

float y;

}
class App2

{
static void Main()

{
int[] a = new int[] { 4,3 };
List<int> b = new List<int>[](a);

SortAlgorithms2.Sort(b);

Complex[] c = new Complex[] ... ;

List<Complex> a = new List<Complex>(c);

}
}

Importantly, we can ignore the details of the code and deal
with a much simpler view of what the execution and/or com-
pilation of the above code implies:

SA0:

defines List<T>

List<T> requires T[]

SA1:

requires SA0

requires List<int>

requires List<string>

SA2:

requires SA1

requires List<int>

App1:

requires SA1

requires List<int>

requires List<string>

App2:

requires SA2

requires List<int>

requires List<Complex>

Now, assume we execute the following sequence:

Load Application 1

Load Application 2

Unload Application 1

Unload Application 2

We note:

• Loading App1 creates type descriptors List<int>,
int[], List<string> and string[]. These are all
used by the shared component SA1.

• Loading App2 loads further shared code (SA2). This
code uses SA1 and we will assume that it expects

to transact exactly the same type descriptors for
List<int>, int[] as used by SA1 and all other com-
ponents. It also require descriptors for List<Complex>
and Complex[], however these won’t be used by any
other application domain, since the type Complex is an
unshared type.

• When unloading App1 we would like to release type
descriptors List<string> and string[]. However, we
cannot release the type descriptors List<int>, int[]
since they are still in use by shared code running as
part of App2.

Thus we have our first problem: can we recover resources
related to constructed types when application do-
mains unload?

Next, consider what happens if we run the sequence

Pre-compile SA0

Pre-compile SA1

Pre-compile SA2

Load Application 2

Load Application 1

Unload Application 2

Unload Application 1

Let us assume:

• Pre-compiling SA0 does not create any instantiations.

• pre-compiling SA1 places copies of the type descriptors
List<int>, int[], List<string> and string[] into
the pre-compiled image for SA1.

• Pre-compiling SA2 places copies of the type descriptors
List<int>, int[] into the pre-compiled image for SA2.

Now for loading:

• We assume that when we load App2 (which uses
all three shared assemblies) the loader chooses to
use the type descriptors List<int>, int[] from the
pre-compiled image for SA2 and List<string> and
string[] from the pre-compiled image for SA1, i.e.
that the loader chooses these as pointer-unique rep-
resentatives for type descriptors.

• When App1 is loaded, it uses shared code (SA1) also
used by App2 and we assume that shared code expects
to transact the same type descriptors as chosen for
App2.

• When unloading App2 we would like to release the pre-
compiled binary image for SA2. However, App1 is still
making use of resources from that image.

Thus we have our second problem: under what circum-
stances can we utilize pre-compiled shared resources
related to constructed types?

Finally, consider what would happen if we placed a pre-
compiled version of List<int> into the binary image for an
unshared component, e.g. App2. This can lead to the third
major problem: can we utilize pre-compiled resources
from unshared or unloadable pre-compiled binary
images?.

The manifestation of these problems obviously depends on
a number of factors: uniqueness of type handles, for exam-
ple, and in particular whether resources are unique across all



application domains. The remainder of this paper outlines
various approaches to dealing with these problems. We do
not give a quantitative analysis of the options in this paper,
just a description of the problem and a qualitative analysis
of the different characteristics of potential approaches.

2. COMBINING GENERICS AND APPLI-
CATION DOMAINS

The interaction between application domains and gener-
ics stems from the fact that code and/or type descriptors
are generated on a per-instantiation basis, and thus instan-
tiations consume resources which are ideally both shareable
and recoverable. These interactions exist for essentially all
language implementations that combine constructed types,
exact runtime type semantics and some kind of unloadable
processes and would arise when combining a model of pro-
cess in the context of Java-based systems.

2.1 Approach 1: Always share where possible
The simplest approach to dealing with constructed types

in the presence of code-sharing for certain components is to
always share the resources associated with a constructed type
if all the constituent components of the constructed type are
shared.

In particular, assume that generic instantiations are
stored in a table (called the instantiation-table). In the ab-
sence of application domains, this table is global to an en-
tire virtual machine process and resources associated with
instantiations do not need to be collected. However in the
presence of application domains we must decide the lifetimes
for these resources. If the resources are to be shared we need
an instantiation-table that is global across all applications
domains. Resources related to unshared instantiations are
stored in an additional table associated with the application
domain. That is, data structures relating to generic instan-
tiations must be placed in either the application domain or
be “domain neutral”.

