
Short Presentation: Combining Garbage Collection and
Safe Manual Memory Management

Michael Hicks Dan Grossman Trevor Jim
University of Maryland University of Washington AT&T Labs Research
mwh@cs.umd.edu djg@cs.washington.edu trevor@research.att.com

1. INTRODUCTION
Garbage collection (GC) provides an elegant, convenient,

and safe approach to managing memory. For many applica-
tions, it is an appropriate technique for all data. For other
applications, it works well only for most data. For exam-
ple, it may complicate data-level interoperability with legacy
code or exhibit poor performance with respect to a few crit-
ical data types. In other systems, such as embedded devices
and operating systems, the environment may simply prove
too hostile for GC to be a realistic technique.

Unfortunately, an approach to memory management is of-
ten a system-wide decision, made when choosing a run-time
system or even when choosing a language. Furthermore, us-
ing malloc and free, as in C, usually requires sacrificing
safety. We believe programming languages should support
manual and automatic memory-management, allowing pro-
grammers to choose the mechanisms most appropriate for
(different parts of) their applications. They should us GC
when possible and manual techniques when necessary, with
smooth intra-language evoluation paths among the options.

At the same time, the language should remain safe, which
to us means (at least) two things. First, programs should
not crash (or worse, silently misbehave) because the same
memory is simultaneously used for different types. Second,
parts of an application should be able to maintain private
state by allocating fresh memory and restricting access to it.
The key to both requirements is to prohibit dangling-pointer
dereferences; making the allocator type-safe by partitioning
memory into typed pools satisfies the first requirement but
not the second.

Toward this end of safe, flexible memory management we
have designed and implemented a comprehensive memory-
management framework meeting our requirements in the
context of the Cyclone programming language. Cyclone is a
type-safe, C-like language intended for use in systems pro-
grams where control is needed over low-level details such
as data representations and resource management. In the
remainder of this paper, we provide an overview of our ap-
proach in Cyclone, summarizing technical results presented
in other papers [2, 3]. We present some performance mea-
surements that show how manual and automatic memory
management can be combined to good effect, and lay out
plans for future work.

2. MEMORY MANAGEMENT IN CYCLONE
The unifying theme of Cyclone’s safe memory manage-

ment support is the idea of a region. We use the term loosely:
when we say an object “lives” in a certain region, we are

really saying that the object has certain lifetime character-
istics, which are related in some way to the lifetimes of other
objects in the same region. Pointer types are annotated (of-
ten implicitly) with the region of their pointed-to object:
τ ∗ ρ is the type of a pointer to data of type τ , “located” in
region ρ.

Cyclone has different varieties of regions, summarized in
Table 1. The first three rows describe regions whose objects
are deallocated all at once, when the entire region is deallo-
cated. Stack frames are just as in C: the number of objects
allocated is statically determined, and the frame is deallo-
cated at the end of the frame’s scope. Lexical regions gen-
eralize stack frames by allowing objects to be dynamically
allocated (similar to, but more general than C’s alloca).
Dynamic regions allow whole-region deallocation to occur
at any time, not just at the end of the region’s lexical scope.
However, a special open construct must be used to access
the region, and deallocation is forbidden while the region is
opened (see below). Each stack frame and region gives rise
to a different region name ‘r usable in a pointer type of the
form τ ∗ ‘r.

The remaining three rows describe regions that themselves
“live forever,” but whose objects can be individually deal-
located at any time. Objects in the heap region, ‘H, are
deallocated by an automatic garbage collector. Objects in
the unique region, ‘U, can be deallocated manually, using
free. Dangling pointers dereferences are prevented by a
static type- and control-flow analysis that ensures that there
is only one usable pointer to an object in ‘U at any time,
and that makes the argument of free unusable after free

returns. A pointer into ‘U can itself be stored in a region
other than ‘U, but such a pointer can only be accessed by
atomically swapping it with the contents of a local variable,
thus ensuring our uniqueness invariant. Swapping general-
izes “destructive reads” (which always swap null into the
container). Objects in the reference-counting region, ‘RC,
have a hidden count field maintained by the run-time sys-
tem. Like unique pointers, pointers to reference-counted
objects cannot be implicitly aliased. Instead, users call a
run-time function that returns an explicit alias (and incre-
ments the count). A second function destroys a pointer and
decrements the count, freeing the object when the count
reaches zero.

