
Low-Level Linear Memory Management

Chris Hawblitzel Edward Wei Heng Huang Eric Krupski Lea Wittie
Department of Computer Science, Dartmouth College

ABSTRACT
Efficient low-level systems need more control over memory
than safe high-level languages usually provide. As a result,
run-time systems are typically written in unsafe languages
such as C. This paper extends previous work on linear types,
alias types, regions, and typed garbage collection to give
type-safe code more control over memory. The approach is
truly low-level: memory consists of a single linear array of
words, with load and store operations but no built-in no-
tion of an object. The paper constructs lists and arrays
out of the basic linear memory primitives, and then intro-
duces type sequences for building regions of nonlinear data.
It then describes a Cheney queue typed garbage collector,
implemented safely over regions.

1. INTRODUCTION
Modern computers rely on the correctness and security of

low-level systems, such as garbage collectors, device drivers,
and embedded system code. Often, a small amount of low-
level code (say, in a firewall, a network interface device
driver, or secure coprocessor[24]) is all that stands between
a computer system and a hacker trying to break into the
system. Even in the absence of malicious outsiders, buggy
device drivers often cause annoying system crashes. Given
their role as the foundation for higher-level services, one
might expect low-level systems to benefit from the static and
run-time checks provided by type-safe languages. However,
systems programmers usually lean towards assembly lan-
guage, C, or C++ rather than Java, ML, or Haskell, because
they need efficient low-level control of memory. Java’s array
bounds checking, for example, prevents the buffer overflow
attacks that so many C programs are susceptible to, but
often imposes extra run-time overhead. Automatic garbage
collection prevents dangling pointers, but implementing a
garbage collector requires the ability to explicitly free heap
objects, a privilege not usually granted to safe language pro-
grams.

This paper extends previous work on linear types, alias

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

types, regions, and typed garbage collection to give type-
safe code more control over memory. It models memory
as a linear array of words, indexed by integer memory ad-
dresses. Since linearity prevents aliasing, store operations
can change the type of a memory word without the danger
of a subsequent load operation reading the word with the
wrong type. To support integer addressing, the type system
includes arithmetic based on singleton types, in the style of
Xi et al[32]. The paper then extends these basic tools with
coercion functions, which are essentially proofs to modify
the types of values, and type sequences, which introduce non-
linearity into the system without imposing a specific memory
management strategy for the nonlinear data. These are suffi-
cient to implement region-based memory management[26][8]
and garbage collection.

To demonstrate the practicality of these ideas, we have de-
veloped a safe C-like language called Clay, which implements
the type system in this paper, along with some heuristic-
based type inference and static detection of possible 32-bit
integer overflow. The Clay type checker uses the Omega test
software[20], modified to support arbitrary-precision arith-
metic, to check arithmetic constraints. The type-checked
code is compiled to C++. All the examples in this paper,
including the garbage collectors and other run-time system
code, are included with the Clay distribution1.

Rather than focusing on the specifics of Clay, this pa-
per presents the type system as part of an abstract machine
called λlow, based on the standard call-by-value higher-order
polymorphic lambda calculus, F ω. Although it may seem
strange to describe low-level operations from within a high-
level lambda calculus framework, the generality of the lambda
calculus allows us to apply the ideas from λlow to many
settings. For example, a closure-converted subset of λlow

mimics C-like languages such as Clay, while a CPS- and
closure-converted subset of λlow mimics register transfer lan-
guages or assembly-languages. Because of this, we believe
that λlow’s type system can contribute to the development of
systems for proof-carrying code (PCC)[18] and typed assem-
bly language (TAL)[17]. Since these systems run untrusted
code directly on a trusted computer, they are particularly
sensitive to bugs or vulnerabilities in the run-time system,
and considerable work has focused on moving memory man-
agement out of the “trusted computing base” (TCB) for
PCC and TAL. The most ambitious effort to reduce the
TCB is foundational PCC [2][10], which attempts to build
an entire PCC/TAL system up from a small number of ax-
ioms. Because linear memory types are based on a simple,

1available at http://www.cs.dartmouth.edu/˜hawblitz/

1

low-level model of memory, they may be suitable for foun-
dational PCC systems.

2. BACKGROUND
This paper draws from previous research on typed mem-

ory management, including linear types, alias types, regions,
and typed garbage collection. This section provides a brief
background on these techniques.

The primary obstacle to type-safe memory management is
dangling pointers (pointers to deallocated memory). In the
presence of aliasing (multiple pointers to the same object), it
is difficult to prevent dangling pointers. The simplest strat-
egy for safe deallocation is to disallow aliasing completely:
if all data structures are trees, rather than arbitrary graphs,
then each object has only one pointer to it, and the type
system can ensure safety by invalidating the one pointer to
an object when the program deallocates the object. In the
terminology of linear types [27], a pointer P to an object O
is “consumed” when O dies. For example, if the variable x
contains the pointer P, then the expression “deallocate(x)”
removes x from the scope of the rest of the program, so that
any subsequent reference to x fails to type-check.

While pure linear data structures have been implemented
in LISP[4] and designed for typed assembly language[6], they
tend to be clumsy in practice. Many useful data structures,
such as circular and doubly-linked lists, aren’t linear. Even
for linear data structures, useful operations on the data often
violate the linearity. For example, a purely linear program
cannot traverse a list while simultaneously holding a pointer
to the head of the list, because this would result in two
pointers to the list. As a result, programs often make extra
copies of data structures, one copy for every pointer to the
data structure.

Alias types[23][28] allow limited forms of aliasing rather
than prohibiting aliasing completely, so that a program can
express some nonlinear data structures. Alias types describe
the current state of a set of objects in a constraint. For ex-
ample, the constraint {`1 7→ 〈int,int〉, `2 7→ 〈int,int,int〉}
indicates that there are two distinct objects at memory lo-
cations `1 and `2, one of which is a pair of integers and one of
which is a triplet of integers. Allocation, deallocation, loads,
and stores alter the state of the current constraint. For ex-
ample, storing a floating point number into the second ele-
ment of `2 produces a new constraint {`1 7→ 〈int,int〉, `2 7→
〈int,float,int〉}. Constraints are treated linearly, so that the
old constraint is consumed when the new constraint is pro-
duced, which prevents the program from trying to use the
second field of `2 as an integer after it has been changed to
a float. In contrast to pure linear types, the program may
keep many pointers to `2 simultaneously—the type “pointer-
to-`2” is nonlinear and may be freely copied. The linearity
of the constraint ensures that any use of a “pointer-to-`2”
value respects the current state of `2.