An unsound approach is to share all resources associated
with all constructed types. Consider what happens when
a constructed type involves a type from an unshared com-
ponent, e.g. the type List<Complex> from the example in
Section 1.5. If the resources for such a type are shared then
a leak and/or a dangling reference will occur when the un-
shared component is unloaded. Thus we define potentially-
shareable and never-shareable according to the constituent
components involed:

• A constructed type is potentially-shareable if all
the constituent components of the type are defined
in shared components. For example List<int> is
potentially-shareable if both List and int are defined
in shared components.

• A constructed type is never-shareable if one of the con-
stituent components of the type is from an unshared
component. For example List<MyAppType> is never-
shareable if MyAppType is defined in an unshared com-
ponent.

Consider the example from Section 1.5. The potentially-
shareable constructed types required during execution are
List<int>, List<string>, int[] and string[]. The con-
structed types List<Complex> and Complex[] are never-
shareable.

A sound approach is to always share potentially-shareable
instantiations, and indeed this is the basic approach taken
in the prototype CLR implementation performed by the au-
thors.

However this approach reduces the resource reclamation
that can be performed when application domains are un-
loaded, at least if shareable items are not individually col-
lectable, e.g. are placed in a non-collectable global table
as indicated above. In this case the resources associated
with a constructed type such as List<int> will never be col-
lected, regardless of the application domains running. The
resources may be of use to future application domains, and
indeed a common usage pattern for application domains is
to repeatedly load the same program. However, ideally the
resources must be reclaimable when no longer in use.

A refinement to this scheme is to individually reference
count the resources associated with instantiations, just as
shared components are reference counted. However, this re-
lies on the assumption that these resources are “individually
collectable”. We shall see that the individual collectabil-
ity of items is much more difficult in the presence of pre-
compilation.

2.2 Approach 2: Never share
A sound approach which permits reclaiming of resources is

to never share resources associated with instantiations. Note
that resources associated with simple named types can still
be shared — we do not abandon resource sharing between
application domains altogether. That is, each application
domain would have its own copy of the code and descrip-
tors related to each constructed type. This ensures that
all resources used by an application domain are recovered,
since the resources can simply be released when the applica-
tion domain is unloaded. However this comes with a major
cost: uses of these resources from shared code will require
domain local store operations (see Section 1.2). Thus, al-
though this is a structurally sound solution with regard to
resource reclamation, it has problems:

• The extra overhead of DLS operations would ap-
pear high. For example, every operation such as new

List<int> from within domain neutral (shared) code
may incur an additional overhead.

• The approach means resources associated with con-
structed types are never shared between application
domains.

2.2.1 Example
Consider the example from Section 1.5. We can now re-

analyze the behaviour for the following sequence:

Load Application 1

Load Application 2

Unload Application 1

Unload Application 2

We note:

• Loading App1 will create type descriptors List<int>,
int[], List<string> and string[]. These are all
used by the shared component SA1. However, no direct
references to these type descriptors or their associated
code will be baked into the code for SA1 — instead
DLS operations will be used whenever the descriptors



are required. For example, assume the code Sort1 is
a merge-sort algorithm that creates new lists

static void Sort1(List<int> x) {
... Sort1(new List<int> ... ) ...

}

The allocation operation will create an object and will
need to tag this object with the exact type List<int>.
This type descriptor will be found at runtime by a DLS
lookup.

• Loading App2 will load further shared code (SA2). This
code uses SA1, but unlike the analysis in Section 1.5 we
no longer need to expect to transact identical type de-
scriptors for List<int>, int[] to those used by App1.
Thus we can allocate new descriptors for use by App2.
As mentioned in Section 1.5 it will also require descrip-
tors for List<Complex> and Complex[], however these
are always specific to the application domain, since the
type Complex is an unshared type.

• Now, when unloading App1 we can simply release all
type descriptors which are relative to that application
domain.

Thus this approach solves the first problem mentioned in
Section 1.5: we recover resources related to constructed
types when application domains unload.

2.2.2 Refinement: Speculative sharing
A useful refinement to this approach may be to specula-

tively choose to share some potentially-shareable instantia-
tions. In other words we make a global choice and divide
potentially-shareable instantiations into two sets: instantia-
tions always to be shared, instantiations never to be shared.
For example, if an instantiation is referenced by a core sys-
tem library which is never to be unloaded, then we can share
it. Similarly, if a type List<int> is required by the compo-
nent which defines either the type List or the type int then
we know the resources will be required for as long as the con-
stituent types are required, and we can choose to share the
type safely.

