
lfd infer: an Implementation of a
Static Inference on Heap Space Usage

Steffen Jost
LMU München, Institut für Informatik, Oettingenstraße 67, 80538 München, Germany

jost@informatik.uni-muenchen.de

ABSTRACT
We will exhibit an implementation of the static prediction
of heap space usage for first-order functional programs as
proposed by M. Hofmann and S. Jost in 2003.

The implementation shows that this static inference can
be implemented efficiently and is able to identify upper
bounds on the consumption of heap memory for a large
range of example programs. We will use these examples
to investigate the inference’s strengths and weaknesses.

Furthermore, this implementation extends the theoretic
work by including annotation-related subtyping and arbi-
trary recursive data types.

1. INTRODUCTION
In [7], M. Hofmann and S. Jost presented a static inference

for heap space bounds on first-order functional programs.
We shall quickly recall the basic ideas of this inference by
considering a small program example.

Let us consider the heap space usage of the well known In-
sertionsort algorithm written in the experimental language
Camelot [19], an ML-dialect with memory primitives, as
shown in figure 1. We will comment more on Camelot soon
in section 1.3.

let insert e l =

match l with [] -> e::[]

| (h::t)@_ -> if h >= e then e::(h::t)

else h::(insert e t)

let sort l =

match l with [] -> [] | h::t -> insert h (sort t)

Figure 1: Insertionsort

The function sort takes a list of integers and inserts the
head h of the list into the recursively sorted tail t at the
right place by using insert. This function takes an integer
e and a (presumably sorted) list l and traverses l until it

reaches an element h of l that is bigger than or equal to e.
In this case it inserts e before h in the list.

We are interested in the heap space consumption of this
program, so we must fix a memory model first: Assume
integers are unboxed; while a list node consisting of an in-
teger and a pointer to the next node of the list consumes an
atomic portion of heap space that we will refer to as a heap
cell. Furthermore assume that the empty list is represented
by a nil pointer and therefore does not need any heap space
for storing.

We could have assumed that a list node rather requires
two heap cells for storing, one for the pointer and one for
the integer. In fact, any nonnegative number of heap cells is
acceptable, depending solely on the desired memory model.
Note that the memory model is not inherent to the inference,
therefore we speak in terms of heap cells rather than an
absolute measure. The size of a heap cell determines our
finest grain of measurement. Applying the inference to the
same program using different memory models will produce
different results, of course.

Function insert has three paths of computation: The
first, when l is empty, uses up one heap cell for storing e

on top of an empty list. The second path, the then-branch,
clearly uses two heap cells for storing h and then e on to of
t, while the third one, the else-branch, uses up one heap
cell again.

Although we do not want sort to deallocate its input, it
is reasonable to deallocate the interim sorted partial lists.
Hence we allow insert to deallocate the heap cell where h

was stored in, which we signify by writing @_ in the cor-
responding match branch. Thence this heap cell is now
available for use in one of the subsequent storing opera-
tions. Note that we merely care for the amount of heap
cells available, so we assume that deallocated heap cells are
remembered in a freelist or by another suitable mechanism.

So now all branches of computation of insert only con-
sume one heap cell, except for the else-branch which
does not use up heap memory at all, but since insert

calls itself recursively in this branch, we deduce that ev-
ery (‘initial’) call to insert uses up precisely one heap
cell. We record this information, that a call to function
insert consumes one heap cell and returns zero unused
heap cells, within the type of the function by writing:
insert: 1, int -> list -> list, 0;

Now we have to consider the heap space consumption of
sort. We could write @_ in its pattern match as well, and
pass the thus gained heap cell on to insert as a special ar-
gument, but as mentioned before, for a reason which eludes

insert: 1, int -> list[Cons(int,#,0)|Nil(0)]

-> list[Cons(int,#,0)|Nil(0)], 0;

sort : 0, list[Cons(int,#,1)|Nil(0)]

-> list[Cons(int,#,0)|Nil(0)], 0;

The occurring 1 in the type of sort tells us that executing
sort may allocate a number of fresh heap cells equal to the
length of its input list, i.e. one heap cell per Cons-node of
the input list.

The 1 in the type of insert tells us that a call to insert

may allocate one heap cell during its execution (including
all possible subcalls).

For brevity, we might sometimes omit printing the name
of each constructor within an annotated type, and print
only the annotated types of its arguments, e.g. we write
list[int,#,7|8] instead of list[Cons(int,#,7)|Nil(8)].

Figure 2: Enriched signature for Insertionsort

our scope, sort should preserve its input list. So all we can
deduce is that for each node of the input list there should
be at least one heap cell available in order to prevent the
evaluation of getting stuck due to a lack of heap space, since
we call insert exactly once for each node of l.

Again we record this information within the type of sort,
but this time it is a little more complicated if we want to use
our method for arbitrary types later on. For each occurring
type, we must list all its constructors and for each construc-
tor we add a number indicating the amount of heap cells
that must be supplied for each node contained in the input
of that type. The resulting signature is shown in figure 2.
We will refer to such a typing as an enriched or annotated
typing.

Note that in order to account for nested datatypes, we list
the annotated types of all arguments for each constructor as
well. We always write the number of additional heap cells
carried by a particular constructor at the end of the listing
of its arguments. Within the argument listing, the symbol
stands for the constructors enclosing annotated type, i.e.
the type itself with exact the same resource annotations.

So each internal node of an input list for sort must con-
tain an integer, a list of the same annotated type (i.e. the
tail) and a voucher for one unused heap cell. An internal
node of an input list for insert only contains an integer
and the tail (again of the same annotated type), but does
not bring a voucher for an available heap cell along. Note
that these “vouchers” are imaginary, i.e. there is no runtime
overhead. Both nodes are identical at runtime, they are just
treated differently in our analysis.

One should also note that for reasons of modularity, the
type of the output of a function carries resource annotations
as well. In fact, the amount of unused heap cells available
after the computation of a function is given in terms of the
result itself and its type, rather than being related to input
of a function. We show an example of the overall memory
picture shortly within the next section.

1.1 Burdens. . .
First of all, we admit that forcing the programmer to des-
ignate for each pattern match whether it is destructive or
not is a great burden. Indeed, as pointed out already by
ourselves and several times again by fellow researchers, our

inference heavily relies upon a guarantee that the program-
mer chooses the right pattern match mode so that no dan-
gling pointers are dereferenced in any run. Therefore a safe
and static automation of these decisions is highly desirable.

Static systems to alleviate these problems are an issue in
ongoing research, yet there is already some notable scientific
research available [15, 11, 18, 3, 12]. Since the problem was
well isolated in our work, one is free to choose among the
proposed systems for ensuring the safety of the inferred heap
space bounds while using the inference as it is now.

As an alternative one could also rely on a linear typing
discipline, which would also ensure referential transparency,
as all pattern matches can then be safely set to be destruc-
tive. The expressiveness of such systems still covers many
examples and is well identified [6]. However, from a practi-
cal point of view, writing linearly typeable programs seems
overly restrictive.

All other requirements on the treated programs, namely
monomorphism, sequentiality (let-normal form) and unique
identifiers may be obtained automatically by precompiling
with the Camelot compiler.

1.2 . . . and benefits
This implementation works as follows:

• We extract a set of linear inequalities over the rationals
on the fly by reconstructing a typing derivation for a
given program. This was described in detail in [7], so
we will only treat examples here.

• These inequalities, together with a rather arbitrary ob-
jective function, form a linear program (LP), which is
fed to an external LP-solver.

• The solution computed by the LP-solver is then used to
establish an annotated typing for each of the program’s
functions, which yields a linear bound on the function’s
heap space consumption.

We will describe the interpretation of the inferred annotated
signatures with an example now: If for a function f of type

type list = Nil(*0*) | Cons(*1*) of int * list

val f : list -> list -> list

the inference computes the annotated type

val f : 2, ilist[Nil(3)|Cons(int,#,4.5)]

-> ilist[Nil(6)|Cons(int,#,7)]

-> ilist[Nil(0)|Cons(int,#,8)], 0;

(where # refers to the constructor’s annotated type itself),
then we see that computing f(a,b) on two integer lists a

and b with, say, length 22 and 33 respectively, will require
2 +

`

3 + (4.5 · 22)
´

+
`

6 + (7 · 33)
´

= 341 additional free
heap cells. Please note the calculation and the position of
the numbers within: list a consists of 22 Cons-nodes and one
Nil-Node. According to the required type of a, there must
be 4.5 additional heap cells available for allocation for each
Cons-node of a and 3 for each Nil-node, hence (3+(4.5 ·22).
The third addend in the above calculation corresponds the
list ’b’.