Our prior publications described the type system for re-
gions [2] and unique pointers [3] in detail; this paper focuses
on how all of Cyclone’s memory management options can be
used together in real programs, synergistically, and without
leading to excessive code duplication. Several features make



Region Variety Allocation Deallocation Aliasing
(objects) (what) (when) (objects)

Stack static whole exit of lexical
Lexical region scope unrestricted

Dynamic manual
Heap (‘H) dynamic automatic (GC)

Unique (‘U) single objects manual restricted
Reference-counted (‘RC)

Table 1: Summary of Cyclone Regions

this possible.
First, an alias construct allows temporary (scoped) alias-

ing of a unique pointer and prohibits (temporarily) freeing
the object. By using a new, scoped region name for the
aliasable copy of the pointer, we leverage the region sys-
tem and need not impose ad hoc restrictions to ensure the
aliasable copy does not escape its scope. In fact, a notion
of subtyping based on one region outliving another allows
us to extend alias to deep read-only data structures, which
makes it more powerful than any analogous construct we are
aware of.

Second, unique pointers to region handles make our new
dynamic regions a derived construct. Using open on such a
handle is just like alias except that it also provides access
to the corresponding region. Hence the same static machin-
ery that prevents freeing temporarily aliased objects prvents
freeing temporarily accessible regions. In fact, the less pow-
erful regions in our previous work are equivalent to creating
one of our new regions, immediatly opening the region, and
deallocating the region as soon as control leaves the open
construct. (In practice, we use a slightly faster implementa-
tion than this encoding.)

Third, polymorphism and kinding can avoid code dupli-
cation. Being polymorphic over the region name of pointer
arguments is crucial for code taking pointers into regions
created by callers since the code cannot know the name of
the regions. More novel is our ability to write functions that
can be called with pointers into regions or unique pointers.
The key is to have a kind imposing the lifetime restrictions
of both kinds of pointers: Code cannot alias such pointers
and cannot deallocate them.

3. PRELIMINARY RESULTS
In addition to ensuring the safety guarantees described

earlier, our approach to integrating manual memory man-
agement with GC must prove convenient and useful for per-
formance. If our constructs do not provide enough added
control for users to improve performance, they have little
value. Similarly, if the constructs require unnatural coding
styles, extensive annotations, or pervasive code duplication,
they will be too burdensome. In this section, we outline
our experience writing two applications, a webserver and a
multi-media overlay network, providing encouraging quali-
tative and quantitative results.

3.1 Web server
We built a simple, space-conscious web server that sup-

ports concurrent connections using non-blocking I/O and an
event library in the style of libasync [5] and libevent [6]. The
event library lets users register callbacks for I/O events. A

reserved
unique

44

1.44 KTime (CPU clock ticks)

M
em

or
y 

U
se

d 
(K

B
)

Figure 1: Memory use of the web server with up to 40

concurrent clients

callback consists of a function pointer and an explicit en-
vironment that is passed to the function when it is called;
Cyclone’s existential types make callbacks straightforward.
The event library uses polymorphism to allow callbacks and
their environments objects to be allocated in arbitrary re-
gions. This generality is not overly burdensome: of 260 lines
of code, we employ our swap operator only 10 times across
10 functions, and never use the alias primitive. The entire
web server, at about 800 lines of code, uses swap 16 times,
and alias 5 times.

Because concurrent HTTP connections overlap in a non-
nested fashion and can have widely varying lifetimes, call-
backs are not suited to allocation in lexical or dynamic re-
gions. Rather than use garbage collection, we use unique
pointers exclusively. When a client requests a file, the server
allocates a small buffer for reading the file and sending it
to the client in chunks. Callbacks are manually freed by
the event loop when the callback is invoked (they must be
reregistered if an entire transaction is not completed); each
callback is responsible for freeing its own environment, if
necessary.

Figure 1 shows that we achieved tight control over mem-
ory use. It shows the memory use of the web server under
a sustained load with a maximum of 40 concurrent connec-
tions, using a buffer size of 1 KB. The x-axis plots CPU time
in terms of clock ticks (as determined by the clock() sys-
tem call), while the y-axis plots memory consumed. We also
plot the total space the allocator acquires from the operating
system.