While alias types are more flexible than pure linear data
types, the linear constraint disallows many nonlinear data
structures and nonlinear operations on data. In practice, the
allowed data structures are “almost linear”—they look like
linear data augmented with carefully specified extra point-
ers. For example, Walker et al[28] express a circular list as
a singly-linked list plus one special pointer from the tail to
head. However, the authors do not present standard oper-
ations on circular lists, such as traversing a list in a circle
from the head to tail and back around to the head.

One can extend the power of linear and alias types by
adding ever more sophisticated ways to control aliasing (see
shape types, for example[9]), but most programming lan-
guages allow unrestricted pointer aliasing in the heap, and
a compiler from a standard source programming language to
typed assembly language or proof-carrying code must deal
with this unrestricted aliasing. One strategy is to allow ar-
bitrary nonlinear data inside a region[26][8], whose lifetime
is controlled linearly (or almost linearly). A pointer to an
object O inside a region R is assigned a type “τ at R”,
where τ describes the data inside O. Loads and stores to a
“τ at R” value are only type-correct if R is still alive. When
R is destroyed, all the objects in it are deallocated together.
Deallocation of individual objects inside a live region is usu-
ally disallowed, because arbitrary aliasing is possible inside
the region, which means that individual object deallocation
could leave dangling pointers.

Any program can be trivially rewritten to take advan-
tage of regions: simply create one big region, allocate all
objects in the region, and keep the region alive until the
program finishes. This is usually not an efficient strategy,
though, so either automated inference[26] or manual region
management is necessary to break data up into smaller re-
gions that the program can deallocate as soon as possible to
minimize memory consumption. Wang and Appel[30] ob-
served that a program can copy live data from one region
into a second region and then deallocate the first region,
effectively constructing a copying garbage collector writ-
ten entirely with type-safe language features. Such a typed
(or type-preserving) collector offers the generality of tradi-
tional garbage collection without requiring the collector to
be trusted. Unfortunately, the details of the copying pro-
cess are troublesome; the collector needs some way to tra-
verse the data, and it needs to maintain forwarding pointers
from the old region into the new region. Several solutions
to these problems have been proposed [30][15][16], but each
new proposal changes the typing rules for regions, often in
ad hoc and complex ways. Furthermore, the resulting col-
lectors are often unable to use low-level techniques common
in collectors written in C.

The goal of this paper is to develop regions from the
ground up, starting with a combination of linear and alias
types, in order to provide a stable, flexible, safe, and low-
level platform for constructing typed garbage collectors. The
rest of paper is as follows:

• Section 3 introduces the core language for manipulat-
ing linear memory. This includes basic function, tuple,
polymorphic, and recursive types, plus linear mem-
ory types and integer arithmetic types. These types
are sufficient to implement basic recursive linear data
structures.

• Section 4 extends the language with coercion func-
tions, which add flexibility to the data types from sec-
tion 3. The stack type from section 3 becomes an array
type, for example.

• Section 5 describes how to combine nonlinear func-
tions and linear memory types to implement primitive
“regions” of nonlinear data. No language extensions
are required, but the technique does not allow regions
to grow dynamically – all the region’s data must be
allocated when the region is allocated.

2

• Section 6 introduces a new language feature called type
sequences so that the regions from section 5 can grow
as new data is allocated. Because type sequences seem
somewhat ad hoc, section 6 also describes how to en-
code type sequences using a more elegant language ex-
tension called delayed types.

• Section 7 shows how to build a simple Cheney queue
copying garbage collector using the regions from sec-
tion 6.

3. LINEAR MEMORY
This section describes the syntax and semantics of λlow.

To make the core language clearer, we delay a couple of fea-
tures (coercion functions and type sequences) until later sec-
tions. Type checking rules for expressions appear through-
out the paper; the complete syntax and semantics of λlow is
found in [12]. For the portion of the language described in
this subsection, two type environments are needed to type-
check an expression: Γ maps variables to types, and Ψ maps
integer memory word addresses to types. For convenience,
we often write a combined context C, defined in this sub-
section to be C , Ψ;Γ. The notation C = C1, C2 indicates
that C, C1, and C2 share the same nonlinear assumptions,
but that each of C’s linear assumptions appears in either C1

or C2, not both. The notation
·

C denotes a context with no
linear assumptions.

The state of a running program consists of memory M ,
which maps integer memory word addresses to one-word val-
ues, and an expression e. The evaluation rules (in [12])
describe how a machine state (M, e) steps to a new state
(M ′, e′). The load and store expressions are the only expres-
sions that read or modify M ; even the region and garbage
collection examples later in the paper are built entirely on
top of simple loads and stores.

The expressions e, values v, and types τ are defined as
follows (kinds K, integers I, and booleans B are defined
later in this section):

types

τ = τ1
φ

−→ τ2 |φ〈
⇀
τ 〉 |Mem(I, τ)

|α |λα : K.τ | τ1 τ2 | ∀α : K; B.τ | ∃α : K; B.τ |µα : K.τ

| I |B | Int(I) |Bool(B) | if B then τ1 else τ2

expressions

e = i | b |x | e1 e2 | e τ |φ〈
⇀
e 〉 |λx : τ

φ
−→ e | e1 op e2 | ¬e

|Λα : K; B.v | let 〈
⇀
x〉 = e1 in e2 | if e1 then e2 else e3

| pack[τ1, e] as ∃α : K; B.τ2 | unpackα, x = e1 in e2

| roll[(µα : K.τ0)τ1 · · · τn](e) | unroll(e) | fixx : τ.v
| load(eptr, eMem) | store(eptr , eMem, ev) | fact