If the computation would result in an integer list of length,
say, 44, we then knew by the annotated result type of f,
that at least

`

0+(8 ·44)
´

+0 = 352 heap cells were available
again after computing f(a,b). These heap cells might or

might not have been used during the computation, but it
is guaranteed that they do not contain live data after the
computation of f is finished.

The meaning of the notion heap cell entirely depends on
our desired memory model. In the above example, we stated
within the comments behind the constructor definitions that
each node of type list requires 1 heap cell for storing, while
the list Nil will occupy no heap space at all. In general,
each constructor in a type declaration should carry such an
integer comment after its name to denote the number of
heap cells required to store a node of this constructor on
the heap in the desired memory model.

So in the above example, (1 · 22) + (1 · 33) = 55 heap cells
were allocated to store a and b before the call, hence a to-
tal of 55 + 341 = 396 heap cells were at most involved for
computing f(a,b). Likewise, the result itself would occupy
44 heap cells, so together with the heap cells that are guar-
anteed to be free again after the computation, we obtain
44 + 352 = 396 in total again, and see in this way that no
memory was leaked by computing f(a,b).

However, if the result would be a list of length 42 only,
our calculation of the total after the computation would be
1 · 42 + 8 · 42 = 378, hence 396 − 378 = 18 heap cells would
have been leaked. We also know that a result of length 45
or longer is not possible with the input a and b, just by
glancing at the annotated type of f.

All our inference provides is a strict linear upper bound on
the heap space consumption relative to a function’s weighted
input sizes, if such a bound is derivable in our system. We
will study a more realistic example demonstrating memory
leakage in section 3.3. Note that memory leakage will al-
ways show in strict inequalities of the solution obtained for
the constructed LP during the inference, so in case that a
solution to the LP exists at all, memory leakage could be
traced back to the source as explained in section 3.8.

In addition, this implementation of the heap-space infer-
ence is equipped with a facility for conducting sandboxed
execution runs on its own, thereby speeding up testing and
allowing toying around in order to gain more insight in the
inference’s results. We will refer to this implementation in
the following as lfd infer. It is available for download at
the author’s webpage [9].

1.3 The Camelot compiler
As stated above, using the Camelot compiler [19] for pre-
compiling may provide some significant convenience for pro-
ducing programs digestible by lfd infer. In addition, a
non-well typed program might sometimes still lead to an
annotated type, which is then likely to be erroneous. We
therefore rely on the Camelot compiler for type checking
programs prior to inference as well.

Camelot is currently developed within the EU-funded
project Mobile Resource Guarantees [1], which aims at devel-
oping a system for generating portable proof-carrying code
entailing safety aspects of mobile programs such as time and
space.

Camelot compiles an ML-style language into a subset of
the Java virtual machine called Grail, for which a system to
write machine-checkable proofs is developed.

Since our implementation of the heap space inference re-
lies on Camelot for monomorphisation, let-normal from and
type checking, the language it recognizes is heavily related
to Camelot. Vice versa, programs recognized by this infer-

ence should require at most minor modifications in order to
be accepted by the Camelot compiler.

1.4 Inferring integer annotations
It was shown in [7] that integer annotations are of special
interest, as they enable us to translate a linearly typed pro-
gram into malloc()-free C code as described in [6]. Further-
more we already proved in that work that integer annota-
tions can be computed within polynomial time.

Although lfd infer has an option to restrict the inferred
annotations to integers rather than rationals, we make no
use of the methods described in [7] to compute the annota-
tion within polynomial time, as it turned out that the oc-
curring LPs produced by the inference behave well enough
to allow the used LP-solver to efficiently compute an integer
solution directly on its own.

For now we are contend that our theory still yields room
for improving the efficency of the inference, if efficiency of
computing integer annotations ever becomes a concern in
the future.

2. THEORY & PRACTICE
As one would expect, the implementation of the inference
differs from the theoretical work in a number of ways: First
of all, lists, pairs or sum types are not built-in. The user is
allowed to define arbitrary recursive data types,∗ including
the aforementioned ones. All built-in types are assumed to
be unboxed (i.e. heap free), including the string type. This
is of course unnatural, but strings were only included for
the purpose of simple screen prints in toy executions of the
analyzed programs. If heap space consumption of strings
is a concern, these must be treated as proper lists of type
char. Alternatively one might define a datatype of fixed
length strings.

As explained in section 1, each constructor is assigned
a size. (This size directly corresponds to the SIZE ()-
function found in the introduction and elimination rules
for lists in LF♦ in [7].) This leads to some ambigu-
ity, e.g. fix some integer c, then there is no real differ-
ence between all types obtained by instantiating the type
scheme x, ilist[Nil(y)|Cons(int,#,0)] -> unit, 0 so
that x+y = c, since there is precisely one Nil node in every
list. The only difference in the case of lists would be that the
function must traverse (either read-only or destructively) its
input list entirely before using those y heap cells, while the x

heap cells would be right available from the start, although
traversing the list would change nothing to the heap usage
at all. So the inference will naturally prefer x over y, and it
will not matter otherwise.

One can make up more examples with other data struc-
tures to exploit more ambiguities with resource annotations,
but this is not a real problem, as it only expands the set of
solutions to the LP. The author discussed these matters al-
ready in [10] extensively.

In addition, and for compatibility with Camelot, the syn-
tax for distinguishing a destructive- from a read-only pattern
match was changed slightly. Now each single branch of a

∗Except for mutual recursive data types, which currently
lead to non-termination. This is not a problem of the in-
ference mechanism, but is merely due to the programmer’s
inexperience in dealing with #. There are well-known tech-
niques to deal with this problem, but currently this matter
is simply not pressing enough.

pattern match is marked as either read-only or destructive,
allowing more flexibility but requiring much more typing
rules in theoretical work, which are all almost identical and
straightforward to produce. Also the type scheme for the
sharing (or contraction) rules must be expanded to include
each new type. The syntax is now as follows:

match x with

| Constr(a,b,c) -> ... (* Read-only match *)

| Constr(a,b,c)@_ -> ... (* Destructive match *)

Of course, for each constructor only one of the above possi-
bilities is allowed in a single match operation.

Subtyping with respect to resource annotations may be
allowed when using lfd infer. This naturally extends the
idea of the implicit typing rule LF♦:Waste. We will com-
ment more on this in example 3.7.

Since modularity is inherent to the inference, lfd infer

supports partial inference. A function which is not declared
(i.e. there is no val-statement) is simply ignored by the in-
ference. The inference will fail if this function is called by
any other declared and defined function of the program.

On the contrary, we might desire to enforce some anno-
tations, e.g. for external functions. This can be done using
richval instead of val and then stating the function’s an-
notated type as it would be printed† by lfd infer. So one
could write

richval g:2,list[Nil(0)|Cons(int,#,3.4)] -> unit,*;

to enforce that g requires 2 fixed heap cells and 3.4 per
Cons-node of its input list when called. However, we still
may want to leave some values to the inference to decide,
which we denote by *.

Any defined function is then checked against the given
declaration. If a function is left undefined, all unknown an-
notations are assumed to be zero and otherwise accepted as
given.

If the LP solver fails to solve the LP for the program at
once, i.e. there is no valid annotated signature. In this case,
lfd infer considers each function on its own to help iden-
tifying why no linear bound on the heap space usage of the
program could be inferred. Usually the problem can be iden-
tified within a certain function of the program in this way.
But it might also be the case that although there is a solution
to each function’s particular set of constraints, there is no
solution to the whole LP of the program, e.g. mutual recur-
sive functions which lower (or consume) resources brought
by some input list and passing this list on to each other will
produce such a result. This is however as it should be, as
combining these functions does indeed lead to super-linear
heap space consumption.

3. EXAMPLES
In the following section we will look at various examples, dis-
cuss the meaning of the results, the efficiency for obtaining
them, and other various benefits or problems encountered.

†The syntax is slightly different than shown, as lfd infer
knows two printing styles: a verbose style (default) and a
condensed style (option -ndia). A richval declaration re-
quires the verbose style, but to avoid confusion, we are only
using the condensed style throughout this paper.