Our profiler confirms that all dynamic memory is stored in



reserved
heap
unique

840 KB

81.0 clocksTime (CPU clock ticks)
gc configuration

M
em

or
y 

U
se

d 
(K

B
)

refcnt
heap
unique

7.78 KB

74.0 clocksTime (CPU clock ticks)
gc+free configuration

M
em

or
y 

U
se

d 
(K

B
)

Figure 2: MediaNet memory profile (4 KB packets)

the unique region, which occupies at most 40KB (1KB per
40 connections) of the total reserved memory of 44KB. The
server thus makes very efficient use of dynamic memory, with
little fragmentation. And, of course, there are no pauses for
garbage collection.

3.2 MediaNet
MediaNet [4] is an overlay network whose servers forward

packets according to a reconfigurable DAG of operations,
where each operation works on the data as it passes through.
For better performance, we eschew copying packets between
operations unless correctness requires it. However, the dy-
namic nature of configurations means that both packet life-
times and whether packets are shared cannot be known stat-
ically, meaning that region allocation is again inappropriate.

We use a datastructure called a streambuff for each packet,
which consists of a unique pointer to an array of reference-
counted buffers. Whenever a packet must be shared, a
new streambuff is created, whose array points to the same
databuffers as the original (after increasing their reference
counts). This pproach allows for quickly appending and
prepending data to a packet, and requires copying packet
buffers only when they are both shared and mutated. Linux
skbuffs have similar properties, but lack the safety benefits
ensured by our type system. Once again, programming with

our constructs was not overly onerous. Out of 13000 lines,
we added 76 annotations, used swap 46 times, and alias

66 times, of which 71% were automatically inferred. We are
exploring further improvements to reduce this burden.

Figure 2 illustrates the memory usage of MediaNet when
forwarding 5000 4 KB packets over Gigabit Ethernet. The
gc configuration uses garbage collection for all packet data,
whereas gc+free is as described above. This graph has the
same format as the graph in Figure 1, but also shows the
heap and reference-counted regions. Reserved memory for
the gc+free case is not shown.

The gc configuration exhibits a sawtooth pattern, where
each peak roughly coincides with a garbage collection. The
gc+free configuration uses and reserves far less memory (128
KB as opposed to 840 KB for reserved memory, and 8 KB
as opposed to 420 KB of peak used memory). There is some
initial heap-allocated data that remains throughout the run,
and the reference-counted and unique data (the small line
at the bottom) never consume more than a single packet’s
worth of space, since each packet is freed before the next
packet is read in.

4. CONCLUSIONS AND FUTURE WORK
Cyclone supports a rich set of safe memory-management

idioms for users unwilling to use only automatic techniques.
Together, these idioms represent significant progress toward
the goal of enforcing sound, manual memory management.
Preliminary experiments show the constructs can facilitate
good performance, without imposing an undue burden.

We are currently focusing on improving the ease of use
of our techniques. Firstly, we are designing tools to en-
able semi-automatic porting of C code to Cyclone that can
use unique pointers. We are considering traditional, whole-
program static analysis, augmented by dynamic informa-
tion. Second, we are improving intraprocedural inference
in Cyclone. For example, a more general constraint-based
inference should be able to discover many of the alias state-
ments not already inferred. Similarly, support for a restrict

mechanism in the style of Aiken et al. [1] should reduce the
need for swapping, at the cost of more annotations. Finally,
the aliasing restrictions on unique and reference-counted
pointers can make error messages hard to understand. We
are exploring visualization tools and ranking heuristics to
help programmers find the likely cause of an error.

5. REFERENCES
[1] Alex Aiken, Jeffrey S. Foster, John Kodumal, and

Tachio Terauchi. Checking and inferring local
non-aliasing. In PLDI, 2003.

[2] Dan Grossman, Greg Morrisett, Trevor Jim, Michael
Hicks, Yanling Wang, and James Cheney. Region-based
memory management in Cyclone. In PLDI, 2002.

[3] Michael Hicks, Greg Morrisett, Dan Grossman, and
Trevor Jim. Safe and flexible memory management in
Cyclone. Technical Report CS-TR-4514, University of
Maryland Department of Computer Science, July 2003.

[4] Michael Hicks, Adithya Nagajaran, and Robbert van
Renesse. MediaNet: User-defined adaptive scheduling
for streaming data. In IEEE OPENARCH, 2003.

[5] David Mazières. A toolkit for user-level file systems. In
USENIX Annual Technical Conference, 2001.

[6] Niels Provos. libevent — an event notification library.
http://www.monkey.org/~provos/libevent/.