values
v = i | b |Λα : K; B.v | pack[τ1, v] as ∃α : K; B.τ2 |φ〈

⇀
v 〉

| roll[(µα : K.τ0)τ1 · · · τn](v) |λx : τ
φ

−→ e | fact

Most of the types are borrowed from other languages, as
discussed below. The one new type is the the “linear mem-
ory type”, Mem(I, τ), which is loosely based on alias types.
As discussed in the previous section, alias types maintain
a linear context that maps locations to types. Alias types

deliberately abstract away the details of how the objects
are allocated and where in memory in memory objects re-
side: in the context {`1 7→ 〈τ1,τ2〉, `2 7→ 〈τ3,τ4,τ5〉}, the
“locations” `1 and `2 are opaque abstractions, not integers.
Linear memory types, on the other hand, are designed to
implement object allocation from the ground up, and there-
fore they must expose the details of the underlying mem-
ory. Rather than mapping opaque locations to types, linear
memory types map integer word addresses to the types of
individual memory words. If the two objects above reside at
memory locations 500 and 700, then five distinct mappings
describe the state of the objects:
{500 7→ τ1, 501 7→ τ2, 700 7→ τ3, 701 7→ τ4, 702 7→ τ5}

Our examples do not require some of the more advanced
features of alias types, such as explicit store polymorphism
and nonlinear constraints. Because of this, it is easiest to
express the type of each memory word as an individual first-
class linear value, rather than as a member of a constraint
set. Traditional linear data structuring mechanisms[27] then
suffice to hold the types of multiple memory words. For
example, the memory location 500 is described by an object
of linear type “Mem(500, τ1)”, and the state of the pair of
integers at locations 500 and 501 can be stored in a linear
tuple of type ∧〈Mem(500, τ1), Mem(501, τ2)〉.

Following Walker et al[29], the type system includes non-

linear and linear functions (τ1
φ

−→ τ2) and nonlinear and lin-

ear tuples (φ〈
⇀
τ 〉), where φ is ∧ to indicate linear data, and

φ is · to indicate nonlinear data. A linear functions must be
called exactly once, while a nonlinear function can be called
arbitrarily often. Linear tuples are consumed when their
fields are extracted. Linear data structures may hold non-
linear data (a linear tuple type ∧ 〈·〈〉, ·〈〉〉 containing empty
nonlinear tuples is legal), but nonlinear data structures can-
not contain linear data (the nonlinear tuple type ·〈∧ 〈〉,∧ 〈〉〉
containing empty linear tuples is illegal), which ensures that
linear data is never aliased. To enforce this restriction, we
assign kinds to types that distinguish between linear and

nonlinear types. The kind
∧

n describes all linear types of
size n words, while

·

n describes all nonlinear types of size n
words. For example, the nonlinear empty tuple type ·〈〉 has

kind
·

0.

We use the n in the kind
φ

n to restrict operations on mem-
ory: values stored in memory must be exactly 1 word long.

The type of singleton booleans Bool(τ) has kind
·

1, for ex-
ample, so that a boolean value fits in one word of memory.
A triplet of booleans of type ·〈Bool(τ),Bool(τ), Bool(τ)〉,

though, has kind
·

3, and is too large to fit into a single mem-
ory word. The kinding rules for tuple types and linear mem-
ory types illustrate the size and linearity rules for data (the
environment Φ; ∆ is explained later):

∀j.(Φ; ∆ ` τj :
·

nj) n =
∑

j
nj

Φ; ∆ ` ·〈
⇀
τ 〉 :

·

n

∀j.(Φ; ∆ ` τj :
φj

nj) n =
∑

j
nj

Φ; ∆ ` ∧ 〈
⇀
τ 〉 :

∧

n

Φ; ∆ ` I : int Φ; ∆ ` τ :
·

1

Φ; ∆ ` Mem(I, τ) :
∧

0

3

The type Mem(I, τ) has kind
∧

0, so that it is linear and oc-
cupies no space. Operations on memory consume values of
type Mem(I, τ) and produce new values of type Mem(I, τ ′),
so that at all times there is exactly one value of type Mem(i, τ)
for each memory location i. For example, the following func-
tion swaps two words of memory, consuming a pair of values
of type ∧〈Mem(500, τ1), Mem(501, τ2)〉 and producing a pair
of values of type ∧〈Mem(501, τ1), Mem(500, τ2)〉:

λx : ∧ 〈Mem(500, τ1), Mem(501, τ2)〉
·

−→
let 〈x1, x2〉 = x in
let 〈y1, x′

1〉 = load(500, x1) in
let 〈y2, x′

2〉 = load(501, x2) in
let x′′

1 = store(500, x′
1, y2) in

let x′′
2 = store(501, x′

2, y1) in ∧ 〈x′′
2 , x′′

1 〉

When x1 has type Mem(500, τ1), the expression load(500, x1)
consumes x1 (so that x1 is no longer in scope in the remain-
der of the function), and produces a pair whose first element
contains the contents of memory word 500, and whose sec-
ond element has type Mem(500, τ1). The typing rule for the
expression load(eptr, eMem) requires that the first argument
eptr be a singleton integer of type Int(I), and the second
argument eMem have type Mem(I, τ) for some τ .

C1 ` eptr : Int(I) C2 ` eMem : Mem(I, τ)

C1, C2 ` load(eptr, eMem) : ∧ 〈τ, Mem(I, τ)〉

Unlike the more usual type “int”, which is the set of all
integers, the singleton type Int(I) is the set containing only
one integer I, so that the integer constant 500 has type
Int(500):

·

C` i : Int(i)

For the load expression, the I in Int(I) and Mem(I, τ)
must match, so that load(500, x1) type-checks in the exam-
ple above, but load(499, x1) would not type-check.

The expression store(500, x′
1, y2) consumes x′

1 and pro-
duces a value of type Mem(500, τ2), documenting the change
to the type of the value at memory word 500 from τ1 to τ2:

C2 ` eMem : Mem(I, τ1) C3 ` ev : τ2

C1 ` eptr : Int(I) C1, C2, C3 ` τ2 :
·

1

C1, C2, C3 ` store(eptr, eMem, ev) : Mem(I, τ2)

Notice that the store expression overwrites whatever τ1 value
was previously at memory location 500, while the load ex-
pression makes a copy of a value from memory. Because
only nonlinear values may be discarded and copied, the type
Mem(I, τ) is only legal if τ is nonlinear.