3.1 Efficiency
All measurements were done on a Mobile Intel Pentium 4
Notebook with 1,8GHz and 256MB RAM available. Notice
that we could not disable CPU speed reduction under Linux,
so the processor might have actually been somewhat slower.
lfd infer’s own total time printout corresponds to the

GNU time utilities user-time measure, but was measured
with time routines provided by OCaml. Further detailed
measurements of the inference’s core routines are only
printed to the screen if they are greater than 0.03s. For
small programs, the most amount of the total processing
time is indeed used for lexing and parsing using standard
tools and reading or writing to the file system.

We are considering now a series of examples, called
bigX.lfd, which essentially consist of X functions which all
behave like the identity function on integer lists and are iden-
tical up to renaming of identifiers. Each function consists
of 6 operations: a pattern match, calling itself once and its
predecessor twice, creating an empty list and adding an ele-
ment to a list. So the program big2000.lfd contains more
than 12000 instructions within its 24188 lines of code. An
excerpt of the program big100.lfd is given in appendix A.1.
We observe:

#fun #ieqs #vars Tcnst Tsolv TT

100 2117 1408 0.01s 0.31s 0.34s
200 4117 2708 0.04s 1.04s 1.13s
500 10117 6608 0.09s 9.02s 9.22s

1000 20117 13108 0.18s 47.18s 47.62s
2000 40117 26108 0.37s 201.42s 202.34s

The two last calls, having 48s and 203s user time (TT),
corresponded to less than 3 and 17 minutes real time re-
spectively. User time is the number of CPU-seconds the
program was actively running; while real time is the elapsed
time as perceived by a waiting human. Real time depends
on the IO performance of the operating system, the amount
of processes running, etc.

Not surprisingly, the number of inequalities (#ieqs) and
variables (#vars) of the constructed LPs is linear in the
number of functions (#fun) of the program. This is due
to the inferences modularity, as each function is examined
independently! Hence it does not matter to the inference
that all examined functions are essentially identical. For
each function, the 20 generated inequalities are identical up
to renaming of variables. 13 fresh variables are introduced
with each function. This is nicely reflected in the linear run-
time required to generate each LP (Tcnst). The remaining
inequalties and variables belong to the main function.

However, solving the generated LP is much more compli-
cated as all inequalities are intertwined by the variables (due
to the interweaved function calls). So the kind of operations
barely affects the size of the generated LP, but it does affect
the LP’s complexity.

Tsolv refers to the time required by the tool lp_solve [4]
to compute a solution to the generated LP; it is called via
Unix pipe. TT refers to the total user time of the compu-
tation. Note that TT heavily depends upon whether the
constructed LP is also written to a file or merely passed
over the pipe to the LP solver. The times given in the table
above were obtained by using options -lp and -perf, which
suppresses writing of the LP to an unnecessary protocol file.
-perf also prevents sorting and labeling of the generated
inequalities and might lead to a wrong count of inequalities,
#ieqs has thus been corrected (Trival inequalities are never

passed to the solver, but are counted under this option. In
the above example, four trivial inequalties are produced per
function).

The required computation times seem quite acceptable,
especially since using a commercial LP solver instead might
further improve these results. In addition, lp_solve was
called without any options, which perhaps could improve
performance on the supplied kind of LP.

Since for all other examples that we have examined so far
the annotated signature is inferred within less than 0.05s
user time or barely 1s real time, we will not consider com-
putation time for the remainder of this work anymore.

3.2 Heapsort - a complete example run
In order to give an impression how the inference works, we
will consider a complete example run now. The program
heapsort.cmlt, which implements the Heapsort algorithm,
is given in A.2. After processing the file with Camelot we
obtain the file heapsort.lfd, which we simply feed into the
inference as shown in figure 3.

The annotated signature of function sort shows that it
may be executed with no additional heap space at all. Of
course, this is done by in-place sorting. If the input is to be
preserved, the signature would become

sort: 0, list_2[int,#,1|0] -> list_2[int,#,0|0], 0;

in a memory model where each list node occupies one heap
cell, thus demanding the same amount of extra heap memory
as the input itself.

Nevertheless, this might still be surprising, as sort imple-
ments the well-known Heapsort algorithm, and one might
expect that a heap-tree occupies more memory resources
than a simple list: Yet this is not true in this case, as
Camelot’s memory model assumes that each heap cell is
big enough to contain any node of any occurring data struc-
ture. If we want to consider a different memory model, for
example we might want that an internal tree node requires 3
heap cells, while an internal list node occupies 2 cells within
the heap, we have change the numbers given in the data
declarations within the file heapsort.lfd. Hence we write

type tree = Leaf(*0*) | Node(*3*) of int*tree*tree

instead of

type tree = Leaf(*0*) | Node(*1*) of int*tree*tree

and similar for the declaration of the occurring list types.
Now we obtain by the inference the annotated type

sort: 0, list_2[int,#,1|0] -> list_2[int,#,1|0], 0;

and we thus see that we require one additional free heap
cell per node of the input list in this specific memory model.
In fact, we may also notice that these additional resources
are again available after the computation of sort, as the
occurring 1 in the result type shows. Since the sorted list
is expected to be of equal length to the input list, no heap
memory is leaked by executing sort (and all subfunctions
of sort) on any input list.

> lfd_infer heapsort -olhs 4 -ndia

This is LFD_infer V1.12 --- 12/2003

Program ’heapsort.lfd’ parsed.

Resource constraints constructed: 281 inequalties in 224 variables. Written to ’heapsort.constraints’.

Solution from ’lp_solve’ yields the following enriched types:

depth : 0, tree[0|int,#,#,0] -> int, 0;

extract : 0, tree[0|int,#,#,0] -> list_2[int,#,0|0], 0;

insert : 1, int -> tree[0|int,#,#,0] -> tree[0|int,#,#,0], 0;

int_of_string : 0, string -> int, 0;

make_heap : 0, list_2[int,#,0|0] -> tree[0|int,#,#,0], 0;

max : 0, int -> int -> int, 0;

print_int : 0, int -> unit, 0;

print_list : 0, list_2[int,#,0|0] -> unit, 0;

print_list_aux: 0, list_2[int,#,0|0] -> unit, 0;

print_newline : 0, unit -> unit, 0;

print_string : 0, string -> unit, 0;

print_string_newline: 0, string -> unit, 0;

print_tabs : 0, int -> unit, 0;

print_tree : 0, tree[0|int,#,#,0] -> unit, 0;

print_tree_aux: 0, int -> tree[0|int,#,#,0] -> unit, 0;

removesome : 0, tree[0|int,#,#,0] -> pairoption[0|int,tree[0|int,#,#,0],0], 0;

removetop : 0, tree[0|int,#,#,0] -> pairoption[0|int,tree[0|int,#,#,0],0], 0;

siftdown : 1, int -> tree[0|int,#,#,0] -> tree[0|int,#,#,0] -> tree[0|int,#,#,0], 0;

sort : 0, list_2[int,#,0|0] -> list_2[int,#,0|0], 0;

start : 0, list_1[string,#,0|0] -> unit, 0;

strlist2ilist : 0, list_1[string,#,0|0] -> list_2[int,#,0|0], 0;

Total processing time: 0.02 seconds.

There is usually more than one solution to an LP; the program simply chooses one by a default objective function. Option
-olhs 4 alters the objective function to obtain a more pleasing solution in this case; this is rarely needed, see section 3.8.
Option -ndia simply produces a more condensed screen print of the annotated signature.

Figure 3: Example inference on heapsort.lfd

> lfd_infer huffman.lfd -width 50 -ndia

This is LFD_infer V1.10* --- 10/2003

Constraints: 327 inequalties in 261 variables.

combine :

0, list_4[tree[int,int,0|int,#,#,0|0],#,0|0]

-> tree[int,int,0|int,#,#,0|0], 0;

count : 0, list_3[int,#,1|0]

-> ip_list[0|int,int,#,1], 0;

count_aux: 2, int -> int -> list_3[int,#,1|0]

-> ip_list[0|int,int,#,1], 0;

huffman : 0, ip_list[0|int,int,#,1]

-> tree[int,int,0|int,#,#,0|0], 0;

insert : 2, int -> list_3[int,#,1|0]

-> list_3[int,#,1|0], 0;

insert_t : 1, tree[int,int,0|int,#,#,0|0]

-> list_4[tree[int,int,0|int,#,#,0|0],#,0|0]

-> list_4[tree[int,int,0|int,#,#,0|0],#,0|0], 0;

maptree : 0, ip_list[0|int,int,#,1]

-> list_4[tree[int,int,0|int,#,#,0|0],#,0|0], 0;

sort : 0, list_3[int,#,1|0]

-> list_3[int,#,1|0], 0;

start : 0, list_2[string,#,2|0] -> unit, 0;

start_char: 0, list_1[char,#,1|0] -> unit, 0;

Note that type tree has three constructors: A leaf con-
sisting of two integers, a node containing an integer and two
tree elements, and a nil-like constructor. So tree is rather
an option tree type.