We can also speculatively place items in the shareable set,
on the assumption that even if no application domains use
the item then the items are still likely to be used by future
application domains. For example, a common type such
as List<int> might be treated in this way. If this choice is
made sufficiently globally then all DLS overheads associated
with looking up this type can be completely eliminated.

2.2.3 Refinement: Partial sharing
Finally, one can also modify the never-share technique

to share instantiations amongst a subset of application do-
mains. For example, an application domain can “publish”
an item and associate that item with one of its shared com-
ponents. Other application domains may then use that item
if (and only if) they also make use of that shared compo-
nent. This enables some sharing but does not remove the
overheads of DLS operations. We will return to this ap-
proach in Section 4.

3. PRE-COMPILATION AND GENERICS

The remainder of this paper deals with complications that
arise when we combine pre-compilation with the approaches
described in Section 2 to tackle the combination of generics
and application domains. However, first we must describe
the approach taken to pre-compilation for generics.

Generics present problems for pre-compilation, precisely
because the implementation techniques described in [10] rely
on global tables of available instantiations being managed by
the VM. Here we give an overview of the techniques used by
the prototype implementation of GenericIL in the Microsoft
CLR. However, the exact details of the technique are not
essential to this paper — what matters is only the following
fact: some code and/or descriptors are pre-compiled into na-
tive images for client assemblies, rather than into the native
image for the component where the generic code is defined.

There are several approaches possible when combining
pre-compilation with generics. Let us assume that we have
a generic type ClassFromAssembly1<T> and several uses of
this type at instantiations which require different code:

No pre-compilation of instantiations. Don’t pre-com-
pile any instantiations of generic types, relying on dy-
namic JIT specialization and dynamic type descriptor
creation to create all instantiations as necessary.

Pre-compilation into the declaring component.
Selectively pre-compile the code for a small number of
representative instantiations, placing the results of the
compilation into the native image for the component
that declares the generic type. For example, we may
selectively decide to pre-compile the code for the
type representation ClassFromAssembly1<ref> into
Assembly1.

Pre-compilation into client assemblies. Under this
technique, if a component is statically determined to
potentially require an instantiation, then a copy of the
instantiation is compiled into the native image for that
component. For example, if Assembly3 uses instan-
tiation ClassFromAssembly1<ClassFromAssembly2>

then a copy of that instantiation will be compiled
into the native image for Assembly3. An important
optimization is to avoid duplicating any instantiations
which have already been compiled into referenced
assemblies. This process can lead to multiple copies
of code being compiled when two or more assemblies
independently reference an instantiation. We assume
the dynamic loader of the virtual machine ensures
that only one such instantiation is used at run-time.

The prototype CLR implementation uses a mixture of these
techniques: “pre-compilation into the declaring component”
of the code for the <ref> instantiation, combined with “as-
required pre-compilation into client assemblies” for some
other instantiations. Similar techniques are used for descrip-
tors. The aim is to achieve a pre-compilation guarantee that
if particular rules are followed then no runtime compilation
of code will occur.

Pre-compilation may be applied both to shared and un-
shared components. The pre-compiled image for an un-
shared component can be used in at most one application
domain at any one time.



4. COMBINING GENERICS, APPLI-
CATION DOMAINS AND PRE-
COMPILATION

We now come to the final set of interactions studied in
this paper: those that arise when supporting generics, ap-
plication domains and pre-compilation in combination. The
primary additional difficulty caused by pre-compilation with
regard to resource usage and reclamation is that it effectively
“binds together” a set of pre-generated resources into a sin-
gle unit. That is, if any resources in a pre-compiled binary
image are live then the image itself may not be released, e.g.
its file descriptor may not be closed and/or the image may
not unmapped from memory. In effect, using one resource
in a pre-compiled component means using all resources in
that component.6

For a named type (let’s say TypeInAssembly1) this is not
a significant problem, because resources associated with this
type can be accounted to the originating component (in this
case Assembly1). When the component is no longer refer-
enced by any application domains the whole image can be
released. Thus resource usage can be managed at the gran-
ularity of assemblies.