While the examples above show how to manipulate val-
ues of type Mem(i, τ), they leave one question unanswered:
what exactly is the value that has type Mem(i, τ)? The syn-
tax for the abstract machine defines a special value, “fact”,
which is sort of a universal unit value for all types Mem(i, τ).
The fact value carries no run-time information, though, and
is not represented at all in a real machine. The type-checking
rule states that fact is well-typed if the current context con-
tains exactly one linear assumption, saying that memory
location i holds a value of type τ :

·

C, i 7→ τ ` fact : Mem(i, τ)

3.1 Integer and Boolean Polymorphism
The swap function described earlier only works for fixed

types τ1 and τ2, and the particular memory addresses 500
and 501. The type system allows polymorphism over base

types (kind
φ

n), integers (kind “int”), booleans (kind “bool”),
and type operators (kind K1 → K2), so the swap function
can be rewritten with type:

∀α1 : int.∀α2 : int.∀β1 :
·

1 .∀β2 :
·

1 .
∧ 〈Int(α1), Int(α2), Mem(α1, β1), Mem(α2, β2)〉

·
−→

∧ 〈Mem(α2, β1), Mem(α1, β2)〉

Following the approach of Xi et al[32], the singleton integers
of type Int(α1) and Int(α2) are the one-word run-time rep-
resentations of the integer types α1 and α2. This avoids the
need for full-blown dependent types; the type system only
needs to deal with a subset of integer arithmetic that can
be solved easily by a standard constraint solver: universally
quantified variables, addition, subtraction, comparison, and
multiplication by constants. We use the symbol I to re-
fer to integer types, and the symbol B to refer to boolean
types: (0 ≤ α1 ∧ α1 ≤ α2) is a legal boolean type, while
Int(α1 + 2 ∗ α2 + 1) is a legal singleton integer type that is
the run-time representation of the integer type α1+2∗α2+1.

arithmetic
i = · · · | − 2 | − 1 | 0 | 1 | 2 | · · ·
b = true | false
I = α | i | I1 iop I2

B = α | b | ¬B |B1 bopB2 | I1 cmp I2

iop = + | − | ∗ bop = ∧ |∨
cmp =< | > | ≤ | ≥ | = | 6=
op = iop | bop | cmp

In addition to the universal polymorphic type ∀α : K.τ ,
the type system supports existential polymorphic types ∃α :
K.τ . For example, the type ∃α : int.Int(α) is the type of a
singleton integer, for some unknown integer α; this type
imitates the traditional type “int” (the type of all integers).
As another example, the type

∃α : int.∧ 〈Int(α), Mem(α, τ1), Mem(α + 1, τ2)〉
says that some unknown integer α is an address where

two words of type τ1 and τ2 are stored, and also provides
the singleton integer Int(α) needed to load and store from
these memory addresses; this type imitates a pointer to a
pair of τ1 and τ2.

Universal and existential polymorphic types may contain
constraints that must be satisfied when types are substituted
in for type variables. For example, if swap has the following
type:

∀α1 : int.∀α2 : int; α1 ≤ α2.∀β1 :
·

1 .∀β2 :
·

1

Then (swap 3 6 . . .) would be legal, but (swap 10 6 . . .) would
be illegal. When type checking the body of the swap func-
tion, the fact that α1 ≤ α2 is kept inside an environment B,
while the kinds of the type variables are kept in an environ-
ment ∆, so that the combined type checking context is now
C , Ψ;∆; Γ; B.

3.2 Type Equivalence

4

Following Xi’s approach, we define two integer types I1

and I2 to be equivalent (I1 ≡ I2) if our constraint solver can
show that for all substitutions of integer constants i for inte-
ger variables α in I1 and I2, the types I1 and I2 simplify to
equal integer constants. For example, the type system con-
siders α1 +2 ∗α2 + 1 to be equivalent to 2 ∗α2 + 2 +α1 − 1.
However, our language contains two types that do not in-
teract gracefully with Xi’s approach: type operator appli-
cation “τ1 τ2”, which is used for polymorphic abstract data
types, and the conditional type “if B then τ1 else τ2”, which
is used to create unions2. Conceivably, either of these types
could have kind int, so that they may be substituted for
an integer variable α inside an integer type I during type-
checking (the type-checking rule for type application e τ per-
forms this sort of substitution, for instance). If this happens,
the constraint solver may be faced with an integer type like
2 + (if β then 3 else 4) + (α (λγ : int.γ + 3)), which is difficult
to deal with. Nevertheless, we valued the convenience of
Xi’s approach in our implementation (and in the examples
in this paper) enough to resort to a hack: the kind system
bans the kinds int and bool from appearing as the return

type of a type operator (e.g.
·

1→ int), so that integer and
boolean types do not contain operator applications, and the
type system disallows conditional types from having kind
int or bool:

kinds:

K = J | int | bool J =
φ
n |K → J

Φ; ∆, α : Ka ` τ : Jb

Φ; ∆ ` λα : Ka.τ : Ka → Jb

Φ; ∆ ` τf : Ka → Jb Φ; ∆ ` τa : Ka

Φ; ∆ ` τfτa : Jb

Φ; ∆ ` B : bool Φ; ∆ ` τ1 : J Φ; ∆ ` τ2 : J

Φ; ∆ ` if B then τ1 else τ2 : J

Once these type and kind restrictions are in place, the
type equivalence rules for type application and conditional
types no longer interfere with the type equivalence rules for
integers and booleans:

Φ; B ` (λα : K.τb)τa ≡ [α 7→ τa]τb

Φ; B ` (if true then τ1 else τ2) ≡ τ1

Φ; B ` (if false then τ1 else τ2) ≡ τ2

In a typed assembly language or proof-carrying code sys-
tem, it might make more sense to require the program to
provide proofs of arithmetic equivalence using fundamen-
tal arithmetic axioms, rather than to rely on a constraint
solver[7][25]; in this case, we wouldn’t need to hack the kind
system.