Figure 4: Huffman tree coding – enriched signature

3.3 Huffman tree coding
We consider a program that, given a list of characters as
input, computes the Huffman coding tree for that list, which
might then be used for compressing this list. The program
is given in A.4 and consists of two steps: First the number of
occurrences of each character is counted by function count

and saved in list of integer pairs, each pair being the code
of a character and its number of occurrences in the input
list. This list of pairs is then used by function huffman to
compute the tree.

The main function start (which expects a list of singleton
string due to Camelot/JVM only passing string arguments)
preserves its input (maybe for later encoding), while the
alternative main function start_char will destroy it. The
computed enriched signature shown in figure 4 reflects this,
as start need one extra heap cell more per list node than
start_char. Hence the annotation for the internal nodes of
the input for start_char is reduced by one. Recall that we
are dealing with Camelot’s uniform memory model, where
all nodes occupy only one heap cell, and that strings are
assumed to be unboxed by default.

Let us therefore focus on start_char from now on. In ad-
dition to destroying its input list, computing the Huffman
tree seems to require an additional heap cell per list node.
By the code of sort given in A.4 and the annotated signa-
ture shown in figure 4, we also see that count is merely pass-
ing this additional resource on to function huffman, which
consumes it.

We might want to check this behavior using the sandbox
execution facility of lfd infer, the call and output shown
in figure 5. Surprisingly, we see that none of these extra
heap cells were ever used during the computation, as the

> lfd_infer huffman.lfd -main "start_char"

-arg "abcdbaadba"

__

2 d

3 <

1 c

6 <

3 b

10 <

4 a

__

- Initial heap size : 10

- Maximum heap size during evaluation: 10

- Current heap size after evaluation : 7

Although the argument "abcdbaadba" is given as a string
for convenience, the sandboxed execution translates it to
the appropriate type, which is a list of characters in the
case of function start_char.

The program then prints the calculated Huffman coding
tree to the screen, with its root on the left and the leaves to
the right. Each leaf contains the symbol itself together with
its number of occurrences within the original input.

Figure 5: Huffman tree coding – first run

maximum number of heap cells used at a time equals the
initial amount of heap required to store the input list of
length 10.

So we compute the memory manually: For a list of length
n, the Huffman coding tree has at most n leaves. Since
a binary tree with n leaves has n − 1 internal nodes, and
all nodes of any data structure are assumed to occupy only
one heap cell in this example, the result will occupy thence
2n−1 cells. Since huffman is allowed to destroy its input list
of length n, requiring n additional cells is indeed reasonable.

The solution to the problem here lies within function
count, although it seems harmless as it does not alter the
resource annotations: Its output list is usually shorter than
its input list, since each character occurs only once in it any-
more. So all the list nodes which hold a character that has
already occurred before are lost, including the additionally
reserved cells for this node. Alas, we cannot even hope to
know whether the input will contain some characters with
multiple occurrences, as it could be that we might only re-
ceive a singleton list.

So another example run shown in figure 6 proves that all
resources which the inference predicted to be required were
used indeed, and that the maximum heap cells used at a
time equals twice the amount of the input.

One might still wonder where the one extra cell, which is
not needed in the result anymore, is lost. This is due to the
fact that the algorithm implicitly does an operation which is
similar to calling a ‘tail’-like function. The function com-
monly known as tail simply returns the tail of its input list.
Such a function should be able to return the heap cell that
the head of the list occupied before the call, but it cannot,
as it could be that the argument is the heap free empty list
and thus no heap cell is gained.

There are two possibilities which could save the loss for
a tail function: Either extending the inference to include
exception handling, which would reveal the gained heap cell
in a tail function’s enriched type or to use non-empty lists

> lfd_infer huffman.lfd -main "start_char"

-arg "abcdefghij"

__

1 d

2 <

1 c

4 <

1 b

2 <

1 a

6 <

1 j

2 <

1 i

10 <

1 h

2 <

1 g

4 <

1 f

2 <

1 e

__

- Initial heap size : 10

- Maximum heap size during evaluation: 20

- Current heap size after evaluation : 19

Please note that the initially occupied heap space by the
input for the computation is the same as in figure 5.

Figure 6: Huffman tree coding – second run

as a data structure, which are already easily definable.
So computing the Huffman coding tree is in some sense

a pretty bad example for our inference, as it is very likely
that the function is applied to an input where each charac-
ter occurs with a great multiplicity – otherwise compression
would not make sense – and therefore the inferred bounds
would be much too loose. However, the inference cannot do
better either, as the second example run shows, although we
certainly not had this special case in mind.

3.4 Flattening flatters not
We will examine another example causing loose bounds here,
which is very similar to the observations made at the end
of the previous section considering the computation of the
Huffman coding tree. We treat it again individually here
since it exposes a weak spot of our inference.

The small example considered now is the simple flattening
of a list of lists into a simple list. The according code is
shown in figure 7. Both functions are allowed to destroy
their input. lfd infer will compute the following annotated
signature:

append : 0, chli[End(0)|Next(char,#,0)]

-> chli[End(0)|Next(char,#,0)]

-> chli[End(0)|Next(char,#,0)], 0;

flatten:

0,list[Nil(0)|Cons(chli[End(0)|Next(char,#,0)],#,0)]

-> chli[End(0)|Next(char,#,0)], 0;

Since all resource annotations are zero, our inference was un-
able to detect any deallocation of heap cells, although clearly
all nodes of the outer input list for flatten were destroyed

type chli = End(*0*) | Next(*1*) of char * chli

type list = Nil(*0*) | Cons(*1*) of chli * list

val append : chli -> chli -> chli

val flatten: list -> chli

let append l r = match l with End -> r

| Next(h,t)@_ -> let a = append t r in Next(h,a)

let flatten l = match l with Nil -> End

| Cons(h,t)@_ -> let a = flatten t in append h a

Figure 7: Flattening of lists

by the destructive match. In fact, the annotated signature is
the same if we turn the destructive pattern match of flatten
into a read-only pattern match.

The problem here is again that the amount of heap cells
deallocated is not linear in the size of the result of the com-
putation: Calling flatten with the argument Nil will in fact
not deallocate any heap cell, thus justifying the inferred an-
notated signature. Nevertheless, from a practical point of
view most applications of this function will deallocate heap
cells, already a call with argument Cons(End,Nil) does deal-
locate a heap cell which is leaked. The possible countermea-
sures are the same as stated within the previous example.

3.5 The need for destruction
We already admitted that it might be both annoying and
dangerous to force the programmer to decide whether a pat-
tern match is destructive or not. A program might crash if a
destructive pattern match is not the last access to that data.
We have said that an automatic inference deciding upon the
pattern match modes is a topic in current research and that
we are momentarily content to isolate this issue within our
theoretical work in order to combine it with future research
solving this particular issue; or that restricting to a linear
typing discipline rids one of that problem by allowing to
safely use destructive matches only.

One might also be tempted to try the opposite and set all
pattern matches to read-only mode. Of course, this results
in weaker bounds on the heap space consumption, as no heap
cell is ever reused. However, not all programs which admit
an annotated signature using destructive pattern matches
still has a valid annotated signature when we turn all pattern
matches into read-only matches:

let f l = match l with [] -> []

| (h::t)@_ -> h::(f (f t))

The function f shown above, which acts as the
identity function on lists, does not allocate any
fresh heap cells as the inferred annotated type
f: 0,list[0|int,#,0] -> list[0|int,#,0],0 con-
firms. This is correct, as for each construction of a list
node, another one is destroyed by the destructive pattern
match immediately before.

If we would turn the destructive pattern match into read-
only mode, then there is no valid enriched type for f any-
more. Each call to f with an argument list of length n would
then consume one heap cell plus the heap cells consumed by
calling f twice with an argument of length n−1. Hence a to-
tal of 2n − 1 fresh heap cells would be allocated by applying
f to a list of length n for storing intermediate results.

append : 0, list[int,#,0|0] -> list[int,#,0|0]

-> list[int,#,0|0], 0;

qsort : 0, list[int,#,0|0] -> list[int,#,0|0], 0;

split_by: 1, int -> list[int,#,0|0]

-> pair[list[int,#,0|0],list[int,#,0|0],0], 0;

Figure 8: Annotated signature for Quicksort

Our current type system however only allows us to type
functions with a linear heap space consumption, hence there
is no valid annotated type for f anymore if we change the
destructive pattern match into a read-only pattern match.