However for constructed types problems arise. When the
resources for an instantiation (say List<int>) are placed
into a pre-compiled image for a component (say a client
component otherwise unrelated to List or int) then the
resources associated with this type effectively become asso-
ciated with the client component. These problems manifest
themselves in a number of concrete ways, which we now
explore in more depth. These problems only arise when
the “always-share” approach from Section 2.1 is used as the
technique for managing the interactions between generics
and application domains.

4.1 Unshared images containing shared re-
sources

There are situations where the approach to pre-
compilation of generics outlined in Section 3 means that
pre-compiled unshared components would contain resources
for potentially-shareable instantiations. For example, if a
unshared component A refers to a potentially-shareable type
List<int> then we would like to generate the resources for
List<int> in the pre-compiled binary for A (we would only
do this if no pre-compilation of List<int> is available in
other pre-compiled images accessible to A). However, if A

is an unshared component then the usefulness of these pre-
compiled resources is limited.

First, resources related to potentially-shareable types but
which are located in an unshared image are of no use to
other application domains: the image is an unshared image,
and no resources from it may be used by other application
domains.

Furthermore, the resources are not necessarily of use
within the context of the application domain itself. This
depends on the approach to combining application domains
and generics, outlined in Section 2:

• If the “always-share” approach from Section 2.1 is used

6Binary image formats are, of course, more flexible than
this, and may contain multiple sections which can be loaded
separately. However, the resources within each section are
still related, and furthermore the image file itself will still
be in use if any of the sections are in use.

then descriptors must be unique across multiple ap-
plication domains. However, as mentioned above de-
scriptors from an unshared pre-compiled binary are
not suitable for use by other application domains.

• If the “never-share” approach from Section 2.2 is used
then no further problems arise: the resources may be
used for the application domain itself. The “partial-
sharing” approach from Section 2.2.3 will also work
correctly.

Thus, if the always-share approach is used for combining
constructed types with application domains, then only lim-
ited pre-compilation guarantees are provided by the ap-
proach to pre-compilation outlined in Section 3. Not all
instantiations placed in pre-compiled images can be used at
runtime, because shared instantiations in unshared images
are of no use. No actual unsoundness arises: it is just that
some instantiations must be dynamically created/compiled
at runtime.

4.2 Shared images containing shared re-
sources

Like unshared components, the pre-compilation for shared
components can involve including resources associated with
constructed types in the pre-compiled images. For example,
if a shared component A refers to a potentially-shareable
type List<int> then we may generate the resources for
List<int> in the pre-compiled binary image for A.

If shared components are never unloaded, then these pre-
compiled resources are always usable (subject to the con-
straint that we only make use of at most one copy of a type
descriptor for any particular instantiation). In this situa-
tion the resources have the same properties as the shared
resources created dynamically for shareable types. This ap-
plies regardless of which of the techniques from Sections 2.1-
2.2.3 is used.

The prototype CLR implementation performed by the
authors did not support the unloading of shared compo-
nents. However, the ideal is that shared components should
be unloadable once they are no longer referenced by any
application domains. If we naively attempt to reach this
ideal by simply unloading shared native images then similar
problems arise to those described above for unshared com-
ponents: we must restrict the use of pre-compiled generic
instantiations from native images, and even weaker pre-
compilation guarantees result.

For example, when using the “always-share” approach, if
we do not take care then pre-compiled shared components
may contribute resources which are then utilized by other,
otherwise unrelated shared components. An example of this
was seen in Section 1.5. This would in turn cause an un-
soundness when the shared components are unloaded. Fur-
thermore, the refinements mentioned in Section 2.1 to ad-
dress the problems of resource reclamation when using the
“always-share” approach assumed that resources associated
with constructed types could be collected individually. How-
ever, pre-compilation breaks this assumption.

Thus, the primary effect of combining the “always-share”
approach with pre-compilation is that we get weaker pre-
compilation guarantees than one would wish for.

5. DISCUSSION AND RELATED WORK



This paper has described issues that have arisen when
prototyping the proposed design for Generic IL with the
application domain and pre-compilation features in a pro-
totype CLR implementation. The main purpose of the pa-
per has been to highlight the existence of these interactions
and to describe the implementation options in a qualita-
tive fashion: if you’re going to implement a version of the
CLR with generics and/or pre-compilation then it will be
important to address these issues! The interactions were
somewhat unexpected: generics is a language feature and
there is little overlap between OS research and this class of
language features. However the interactions are unsurpris-
ing in retrospect: generics consume resources, and resource
management is not always straight-forward. The issues stem
from the fact that code and descriptors are generated on a
per-instantiation basis, and thus instantiations consume re-
sources which are preferably both shareable and recoverable.
Secondly, these resources cannot be accounted for in a way
that fits nicely with existing resource-accounting and recla-
mation mechanisms inside typical CLR implementations.