2Our technical report uses a different type for unions that
requires more explicit programmer annotation, in order to
simplify the implementation’s type inference algorithm. The
conditional type in this paper is more elegant, though, and
is essential for section 6.1’s use of delayed types.

3.3 Recursive Types, Lists, and Stacks
As described earlier, an existential type like

∃α : int.∧ 〈Int(α), Mem(α, τ1), Mem(α + 1, τ2)〉

can imitate a pointer to data in memory. When this idea is
combined with recursive types, the type system is powerful
enough to express pointer-based data structures in the style
of recursive alias types[28]. For example, the following type
defines a simple linked list terminated by 0, containing data
elements of type τ :

List = µβ : (int →
∧

0).λα1 : int.if α1 = 0 then ∧ 〈〉 else
∃α2 : int.∧ 〈Mem(α1, Int(α2)),Mem(α1 + 1, τ), β α2〉

For clarity, we’ll often use the , symbol to define data types,
rather than using the abstract machine’s official, but more
cryptic, recursive type µα : K.τ :

List (α1 : int) :
∧

0, if α1 = 0 then ∧〈〉 else
∃α2 : int.∧ 〈Mem(α1, Int(α2)),Mem(α1 + 1, τ), List α2〉

The type “if B then τ1 else τ2” is equivalent to τ1 if B is true
and to τ2 if B is false, so the List type contains an empty
tuple if α1 = 0 and a three-word tuple for non-zero α1. The
first two words of the tuple assert that memory locations α1

and α1 +1 contain values of type Int(α2) (the pointer to the
next element) and τ (the data in the current element). By
itself, the Int(α2) is just an arbitrary integer, but together
with the Mem type in List α2 it may be used to load the
fields of the next list element. Based on this approach, the
language easily supports tree-like data structures. For ex-
ample, free lists (or lists of free lists of various size objects)
provide a simple memory management strategy for linear
data.

By allowing simple integer arithmetic, the type system
expresses more than just traditional link-based structures.
For example, a slight modification of the linked list exam-
ple produces a stack type, held in a contiguous sequence of
memory locations α1 . . . α2 − 1:

Stack (α1 : int) (α2 : int) :
∧

0, if α1 = α2 then ∧〈〉 else
∧ 〈Mem(α1, τ), Stack (α1 + 1) α2〉

4. COERCION FUNCTIONS
The previous section’s stack type is fine for simple pushes

and pops, but it does not support constant-time random ac-
cess into the middle of the stack. Getting to the middle of
the stack is hard to do: the program must unroll the data
type n times to get to the nth element, performing tuple
extractions with each unroll. Since O(n) abstract machine
operations are required, there’s no obvious way to perform a
constant time access of an inner element. And yet, unroll op-
erations and tuple extractions for size-zero data aren’t sup-
posed to impose any run-time cost; they are purely compile-
time coercions. What is needed is a way to combine n such
coercions into a single O(1) time operation. Suppose that
an expression e satisfies the following three constraints:

• It has no effect on the memory M

• If it evaluates to a value, then that value’s type has
size 0

5

• It is guaranteed to terminate (by evaluating to a value
in a finite time)

Then there is no reason to execute e on a real machine; a
compiler can simply erase e in the same way that it erases
the pack/unpack and roll/unroll coercions when compiling
typed code to untyped machine language code. Such an
expression can still perform many coercion operations, such
as traversing a stack data structure to retrieve a Mem value
from deep inside the stack, but now with no run-time cost,
since the expression is erased by the compiler. For example,
consider the following data type for arrays:

LArray (α1 : int) (α2 : int) (β : int →
∧

0) :
∧

0,

if α1 = α2 then ∧ 〈〉 else ∧ 〈β α1, LArray (α1 + 1) α2 β〉

The LArray type is similar to the Stack type, except for
extra flexibility it is polymorphic over an operator β so that
each array element α1 can have data of a different type
(β α1). The following coercion function splits an array into
two adjacent arrays, the left containing elements α1 . . . α2−1
and the right containing elements α2 . . . α3 − 1:

fix split : τsplit.Λα1 : int.Λα2 : int.Λα3 : int.Λβ : int →
∧

0

; α1 ≤ α2 ≤ α3. λarr : (LArray α1 α3)
·,(α2−α1)

−→
if α1 = α2

then ∧〈roll[LArray α1 α2 β](∧ 〈〉), arr〉
else let 〈head, tail〉 = unroll(arr) in

let 〈left, right〉 = split (α1 + 1) α2 α3 β tail in
∧ 〈roll[LArray α1 α2 β](∧ 〈head, left〉), right〉

τsplit , ∀α1 : int.∀α2 : int.∀α3 : int.

∀β : int →
∧

0; α1 ≤ α2 ≤ α3.(LArray α1 α3)
·,(α2−α1)

−→
∧ 〈(LArray α1 α2), (LArray α2 α3)〉

In the case where α1 = α2, the left array is empty and the
right array is the whole array. Otherwise, the function pops
the head of the array, recurses, and pushes the head back
onto the left array returned from the recursive call.

For the compiler to omit a call to this coercion function
at run-time, it must know that it satisfies the three condi-
tions above: no stores to memory, return type of size 0, and
definite termination. Since the language already supports
integer arithmetic, an easy (though heavy-handed) way to
ensure termination is to annotate the type of each coercion

function (λx : τ
φ,limit
−→ e) with a nonnegative integer limit :

Φ; ∆ ` τ1 :
φ1

n1 Φ; ∆ ` τ2 :
φ2

n2

(Φ; ∆ ` limit : int ∧ n = 0) or (limit = ∞∧ n = 1)

Φ; ∆ ` τ1
φ,limit
−→ τ2 :

φ

n

The type system only allows coercion functions to call func-
tions with lower limits than their own limit. The recur-
sive call above is legal because the caller has limit (α2 −
α1), as indicated in its annotation, while the called func-
tion (split (α1 + 1) α2 α3 β) has limit (α2 − (α1 + 1)), which
is smaller than (α2 − α1). The current limit is stored in
the context C, whose definition is extended to be C =
Ψ; ∆; Γ; B; limit where limit is either an integer type I (for
coercion functions) or the symbol ∞ (for normal functions;
we usually omit the ∞ annotation on function types). In a
context with an integer limit, expressions are not allowed to
store anything to memory, although loads are allowed.