3.6 Naive Quicksort fails
We will examine the well known Quicksort algorithm now.
A commonly found approach to implement Quicksort is a
follows: First a pivot element is chosen. Afterwards the list
is filtered twice into two sublists, one containing all elements
smaller and one containing all elements bigger than the pivot
element. These lists are then recursively sorted and put
back together with the pivot element in between them. The
corresponding code is given in appendix A.6.

In short, our analysis fails to infer an annotated signature
for this common functional implementation, as it is unable
to recognize that the filter conditions are mutually exclu-
sive. We do not even try to recognize such properties, as
this would lead to methods of symbolic evaluation. The
solution here is to rewrite the program slightly. Adjusting
the program might be assisted by inspecting the output of
lfd infer, which is also given within appendix A.6, as it
helps pinpointing the problem in the case of failure.

The idea here is to split the input list by the pivot into two
sublists rather than filtering the whole list twice, so that our
analysis is able to deduce that the sum of the length of both
sublists is equal to the length of the list before splitting. One
may also argue that this implementation is more efficient in
terms of time, as it traverses its input list only once in each
recursive step. This implementation of Quicksort is given in
appendix A.5; its annotated signature is shown in figure 8.

Note that qsort does not require any extra heap memory
resources although the subfunction split_by requires a heap
cell to store the pair. qsort simply uses the cell previously
occupied by h for this purpose, as the returned pair can be
destructed before the list node for h has to be reconstructed
again.

One may also argue that this use of pairs or tuples for
merely passing multiple results or arguments might be im-
plemented using stack space only. We might reflect this if
we want to by changing the number of heap cells needed to
construct an element of type pair to zero within the type
declaration for pair.

3.7 Sharing and subtyping
lfd infer allows subtyping with respect for annotations.
Although subtyping seems alway to imply a memory leakage,
it enables us to infer solutions where there would be none
otherwise. Consider the following enriched types:

l: list[int,#,6|0]

f: 0, list[int,#,1|0] -> list[int,#,0|0], 0;

g: 0, list[int,#,5|0] -> list[int,#,5|0], 0;

Annotation subtyping enables us to form either the expres-

sion f(l) or g(l) (but not both simultaneously), which
would not be well typed otherwise. But even if both func-
tions f and g would not modify their input (read-only access
only), and and therfore would not change the length of l

during the computation, we would leak memory with both
calls, as the type of the result is determined by the functions
type. Hence we cannot type an expression like g(f(l)).

The solution to this problem lies within sharing. When
a variable is shared or aliased, the resource annotation
within its type are distributed linearly, i.e. since 6 ≥ 1 + 5
we could share or alias l to l1: list[int,#,1|0] and
l2: list[int,#,5|0]. Now we might form both calls f(l1)
and g(l2) without leaking any memory, we could even in-
stead share l2 again to call f another time. Note that shar-
ing is done always implicitly, the names l1 and l2 were only
used for didactical reasons here.

Yet there is another problem as already pointed out in
section 1.1: If we want to form both calls, we must be sure
that the first call does not destroy the list and creates a
dangling pointer. So we have to look up the definition of f
and g and see whether one of them might use a destructive
match on their input. Note that in our system a node of a
data structure on the heap can only be destroyed and built
anew, but it cannot be updated.‡

A program that might not have a valid enriched type
might become typeable by using subtyping. This would re-
sult in memory leak, which could be detected by the meth-
ods described in section 3.8 and would point us to the place
in the code where we might then be able to make good use
of sharing to avoid it.

We must admit that there is another problem with shar-
ing as it is implemented now: Consider the code fragment
match l with Cons(h,t) -> if b then g(l) else g(t)

where l is shared. This fragment is not typeable under
the assumption on the types of l and g as stated above,
as either l: list[int,#,5|0] and t: list[int,#,0|0]

or l: list[int,#,0|0] and t: list[int,#,5|0] would
be required by sharing, so we must write g(Cons(h,t))

instead of g(l) which then does not involve sharing at all.
This is rather annoying, but it does currently not seem us
to be a crucial problem. However, among other things, this
particular issue was treated in [13] in a related setting.

3.8 Format of the generated LP
Shown in figure 9 is an excerpt of the generated LP for the
Insertionsort program example A.3, which was derived auto-
matically by Camelot from code exactly as given in figure 1.
This file contains exactly what is fed to the LP solver. It
might probably be used with other LP solvers as well.

Apart from some statistics, the file starts with a comment
containing the enriched signature of the program with vari-
ables instead of values. This is merely for convenience in
order to identify to what a certain variable relates to. Note
also that the first letter of each variable designates its use,

‡We are only interested in the overall balance of used heap
cells and therefore abstract away from heap addresses. We
still speak of an in-place update of e.g. a list in a sorting
algorithm, if for each list node allocated another node was
deallocated before. Hence the number of live heap cells never
exceeded the initial value during the whole computation.

However, Camelot does allows allocation at specific heap
locations, but we regard this rather as a runtime optimiza-
tion, since it does not affect the number of live heap cells at
any time.

/*This file is an automatically generated lp.

Contains 26 inequalties in 25 variables.

//

insert: <x02>, int

-> list_1[Cons(int,#,<u01>)|Nil(<u02>)]

-> list_1[Cons(int,#,<v01>)|Nil(<v02>)], <y02>;

sort : <x03>, list_1[Cons(int,#,<u03>)|Nil(<u04>)]

-> list_1[Cons(int,#,<v03>)|Nil(<v04>)], <y03>;

*/

MIN: +4*u01 +4*u02 +4*u03 +4*u04 -2*v01 -2*v02

-2*v03 -2*v04 +2*x02 +2*x03 -1*y02 -1*y03 ;

insert_10_M’2: +1*a04 -1*u02 -1*x02 <= 0 ;

insert_Sub: -1*c01 +1*v01 <= 0 ;

insert_Sub: -1*c02 +1*v02 <= 0 ;

insert_12_Con: +1*K1 -1*a05 +1*v01 +1*y02 <= 0 ;

insert_11_Con: +0*K1 -1*a04 +1*a05 +1*c02 <= 0 ;

insert_13_Ma1: -1*K1 +1*a06 -1*u01 -1*x02 <= 0 ;

insert_20_App: -1*a06 +1*a07 +1*x02 -1*y02 <= 0 ;

insert_20_App: -1*a06 +1*x02 <= 0 ;

insert_21_Con: +1*K1 -1*a07 +1*v01 +1*y02 <= 0 ;

insert_16_Con: +1*K1 -1*a06 +1*a08 +1*c03 <= 0 ;

insert_Sub: +1*c04 -1*u02 <= 0 ;

insert_Sub: +1*c03 -1*u01 <= 0 ;

insert_17_Con: +1*K1 -1*a08 +1*v01 +1*y02 <= 0 ;

insert_Sub: -1*c04 +1*v02 <= 0 ;

insert_Sub: -1*c03 +1*v01 <= 0 ;

This excerpt of the LP generated by lfd infer for the In-
sertionsort program given in appendix A.3 shows header,
objective function and all constraints generated for function
insert. For reasons of space we altered whitespace and
deleted all 11 inequalities for function sort, as well as all 50
constraints ensuring non-negativity and an upper bound for
each variable.

Figure 9: Generated LP for Insertionsort

e.g. K3 stands for the constant value 3, x02 stands for the
second functions fixed input of additional resources, etc.
Afterwards an objective function is printed, using only vari-
ables that appear within the signature. As stated earlier,
the objective function tells the LP solver how to choose a
solution if more than one solution to the LP is possible, i.e.
if there are several valid enriched signatures. It is not en-
tirely clear what the objective function should be, e.g. the
type 0, list_1[int,#,1|0] -> list_1[int,#,0|0], 0;

might be preferable in some cases, while in other cases the
type 99, list_1[int,#,1|0] -> list_1[int,#,1|0], 0;

would be better, depending on the expected average length
of the result. (A small, but artifical example admitting both
annotated types can be constructed.) The factors for each
kind of variable within the objective function can thus sim-
ply be altered by options.