The issues described arise primarily when using the
“always-share” approach from Section 2.1. The alternatives
we have described look plausible from a design perspective
but need careful analysis with regard to the tradeoffs be-
tween pre-compilation, throughput and memory usage. We
sketch an additional alternative below. Alternatives such
as “never-share” and its refinements would incur extra over-
heads associated with domain-local-store lookup operations,
which need to be closely assessed.

The problems described arose in practice in the prototype
CLR implementation performed by the authors. In practice,
the primary outward effects of these problems were that the
pre-compilation guarantees provided by that system were
slightly weaker than one would wish: unshared components
do not necessarily have all instantiations available as pre-
compiled. In particular, shared resources related to con-
structed types were not pre-compiled, unless they were pre-
compiled into some shared image. A secondary effect was
that resources associated with shared instantiations were
not reclaimed when the application domains that use these
instantiations are unloaded. To some extent, both effects
were already present in the original CLR implementation
on which the prototype was based, because that prototype
supported array types, which also consumed resources on a
per-type basis.

As mentioned in the introduction, our prototype CLR im-
plementation uses shared code between different instantia-
tions of generic code (this is orthogonal to code sharing be-
tween application domains). This greatly reduces the mani-
festation of the above issues: in particular, we pre-compiled
the native code for “reference” instantiations into the image
for the assembly declaring the generic code. This means the
above issues do not appear for the code associated with ref-
erence instantiations, and also means that this code is never
duplicated. By further increasing the level of code sharing
(and in general reducing reliance on per-instantiation re-
sources) it is possible to further improve the properties of
the system.

5.1 Future Work: Non-uniqueness
In Section 1 we made the assumption that type descriptors

and code must be unique within each application domain,
i.e. equality comparisons can be implemented as pointer

equality. Although a full treatment is beyond the scope of
this paper, we mention here that it appears possible that one
can build alternative solutions by weakening this assump-
tion. The primary downsides are (a) a potential for more
expensive exact-runtime type tests and (b) greater mem-
ory usage. The second of these effects can be offset by the
fact that we no longer need to store hash-consing tables to
uniquify items, and by a reduction in the “uniquifying fix-
ups” that need to be applied to pre-compiled code.

However, several issues remain. If resources related to
constructed types need no longer be unique, then how many
copies of resources do we create, and which copy of a descrip-
tor will each component reference? In particular, how many
copies do we need if we are to support full resource reclama-
tion, strong pre-compilation guarantees and minimal DLS-
related overheads? The best approach to use would appear
to be to create one copy of each resource for each component
that directly references a resource, with an optimization that
we can reuse resources from components transitively refer-
enced by a shared component: this is similar to the approach
described for pre-compilation in Section 3, except it would
apply to JIT compilation/loading as well.

It is also interesting to consider other language features
and that may relate to the interactions described in this
paper. For example, even some simple language features
such as exceptions in Standard ML are “generative” to a
minor degree, i.e. they consume resources (such as allocating
an integer tag) as additional code is loaded.

5.2 Future Work: Quantitative analysis
In this paper we have deliberateily used qualitative tech-

niques to describe the choices and tradeoffs in the inter-
nal architectural design for a virtual machine that supports
a combination of generics, application domains and pre-
compilation. Naturally, a thorough quantitative analysis of
the choices is also highly desireable, but was beyond the
scope of this paper.

5.3 Related Work
As discussed in the introduction there is a very large body

of work looking at the boundary between language-based
extensible systems and operating systems — see [2] for an
excellent overview. The issues discussed in this paper would
arise when a model of generics with per-instantiation re-
source usage is combined with almost any of the systems de-
scribed there, and likewise with the addition of both generics
and pre-compilation.

The authors are not aware of work that focuses explic-
itly on resource issues associated with constructed types,
or issues related to pre-compilation. To some extent this is
surprising, since some of the interactions described here also
apply to array types. However, systems such as Java typi-
cally have a model of array types which is not as rich as the
CLR’s — for example in Java there are a limited number
of reference array types, and multi-dimensional array types
are always “jagged”. This means it is normal to implement
JVM array types without using resources for each individual
array type.