The split function performs one rather unrealistic oper-
ation: it tests to see whether two type variables α1 and
α2 are equal to each other. This intentional type analysis
would be problematic for a compiler to implement for ordi-
nary functions: if types are erased before run-time, α1 and
α2 won’t be available to use in the run-time equality test.
Since coercion functions won’t actually be executed at run-
time, though, the language lets them use a boolean type test
expression “if B then e1 else e2”.

Extensions to λlow for coercion functions
limit = I |∞

types

τ = . . . | τ1
φ,limit
−→ τ2

expressions

e = . . . |λx : τ
φ,limit
−→ e | if B then e1 else e2 | coerce(e)

values

v = . . . | λx : τ
φ,limit
−→ e

It’s easy to define other coercions for the LArray type: com-
bining two adjacent arrays into a single array, construct-
ing and deconstructing empty arrays, and constructing and
deconstructing single-element arrays. These coercions suf-
fice to implement familiar operations to get and set ar-
ray elements. For example, given an expression of type
(LArray 0 10 (λα : int.Mem(500 + α, τ))), describing an
array of 10 elements of type τ stored in memory words
500...509, element 5 of the array is accessed by splitting
the array into three arrays 0...4, 5...5, and 6...9, retrieving
the Mem(505, τ) fact from the single-element array 5...5,
performing a load or store to memory word 505, and then
recombining the three arrays into the original array 0...9.

Viewed from another perspective (courtesy of the Curry-
Howard isomorphism), the split function takes a proof as
an argument (say, a proof that memory words 500...509 all
contain values of type τ) and returns two proofs as a re-
sult. The language of coercion functions is then nothing
more than a strongly normalizing proof language, although
it happens to look suspiciously similar to the original pro-
gramming language. In the abstract machine and in Clay,
the only differences between the proof and programming lan-
guages is the treatment of stores (disallowed in the proof
language), intentional type analysis (disallowed in the pro-
gramming language), and function calls (restricted in the
proof language). This similarity has the advantage that
programmers need not learn a second language to imple-
ment “proofs”, and the programming and proof languages
interact seamlessly. On the other hand, a specialized, dedi-
cated proof language would be more elegant, powerful, more
amenable to automated proof generation tools, and easier to
connect to existing libraries of proofs. The LTT system[7],
for example, embeds LF[11] proofs in a separate program-
ming language. The TL system[22] also embeds proofs in
programs.

5. NONLINEAR DATA STRUCTURES
The previous sections described types for linear data struc-

tures, such as linear lists and linear arrays. Later sections

6

will describe extensions to the type system for building re-
gions of nonlinear data structures. Interestingly, even with-
out extending the type system, linear memory types can
express nonlinear data structures. Consider the following C
code that creates a circular list with 3 elements, and calls
a function to get the 5th list element, which it then splices
into the beginning of the list:

struct List {
struct List *next;

};
struct List *nth(int n, struct List *x) {

if(n==0) return x;

else return nth(n-1, x->next);

}
struct List a;

struct List b;

struct List c;

a.next = &b;

b.next = &c;

c.next = &a;

a.next = nth(5, &a);

This code creates enough unpredictable aliases to thwart
a direct representation of the list with alias types or linear
memory types. However, rather than making the list a linear
type, we can encode the list as a nonlinear function that
fetches data from a linear area of memory represented by an
abstract type β. The linear area of memory β acts much like
a region, while the nonlinear type List β acts like a nonlinear
pointer into the region (something like the type “List at β”
in standard region terminology). As long as β stays around,
any List β value can be used to load and store from the
region:

List (β :
∧

0) :
·

1, ∃α : int. · 〈Int(α),

β
·,0
−→ ∧ 〈Mem(α, List β), Mem(α, List β)

∧ ,0
−→ β〉〉

Each list value contains one singleton integer Int(α), which
is the address of the list element. To get the data from
the list element, the program calls the nonlinear function of

type β
·,0
−→ ∧〈Mem(α, List β), ...〉. This function consumes

the linear “region” β, and returns a linear memory type de-
scribing the list element’s data (in this example, the element
contains only one word, the field “next”). With the linear
memory type, the program is free to load and store the ele-
ment’s data. When it is finished loading and storing, it calls

the linear Mem(α, List β)
∧ ,0
−→ β function to relinquish the

linear memory type and reconstruct the region β.

The β
·,0
−→ ∧〈Mem(α, List β), ...〉 function in List β ma-

nipulates linear data, but is not linear itself; it is merely a
middleman that passes linear data back and forth between
the region and the program. Thus, the List β type is non-
linear, and the program can freely copy and discard lists.
For example, here is an implementation of function “nth”:

nth = Λβ :
∧

0 .fix

f : (∀α : int.Int(α)
·

−→ (List β)
·

−→ β
·

−→ ∧ 〈List β, β〉).

Λα : int.λn : Int(α)
·

−→ λx : List β
·

−→ λr : β
·

−→
if n = 0 then ∧ 〈x, r〉 else
let 〈x′, r′〉 = getnextβ x r in
f (α − 1) (n − 1) x′ r′

The nth function in λlow is similar to the C implementation,
except that it takes a third argument r of type β, and returns
r along with the desired list element (in the tuple ∧ 〈x, r〉)
when the function terminates. The r value is needed to
load the next field from the list x, as implemented in the
following helper function:

getnext = Λβ :
∧

0 .λx : List β
·

−→ λr : β
·

−→
unpackα, y = unroll(x) in
let 〈yptr, yf〉 = y in
let 〈mem, zf〉 = yf r in
let 〈x′, mem′〉 = load(yptr,mem) in
∧ 〈x′, zf mem′〉

The getnext function extracts the list address yptr and the
list function yf , which when called yields the linear mem-
ory value mem, of type Mem(α, List β). With the address
and linear memory value, getnext loads the next field from
memory and returns it, along with the linear β value. It’s
easy to define a setnext function in the same way, using a
store instead of a load:

setnext =
Λβ :