The important question is whether there exists a solu-
tion at all, as grouping individual functions together to a
program might severely restrict the number of valid en-
riched types for each function individually, although sub-
typing might help here as well.

We also include upper bounds for each variable as well
as non-negativity constraints, in order to always obtain a
solution (and hence an enriched typing) if the set of solutions
is not only infinite, but the objective function would also
admit an infinite value. The Heapsort example is such a

case for the default objective function.
After the objective function, we see the generated con-

straints. Each inequality bears a label, which tells us which
function was responsible for generating this constraint (ex-
cept for upper and lower bounds, all constraints are due to
a specific function), the line number of the responsible code,
and finally which rule was applied. These rule tags directly
correspond to the typing rules given in [7], and they are
described within the manual of lfd infer.

The program listing A.3 was printed with explicit line
numbers in order to facilitate considering an example:

insert_13_Ma1: -1*K1 +1*a06 -1*u01 -1*x02 <= 0;

According to its tag, the inequality was generated when
examining function insert, line 13. The tag Ma1 tells us
further that this is a branch of a destructive pattern match
on the first constructor of the matched type (i.e. a Cons).
Since all variables are restricted to non-negative values, the
sum of variables with negative factors represent the amount
of available heap cells before executing the corresponding
operation; the sum of variables having a positive factor
represents the amount of heap cells available for all paths
of computation trailing this operations.

Hence in this example, we have x02 heap cells available
guaranteed by the caller of insert, u01 unused heap cells
due to the successful match of a Cons on the input, and fi-
nally one heap cell since the match was destructive (variable
K1 is always restricted to 1). All continuing computations
following this point will use at most a06 heap cells. a06 is
an intermediate variable that will be used from this point
on instead of x02, as we can see on all the inequalities which
immediately follow this point of computation, i.e. lines 16
and 20, which contain a06 negatively now. Please compare
this to the considerations we did in section 1.

An inequality which is strict for a fixed solution indicates
a memory leak within the corresponding branch of compu-
tation of that function under the enriched typing derived
from that solution. Tracing this information back to the
source code is clearly possible and desirable, but is just not
implemented yet.

4. CONCLUSION
The implementation lfd infer of the heap space inference
presented by M. Hofmann and S. Jost shows that this in-
ference is indeed efficiently usable on a wide range of pro-
grams. Compared to approaches based on symbolic evalua-
tion like [17], our system reaches a much higher efficency as
shown in section 3.1, but of course we trade in the range of
covered programs and the accuracy of the results obtained
for achieving this.

We already mentioned several points for improvement, e.g.
tracing back slack of the LP to the original program code to
expose memory leakage, as commented on in section 3.8.

Many readers also suggest that statically determining the
pattern match mode, as stated in section 1.1, in order to
avoid dangling pointers is highly desirable; or that one
should care about non-termination as well, since these issues
are all related safety properties of programs. While this is
true, it might be the case that the problem is far to complex
to be covered within a single analysis method. Furthermore,
even if a certain program run might fail or loop, the inferred
bounds on heap space consumption will still hold. Therefore
we are currently content to leave these problems to research
specifically dedicated to such issues, and insulate the crucial

properties required in order to combine all efforts later on.
A factor for the tightness of the bounds inferred by our
method is whether a program traverses its data structures
entirely before deallocating them, and that their sizes play
a role in the ongoing computation as stated in section 3.4.
If this is not the case, our inference ignores the benefits
which could be obtained for example from garbage collec-
tion. Of course, garbage collection could be used to increase
the size of the freelist during the computation, but the re-
claimed heap cells would be useless: If we want to be sure
that the program will not fail due to a lack of heap memory,
we must provide as many heap cells as our inference had
told us already right from the start of the execution. It is in
the nature of a static analysis that it does not benefit from
observations which may only be performed at runtime. Nev-
ertheless, bounds on heap memory usage established by our
inference are guaranteed to hold, although the slack com-
pared to the actually required heap space in the presence of
garbage collection might be great.

We currently investigate whether some of the methods em-
ployed by region based memory management [16, 14, 5] or
sized types [8] could help us to improve the tightness of the
derived bounds. Furthermore the combined methods might
enable us to extend the inference to true higher-order pro-
grams (the lifetimes of closures might be the main problem
here) or polymorphism with respect to resource annotations.

A further discussion of related scientific work is already
contained in [7].

5. ACKNOWLEDGMENTS
This work was supported by the Graduiertenkolleg Logik
in der Informatik (DFG). The author thanks his supervi-
sor Martin Hofmann for discussing this work. I also thank
Martin Elsman and Henning Niss for hosting me at the IT
University of Copenhagen (where I wrote parts of this work)
and for some fruitful discussions concerned with the future
of the underlying theoretical work. Thanks to some of the
anonymous referees for their valuable remarks.

6. REFERENCES
[1] Mobile resource guarantees. EU Project No.

IST-2001-33149, see
http://www.dcs.ed.ac.uk/home/mrg/.

[2] Objective caml. An open source compiler. Version
used is 3.06 http://caml.inria.fr/.

[3] D. Aspinall and M. Hofmann. Another type system
for in-place update. In Proc. 11th European
Symposium on Programming, Grenoble, volume 2305
of Lecture Notes in Computer Science. Springer, 2002.

[4] M. Berkelaar. lp solve. A LP-solver released under the
Lesser GNU public licence. Version used is 4.0.1.0.
Eindhoven University of Technology
ftp://ftp.es.ele.tue.nl/pub/lp_solve.

[5] F. Henglein, H. Makholm, and H. Niss. A direct
approach to control-flow sensitive region-based
memory management. In Proceedings of the 3rd
International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming
(PPDP), pages 175–186, Montréal, Canada, 2001.
ACM.

[6] M. Hofmann. A type system for bounded space and
functional in-place update. Nordic Journal of

Computing, 7(4):258–289, Autumn 2000. An earlier
version appeared in ESOP2000.

[7] M. Hofmann and S. Jost. Static prediction of heap
space usage for first-order functional programs. In
Proceedings of the 30th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL), pages 185–197. ACM, 2003.

[8] J. Hughes and L. Pareto. Recursion and dynamic data
structures in bounded space: towards embedded ML
programming. In Proc. International Conference on
Functional Programming (ACM). Paris, September
’99., pages 70–81, 1999.

[9] S. Jost. The implementation lfd infer of the static
inference on heap space usage is available at
www.tcs.informatik.uni-muenchen.de/~jost.

[10] S. Jost. Static prediction of dynamic space usage of
linear functional programs, 2002. Diploma thesis at
Darmstadt University of Technology, Department of
Mathem atics. Available at www.tcs.informatik.

uni-muenchen.de/~jost/da_sj_28-02-2002.ps.

[11] N. Kobayashi. Quasi-linear types. In Proceedings ACM
Principles of Programming Languages, pages 29–42,
1999.

[12] M. Konečný. Functional in-place update with layered
datatype sharing. In TLCA 2003, Valencia, Spain,
Proceedings, pages 195–210. Springer-Verlag, 2003.
Lecture Notes in Computer Science 2701.

[13] O. Lee, H. Yang, and K. Yi. Inserting safe memory
reuse commands into ml-like programs. In Proceedings
of the Annual International Static Analysis
Symposium, volume 2694 of Lecture Notes in
Computer Science, pages 171–188, San Diego,
California, June 2003. Springer-Verlag.

[14] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg,
T.H. Olesen, P. Sestoft. Programming with regions in
the ml kit, April 2002. IT University of Copenhagen
http://www.itu.dk/research/mlkit/.

[15] M. Odersky. Observers for linear types. In
B. Krieg-Brückner, editor, ESOP ’92: 4th European
Symposium on Programming, Rennes, France,
Proceedings, pages 390–407. Springer-Verlag, February
1992. Lecture Notes in Computer Science 582.

[16] M. Tofte and J.-P. Talpin. Region-based memory
management. Information and Computation,
132(2):109–176, 1997.

[17] L. Unnikrishnan, S. D. Stoller, and Y. A. Liu.
Automatic accurate live memory analysis for
garbage-collected languages. In Proceedings of The
Workshop on Languages, Compilers, and Tools for
Embedded Systems (LCTES), pages 102–111. ACM,
2001.

[18] K. Wansbrough and S. Jones. Simple usage
polymorphism, 2000. ACM SIGPLAN Workshop on
Types in Compilation, 2000. To appear.