Some of the problems described in this paper are similar
to the problem of interning strings across software-based
processes, to the extent that unique pointers are assumed
for type handles. For example, the KaffeOS [1] places a
language limitation on string interning, refusing to intern



strings across software processes, a feature which may be
semantically visible in some situations, though only when
using KaffeOS primitives to communicate or share between
processes. The tradeoffs for string interning are similar to
those described in Section 2.

Surprisingly, the authors have not been able to find work
focused on the problem of supporting C++ template-like
features in the context of dynamic linking and separate com-
pilation, which would also pose a very similar set of problems
to those described here.

5.4 Related Material
The source code for an early version of the prototype im-

plementation referred to in this paper has been made avail-
able as a modification of the “Rotor” CLR implementation
[14, 13].

5.5 Acknowledgements
We would like to thank Sean Trowbridge, Vance Morri-

son, Simon Peyton-Jones, Chris Brumme, Richard Black
and Claudio Russo for helpful discussions related to this
work. We also thanks the referees for their helpful com-
ments and observations.

6. REFERENCES
[1] G. Back, W. C. Hsieh, and J. Lepreau. Processes in

KaffeOS: Isolation, resource management, and sharing
in Java. In Proceedings of the 4th Symposium on
Operating Systems Design and Implementation, San
Diego, CA, Oct. 2000. USENIX.

[2] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and
J. Lepreau. Techniques for the design of Java
operating systems. In Proceedings of the 2000
USENIX Annual Technical Conference, pages
197–210, June 2000.

[3] P. N. Benton, A. J. Kennedy, and G. Russell.
Compiling Standard ML to Java bytecodes. In 3rd
ACM SIGPLAN International Conference on
Functional Programming, September 1998.

[4] B. Bershad, S. Savage, P. Pardyak, E. Sirer,
M. Fiuczynski, D. Becker, C. Chambers, and S. Egger.
Extensibility, safety and performance in the SPIN
operating system. In Symposium on Operating
Systems Principles., pages 267–283, 1995.

[5] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler.
Making the future safe for the past: Adding genericity
to the Java programming language. In C. Chambers,
editor, ACM Symposium on Object Oriented
Programming: Systems, Languages, and Applications
(OOPSLA), pages 183–200, Vancouver, BC, 1998.

[6] ECMA International. ECMA Standard 334: C#
language specification. Available at
http://www.ecma-international.org/

publications/standards/Ecma-334.htm.

[7] ECMA International. ECMA Standard 335: Common
Language Infrastructure. Available at
http://www.ecma-international.org/

publications/standards/Ecma-335.htm.

[8] M. Golm, M. Felser, C. Wawersich, and J. Kleinoder.
The JX operating system. In USENIX Annual
Technical Conference, pages 45–58, June 2002.

[9] A. Hejlsberg. The C] programming language. Invited
talk at Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), 2002.

[10] A. J. Kennedy and D. Syme. Design and
Implementation of Generics for the .NET Common
Language Runtime. In Programming Language Design
and Implementation. ACM, 2001.

[11] X. Leroy. The effectiveness of type-based unboxing. In
Workshop on Types in Compilation, Amsterdam, June
1997.

[12] Microsoft Corporation. An introduction to C#
generics. See website at
http://msdn.microsoft.com/vcsharp.

[13] Microsoft Corporation. The Microsoft Shared Source
Common Language Infrastructure (Rotor). See
website at http://msdn.microsoft.com/net/sscli.

[14] Microsoft Research, Cambridge. Gyro: Generics for
the SSCLI. See website at
http://research.microsoft.com/projects/clrgen.

[15] M. Odersky, E. Runne, and P. Wadler. Two ways to
bake your pizza — translating parameterised types
into Java. In Generic Programming, pages 114–132,
1998.

[16] D. Price, A. Rudys, and D. Wallach. Garbage collector
memory accounting in language-based systems.
Technical Report TR02-407, Dept. of Computer
Science, Rice University, November 2002.

[17] M. J. Serrano, R. Bordawekar, S. P. Midkiff, and
M. Gupta. Quicksilver: a quasi-static compiler for
Java. In Conference on Object-Oriented, pages 66–82,
2000.

[18] P. Tullmann and J. Lepreau. Nested Java processes:
OS structure for mobile code. In Eighth ACM
SIGOPS European Workshop, Sintra, Portugal, 1998.

[19] M. Viroli. Parametric polymorphism in Java: an
efficient implementation for parametric methods. In
Selected Areas in Cryptography, pages 610–619, 2001.