∧

0 .λx : List β
·

−→ λx′ : List β
·

−→ λr : β
·

−→
unpackα, y = unroll(x) in
let 〈yptr, yf〉 = y in
let 〈mem, zf〉 = yf r in
zf (store(yptr,mem,x′))

With these functions, the C code

a.next = nth(5, &a);

is implemented with a function:

fifth = Λβ :
∧

0 .λa : List β
·

−→ λr : β
·

−→
let 〈b, r′〉 = nth β 5 5 a r in
setnext β a b r′

All that remains is to allocate and initialize the circular list.
For this, we need a concrete type for β, and we choose a type
that describes three words of memory, at addresses 1,2, and
3, each containing a list. Let’s call this type Three:

Three :
·

0, ∧〈Mem(1, List Three),
Mem(2, List Three),
Mem(3, List Three)〉

To create a list of type List Three, we need to build a pair
of an address and a function. Let’s start with address 2,
corresponding to the object “b” from the C code:

b = roll[List Three](

pack[2, ·〈2, fb〉] as ∃α : int. · 〈Int(α), Three
·,0
−→ ...〉)

The function fb must extract a Mem(2, List Three) value
from a Three value, and return this value along with a func-
tion that reconstructs the original Three value:

fb = λr : Three
·,0
−→

let 〈m1, m2, m3〉 = r in
∧〈m2, λm′

2 : Mem(2, List Three)
∧ ,0
−→ ∧〈m1, m

′
2, m3〉〉

In a similar way, we can construct a value a for address 1
and a value c for address 3. Finally, we implement the C
code for initialization

7

a.next = &b;

b.next = &c;

c.next = &a;

using three store operations, assuming we are given memory
words 1, 2, and 3 initialized to some arbitrary junk types τ1,
τ2, and τ3, which we overwrite:

λm : ∧ 〈Mem(1, τ1), Mem(2, τ2), Mem(3, τ3)〉
·

−→
let 〈m1, m2, m3〉 = m in
let 〈m′

1, m
′
2, m

′
3〉 = ∧〈

store(1, m1, b),
store(2, m2, c),
store(3, m3, a)〉 in

fifth Three a ∧ 〈m′
1, m

′
2, m

′
3〉

We chose an example based on a single, minimal list type for
simplicity. The techniques above extend to more complex
data types and mixtures of data types, though. Consider a
type

struct LTree {
struct List *list;

struct LTree *left;

struct LTree *right;

};

This is represented as:

LTree (β :
∧

0) :
·

1,

∃α : int. · 〈Int(α), β
·,0
−→ ∧〈τmem, τmem

∧ ,0
−→ β〉〉

τmem = ∧〈Mem(α, List β),
Mem(α + 1, LTree β),
Mem(α + 2, LTree β)〉

6. TYPE SEQUENCES AND REGIONS
The previous section’s encoding of nonlinear data struc-

tures in “regions” suffers from a serious limitation: the re-
gions cannot grow dynamically. Suppose we wanted to add
a fourth list to the region defined by Three. We’d need to
change the region type from Three to Four:

Three :
·

0,∧ 〈Mem(1, List Three),
Mem(2, List Three),
Mem(3, List Three)〉

Four :
·

0,∧ 〈Mem(1, List Four),
Mem(2, List Four),
Mem(3, List Four),
Mem(4, List Four)〉

Unfortunately, the type Three is embedded in the types of
all the existing lists. It’s not clear how coerce a list of type
List Three to type List Four. This section combines the
intuition behind the previous section’s encoding with a new
language mechanism called type sequences to encode regions
that grow dynamically. Type sequences allow a program to
refine an existing type τ at run-time; a list of type List τ
stays valid as τ is refined, so that the program can add
new data to a region without needing to coerce the old data
to a different type. We need to be very careful about our
notion of type refinement, though: changing an existing type
arbitrarily is certainly unsafe. However, if we underspecify
τ to start with, by leaving an abstract hole “?” in the type:

τ =
∧〈Mem(1, List τ), ∧ 〈Mem(2, List τ), ∧〈Mem(3, List τ), ?〉〉〉

then we can later specify the hole “?” to be a particular
type, such as Mem(4, List τ), as long as we don’t try to
specify “?” in two different, conflicting ways. We use lin-
earity to ensure that a hole is filled in at most once.

To make the encoding of regions more obvious, we start
by extending the type system to support not just individual
holes, but infinite vectors of holes. Afterwards, we show
how to simplify the type system by encoding vectors of holes
using individual holes.

We define a type sequence to be an infinite vector of holes,
which are filled in one at a time, in order. For example, if
F is a type sequence, then (F 0) is specified first, followed
by (F 1), then (F 2), and so on.

The key properties of type sequences are:

• Large, dynamic namespace: F supplies an unbounded
number of names for types: (F 0), (F 1), (F 2), ..., and
F grows at run-time as new elements are added to the
sequence.

• Indelibility: once a type τ is assigned to a name (F I),
then (F I) will always refer to τ , and no other type.

Using these properties, we can define a region as a mapping
from memory words to elements of a type sequence:

(LArray 0 N (λI : int.Mem(I, F I)))

As F is filled in, the region’s array grows to include more
and more linear memory types Mem(I, F I).