[19] N. Wolverson and K. MacKenzie. Camelot and Grail:
Compiling a resource-aware functional language for
the java virtual machine. Developed during EU
Project No. IST-2001-33149.
http://www.dcs.ed.ac.uk/home/mrg/publications/.

APPENDIX

A. PROGRAM EXAMPLE FILES
All the covered examples are included in the lfd infer pack-
age available at [9]. The examples treated here are:

A.1 big100.lfd

A.2 heapsort.cmlt

A.3 insertionsort.lfd

A.4 huffman.cmlt

A.5 qsort.cmlt

A.6 Naive Quicksort

A.7 Mergesort

A.1 big100.lfd
This is an excerpt only. The full code is lengthy and highly
redundant. It should be easy to reconstruct.

Please note that although this program is pretty artifical
and easy to analyze from a human programmer’s point of
view, this is not the case for our automatic inference, as it
lacks a bird’s eye view and thus the recognition of the re-
peated pattern. It does not even try to: The analysis of each
function of a program is entirely independent. Nevertheless,
the interweaved function calls ensure that the generated LP
cannot be split into independent blocks and thus must be
solved as a non-trivial whole.

type list = Nil(*0*) | Cons(*2*) of int * list

val main : string -> list

val id_000 : list -> list

val id_001 : list -> list...
val id_098 : list -> list

val id_099 : list -> list

let main s =

let l = (* Build some list depending on s *)...
in id_000 l

let id_000 l =

match l with

| Nil@d => let _ = print "."

in Nil@d

| Cons(h, t)@d => let t’ = id_099 t in

let t’’ = id_000 t’ in

let c = Cons(h,t’’)@d in

c

let id_001 l =

match l with

| Nil@d => Nil@d

| Cons(h, t)@d => let t’ = id_000 t in

let t’’ = id_001 t’ in

let c = Cons(h,t’’)@d in

id_000 c...
let id_099 l =

match l with

| Nil@d => Nil@d

| Cons(h, t)@d => let t’ = id_098 t in

let t’’ = id_099 t’ in

let c = Cons(h,t’’)@d in

id_098 c

A.2 heapsort.cmlt
This program is written for Camelot and makes use of
Camelot’s built-in lists. In order to apply the inference to
it, one must preprocess it with the Camelot compiler using
option -a2. This listing is complete.

type tree = !Leaf | Node of int * tree * tree

type pairoption = !None | Some of int * tree

let max x y = if x > y then x else y

let depth t = match t with Leaf -> 0

| Node(v,l,r) -> 1 + max (depth l) (depth r)

let strlist2ilist l = match l with [] -> []

| (y::t)@_ -> int_of_string y :: strlist2ilist t

Some simple printing functions. . .

let print_list_aux l = match l with [] -> ()

| y::t -> let _ = print_string ", " in

let _ = print_int y in

print_list_aux t

let print_list l = let _ = print_string "[" in

match l with [] -> print_string_newline "]"

| y::t -> let _ = print_int y in

let _ = print_list_aux t in

print_string_newline "]"

let print_tabs i = if i>0 then

let a = print_string " " in (print_tabs(i-1))

else ()

let print_tree_aux i t = let stretch = 6 in

match t with

Leaf -> let _ = print_tabs(i*stretch) in

let _ = print_string_newline "L" in ()

| Node(v,l,r) ->

let _ = print_tree_aux (i+1) r in

let _ = print_tabs(i*stretch) in

let _ = print_int(v) in

let _ = print_string_newline " <" in

let _ = print_tree_aux(i+1)l in ()

let print_tree t = let _ = print_newline() in

let _ = print_tree_aux 0 t in

let _ = print_newline() in ()

All trees are supposed to be heaps. Leaf is a heap and
t=Node(w,t1,t2) is a heap, if w is the largest element of t
and moreover t1, t2 are heaps and 0 ≤ |t1| − |t2| ≤ 1.

let insert x t = match t with

Leaf -> Node(x,Leaf,Leaf)

| Node(y,left,right)@_ -> if x<=y

then Node(y, insert x right, left)

else Node(x, insert y right, left)

Function siftdown w t1 t2 assumes that t1, t2 are heaps
and that 0 ≤ |t1| − |t2| ≤ 1. It returns a heap consisting of
the elements of Node(w,t1,t2).

let siftdown w t1 t2 = match t1 with

Leaf -> Node(w,Leaf,Leaf)

| Node(v,t11,t12)@_ -> (match t2 with

Leaf -> if w>=v

then Node(w,Node(v,Leaf,Leaf),Leaf)

else Node(v,Node(w,Leaf,Leaf),Leaf)

| Node(u,t21,t22)@_ -> if w>=u & w>=v

then Node(w,Node(v,t11,t12),Node(u,t21,t22))

else if u>=w & u>=v

then Node(u,Node(v,t11,t12),siftdown w t21 t22)

else Node(v,siftdown w t11 t12,Node(u,t21,t22)))

Function removesome t removes an arbitrary element from
t and returns it as well as the resulting heap.

let removesome t = match t with Leaf -> None

| Node(x,left,right)@_ ->

(match removesome left with None -> Some(x,right)

(* actually, right=Leaf, here *)

| Some(y,left’)@_

-> Some(y,Node(x,right,left’)))

Function removetop t removes the largest element from a
heap.

let removetop t = let x = print_tree t in

match t with Leaf -> None

| Node(x,left,right)@_ ->

(match (removesome left) with

None -> Some(x,right)

(* actually, right=Leaf here *)

| Some(y,left’)@_

-> Some(x,siftdown y right left’))

let extract h = match removetop h with None -> []

| Some(h,t)@_ -> h :: extract t

let make_heap l = match l with [] -> Leaf

| (h::t)@_ -> let hp = make_heap t in

let hc = print_tree hp in

insert h hp

let sort l = extract (make_heap l)

let start arg = print_list(sort(strlist2ilist arg))

A.3 insertionsort.lfd
This is the Insertsort program shown in figure 1, ready to
be fed to lfd infer.

We obtained this code by preprocessing the code shown in
figure 1, using Camelot with option -a2. We edited whites-
pace and added line numbers manually, for the readers con-
venience. Also for readability, we changed the construc-
tor names Cons$_1 and Nil$_1 to Cons and Nil respec-
tively, which Camelot uses for its built-in lists to avoid name
clashes.

1: type list_1 = Cons(*1*) of int *list_1

2:

3: | Nil(*0*)

4: val main: (string array -> unit)

5: val insert: (int -> (list_1 -> list_1))

6: val sort: (list_1 -> list_1)

7:

8: let insert e l =

9: begin match l with

10: Nil ->

11: let ?t0 = Nil in

12: Cons(e, ?t0)

13: | Cons(h,t)@_ ->

14: if (e < h)

15: then

16: let ?t1 = Cons(h, t)

17: in Cons(e, ?t1)

18: else

19: begin

20: let ?t2 = insert (e) (t)

21: in Cons(h, ?t2)

22: end

23: end

24:

25: and sort l =

26: begin

27: match l with

28: Nil ->

29: Nil

30: | Cons(h,t) ->

31: let ?t3 = sort (t) in

32: insert (h) (?t3)

33: end

A.4 huffman.cmlt
This program computes the Huffman coding tree for a given
character list (or a list of singleton strings for a reason of
compatibility with the JVM).

Printed here is an excerpt of the essential functions: a
screen printing function print_tree for type tree and a
sorting function sort on integer lists have been omitted
in this listing, as such functions are already contained in
the listings A.2 and A.3 respectively. The tree type in A.2
differs slightly from the tree type used here, but adjusting
print_tree should be obvious.

type tree = Leaf of int * int

| Node of int * tree * tree

| !Error

type ip_list = !Nil | Cons of int * int * ip_list

let count_aux i c l =

match l with [] -> Cons(i, c, Nil)

| (h::t)@_ -> if h = i then count_aux i (c+1) t

else Cons(i, c, (count_aux h 1 t))

let count l =

match sort l with [] -> Nil

| (h::t)@_ -> count_aux h 1 t

let getkey t = match t with

Leaf(i,s) -> i | Node(i,l,r) -> i | Error -> -1

let insert_t t1 l =

match l with [] -> t1::[]

| (t2::ls)@_ ->

let k1 = getkey(t1) in let k2 = getkey(t2) in

if k2>k1 then t1 :: t2 :: ls

else t2 :: insert_t t1 ls

let maptree l =

match l with Nil@_ -> []

| Cons(sym,key,tl)@_ ->

insert_t (Leaf(key,sym)) (maptree tl)

let combine l =

match l with [] -> Error (* Shouldn’t happen *)

| (t1::ls)@_ ->

(match ls with [] -> t1 (*Wastes a resource*)

| (t2::lss)@_ -> let k1 = getkey(t1) in

let k2 = getkey(t2) in

combine(insert_t(Node(k1+k2,t1,t2)) lss))

let huffman l = combine(maptree l)

let intlist_of_stringlist l = (* Copies input *)

match l with [] -> [] | y::t ->

int_of_string y :: intlist_of_stringlist t

let intlist_of_charlist l = (* Destroys input *)

match l with [] -> [] | (y::t)@_ ->

int_of_char y :: intlist_of_charlist t

let start args =

let l = intlist_of_stringlist args in

print_tree(huffman(count(l)))

let start_char args =

let l = intlist_of_charlist args in

print_tree(huffman(count(l)))

A.5 qsort.cmlt
This is an implementation of the well known Quicksort al-
gorithm. The function qsort is allowed to destroy its input
and sorts the list in-place without allocating any extra re-
sources. The annotated signature was given in figure 8.

type ’a pair = Pair(*1*) of ’a * ’a

let append l r =

match l with [] -> r

| (h::t)@_ -> h::(append t r)

let split_by p l =

match l with [] -> Pair([],[])

| (h::t)@_ ->

match split_by p t with

Pair(s,b)@_ -> if (h < p) then Pair(h::s,b)

else Pair(s,h::b)

let qsort l =

match l with [] -> []

| (h::t)@_ ->

match split_by h t with

Pair(s,b)@_ ->

append (qsort s) (h::(qsort b))

A.6 Naive Quicksort
This program is a common implementation of the Quicksort
algorithm. Contrary to the code given in appendix A.5,
which also implements the Quicksort algorithm, lfd infer

will fail when applied to this code. We included this code
to exhibit a problematic example for our analysis and we
discuss the issue more closely in section 3.6.

let xor a b = (a || b) && (not (a && b))

let append l r = match l with [] -> r

| (h::t)@_ -> h::(append t r)

let filter b p l =

match l with [] -> []

| h::t -> if xor b (p < h)

then h::(filter b p t)

else (filter b p t)

let qsort l =

match l with [] -> []

| (h::t)@_ -> append (qsort (filter true h t))

(h::(qsort (filter false h t)))

The code above is written in the language of Camelot. If
lfd infer is applied to the code as transformed by the
Camelot compiler, it fails and reports the following:

> lfd_infer naive_qsort -ndia

Resource constraints constructed:

60 inequalties in 48 variables.

Calling ’lp_solve’ via pipe...

--- LP FOR THE WHOLE PROGRAM IS INFEASIBLE !!! ---

Trying to solve constraints for each defined

function individually.

NOTE: while some functions may produce feasible

LPs on their own, plugging these functions together

into a program may lead to an infeasible LP as well

append: 0,list[int,#,0|0] -> list[int,#,0|0]

-> list[int,#,0|0],0;

filter: 0,bool -> int -> list[int,#,0|0]

-> list[int,#,9999|0],0;

qsort : 0,list[int,#,0|0] -> list[int,#,10000|0],0;

xor : 0,bool -> bool -> bool, 0;

The value 10000 is the default upper bound for all variables,
i.e. that means that it might be replaced by an arbitrarily
high value. Of course, except for some odd examples like
let f () = [] which may indeed have the valid annotated
type f: 0, unit -> list[int,#,10000|0],0, this cannot
be. No function may deallocate an arbitrary number of heap
cells regardless of its input. So we have to inspect the func-
tions qsort and filter more closely.

Since the inference failed for the whole program, each
function is examined separately to help the programmer to
identify the problematic function. So the function filter

may gain an arbitrary number of resources simply by call-
ing xor as a subfunction: During the analysis of filter

the annotated type of xor is treated independently from the
analysis of xor itself. The same applies to qsort which calls
filter. This behavior may seem odd, but it is the case
that the inference may already fail for a particular function
regardless of the annotated types of the called subfunctions.

We investigate further by replacing the call to xor within
filter by inlining, which we did not in the first place for
an easier understanding of the code. Now the inference will
still fail, but it now reports the following annotated type for
filter:

filter: 0,bool -> int -> list[int,#,1|0]

-> list[int,#,0|0],0;

This is the correct type now, because filter is not allowed
to destroy its input, it must build the result within fresh

heap space. Since each element of the input might pass
the filter, the function requires an extra heap cell for each
internal list nodes of the input list. Note that this extra
heap resource is leaked if the element does not satisfy the
filter criterion.

Now we know that the inference for qsort must fail: Since
it calls filter twice on its input list, the annotated type for
the input list should be list[int,#,2|0]. But the applying
filter will return a list of type list[int,#,0|0] in both
cases, so we cannot call qsort recursively on these parts.

Furthermore the intermediate lists constructed by filter

are never deallocated, except for the first element of each
list. This defect could be solved by replacing the second
call with a destructive version of filter. Admittingly this
would be good reason to include an analysis for automating
the pattern match mode to avoid code duplication. However,
even this would not help here: The first call would still leak
all the extra resources for the filtered elements. In addition,
all filtered elements in the second destructive application of
filter are leaked as well. Thus in each recursive step a
number of heap cells equal to the length of the partial list
are leaked, leading to a super-linear consumption of heap
cells.

A.7 mergesort.lfd
This is an implementation of the Mergesort algorithm. The
inferred signature is included after the program code.

type ’a pair = Pair of ’a * ’a

let merge l r = match l with [] -> r

| (h1::t1)@_ -> begin

match r with

[] -> (h1::t1) (* l is not allowed here *)

| (h2::t2)@_ -> if h1 < h2

then h1::(merge t1 (h2::t2))

else h2::(merge (h1::t1) t2)

end

let split l xs ys = match l with [] -> Pair(xs,ys)

| (h1::t1)@_ -> begin

match t1 with [] -> Pair(h1::xs,ys)

| (h2::t2)@_ -> split t2 (h1::xs) (h2::ys)

end

let msort l = match l with [] -> []

| h::t ->

match (split l [] []) with Pair(l,r)@_ ->

merge (msort l) (msort r)

There is only a minor problem related to variable sharing in
this example, namely that we cannot conveniently write l

instead of h1::t1 at the commented place within function
merge, although both terms are semantically equivalent. We
already commented on this problem in section 3.7.

Our inference lfd infer will respond the following when
applied to the above program:

> lfd_infer merge_sort_cmlt -ndia

This is LFD_infer V1.13 --- 12/2003

Program ’merge_sort_cmlt.lfd’ parsed.

Resource constraints constructed:

87 inequalties in 69 variables.

Solution from ’lp_solve’ yields:

merge: 0, list[int,#,0|0] -> list[int,#,0|0]

-> list[int,#,0|0], 0;

msort: 1, list[int,#,0|0] -> list[int,#,0|0], 1;

split: 1, list[int,#,0|0] -> list[int,#,0|0]

-> list[int,#,0|0]

-> pair[list[int,#,0|0],list[int,#,0|0],0],0;

Thus an application of function msort to an arbitrary list
requires an additional heap cell. This extra heap cell is
again available after the computation, thus it was only
needed to store an intermediate result. In fact, this heap
cell was required to hold the pairs returned by each call to
function split.

B. TECHNICAL DETAILS
The constructed LP is stored in a standard and human-
readable format for LPs. By default, the inference calls the
LP-solver lp_solve [4], which is released under the lesser
GNU public license and is assumed to be accessible from
the current path, to solve the constructed LP.
lfd infer was implemented in Objective Caml [2].

B.1 Built-in types

Type Constructors Operations
unit ()

diamond

<>

bool true false and && or || not

int 0 1 -2 . . . + - * / mod

float 0 1.2 -3.4e-5 . . . +. -. *. /.

char ’ ’ ’a’ ’B’ . . .
string "Hello" . . . ^

LFD knows the types listed above, the last five being directly
treated by OCaml. All built-in types are treated as heap
free, although this might be unreasonable in some situations,
e.g. if strings are used for more than just on screen printing,
they should be replaced by user defined type such as a list
of characters.

The type diamond is treated as the unit type, but has
no constructor; <> is simply an alias for it. It is there for
compatibility with Camelot.

The append operator ^ accepts as its arguments both type
string and char and returns always an element of type
string.

Furthermore the operations =, >, <, <= and >= operate on
most of these types and do the expected.