Extensions to λlow for type sequences
types

τ = . . . |FK |Gen(τ, I) |Eq(τ1, τ2) | InDomain(I, τ)

expressions
e = . . . |make eq(τ) | apply eq(τ, e1, e2) | new seq(J)
| discard seq(e) | define seq(e, τ) | in domain(I1, I2, e1, e2)

The extensions to λlow for handling type sequences are shown
above. First, we define an equality type Eq(τ1, τ2), where
a value of type Eq(τ1, τ2) is evidence that τ1 is equivalent
to τ2. The make eq(τ) expression creates a new equal-
ity value of type Eq(τ, τ), for any type τ , and the expres-
sion apply eq(τf , eeq, ef) uses an equality value eeq of type
Eq(τa, τb) to substitute τb for τa in selected locations inside
the type of ef , effectively coercing ef to a different, but
equivalent, type:

·

C` τ : K
·

C` make eq(τ) : Eq(τ, τ)

C1, C2 ` τf : K → J C1 ` eeq : Eq(τa, τb)
C1, C2 ` τa : K C1, C2 ` τb : K C2 ` ef : τfτa

C1, C2 ` apply eq(τf , eeq , ef) : τfτb

8

The new seq(J) expression creates a new type sequence F

of kind int → J for any non-integer, non-boolean kind J :

·

C` new seq(J) : ∃F : (int → J).Gen(F, 0)

The allocation of new types in the sequence is controlled
by a size-zero linear generator of type Gen(F, I). The ex-
pression define seq(egen, τ), where egen has type Gen(F, I),
adds a new type τ to the sequence. It consumes the old
generator and returns three values, all of size zero:

• a new generator, of type Gen(F, I + 1)

• a nonlinear proof that (F I) = τ , of type Eq(F I, τ)

• a nonlinear proof that I will always be in the domain
of F (since sequences grow but don’t shrink), of type
InDomain(I, F).

C`e:Gen(τf ,I) C`τf :int→J C`τa:J

C`define seq(e,τa):∧ 〈Gen(τf ,I+1),Eq(τf I,τa),InDomain(I,τf)〉

The Eq(F I, τ) type is used to substitute τ for (F I) and
vice-versa, via the apply eq(τf , eeq, ef) expression described
above. The InDomain(I1, F) type, when combined with the
current generator of type Gen(F, I2) produces evidence that
0 ≤ I1 < I2, which is useful when I1 is an index into an
array of length I2:

C1, C2 ` I1 : int C1, C2 ` I2 : int
C1 ` e1 : InDomain(I1, τf) C2 ` e2 : Gen(τf , I2)

C1,C2`in domain(I1,I2,e1,e2): ∧ 〈Know(0≤I1∧I1<I2),Gen(τf ,I2)〉

Here, Know(B) is an abbreviation for ∃α : bool; B. · 〈〉.
When the program is finished adding elements to a se-

quence, it may use the discard seq(e) expression to discard
the linear generator:

C ` e : Gen(τ, I)

C ` discard seq(e) : ·〈〉

The nonlinearity of the Eq(F I, τ) and InDomain(I, F)
values is the basis for building nonlinear data structures.
Suppose a region consists of a single block of memory, start-
ing at address Base and containing Size words (for clarity,
we’ll often use italicized, capitalized letters and words for
type variables rather than Greek letters). Then a nonlin-
ear pointer to a type τ in the region is a triplet of type
·〈Int(Base + I), Eq(F I, τ), InDomain(I, F)〉. The region
itself contains an array of linear facts, each of the type
Mem(Base + I, F I):

Region (F : int →
·

1) (Base : int) (Alloc : int)

(Size : int) :
∧

0, ∧ 〈
Gen(F, Alloc),
(LArray 0 Alloc (λI : int.Mem(Base + I, F I))),
(LArray Alloc Size (λI : int.τfree)〉

τfree , ∃β :
·

1 .Mem(Base + I, β)

The first element of the Region tuple is the sequence gen-
erator, the second is the array of allocated memory, which
grows over time, and the third is the array of free mem-
ory, which shrinks over time. Given a region and a pointer,
loading the pointed-to word consists of three steps:

• use the InDomain(I, F) value from the pointer together
with the Gen(F, Alloc) value from the region to con-
clude that 0 ≤ I < Alloc.

• Now that I is known to be within the bounds of the
(LArray 0 Alloc . . .) array, use element I of the array,
of type Mem(Base + I, F I), to load a value of type
(F I). Call this loaded value x.

• Finally, use the Eq(F I, τ) value from the pointer says
that coerce x from type (F I) to type τ .

Storing a word follows a similar sequence of steps. No-
tice that the middle step (using array element I to perform
a load) is very similar to the operation performed by the
getnext function from the previous section; both approaches
temporarily borrow a linear memory type from a region, use
it for a load, and then return the linear memory type to the
region.

Each new allocation in the region grows the region’s al-
location array and shrinks the region’s free array. When
the program is done using the region, it merges the allo-
cation array back into the free array, and the connection
between memory and the (F I) types is lost. The pointer
types ·〈Int(Base + I), Eq(F I, τ), InDomain(I, F)〉 are still
legal types, but without the Mem(Base+I,F I) facts in the
allocation array, they are no longer useful.

At this point, the program can use the free array to allo-
cate other objects. In particular, it can use the free array
to create a new region in place of the old region. Although
it would be possible to continue using the old generator,
appending new types on the end of the old sequence, it
seems easier to discard the old generator and create a new
sequence, with a new generator. Therefore, the abstract ma-
chine environment tracks the state of a set of type sequences,
which grows as new sequences are allocated:

Φ = { F
K1

1

φ17→ {0 7→ τ1,0, 1 7→ τ1,1, . . .},

F
K2

2

φ27→ {0 7→ τ2,0, 1 7→ τ2,1, . . .},

. . .}

Each sequence is assigned an identifier F
Ki
i , which acts

as a type operator of kind (int → Ki). We’ve been a little
slippery about what exactly a sequence is in the abstract ma-
chine up to this point; now we can state more precisely that
a sequence identifier is a type operator, and type variables
(such as the F used in the region example above) may be
bound to sequence identifiers. The new (and final) abstract
machine environment is defined as C = Ψ;Φ; ∆; Γ; B; limit.
One tricky point: each F

Ki
i in Φ must suffice to type-check

both Gen(F Ki
i , I) expressions, which are linear, and other

expressions containing the type operator F
Ki
i , which may

be nonlinear. The Gen(F Ki
i , I) expression is only valid in a

context {..., F Ki
i

φi7→ ...} where φi =∧ . Proofs of the following
theorems are found in [12]:

Preservation: If C ` (M, e : τ) and (M, e) steps to
(M ′, e′), then there is some C ′ so that C′ ` (M ′, e′ : τ)

Progress: If Ψ;Φ; Ø; Ø;true; limit ` (M, e : τ), and e is
not a value, then (M, e) steps

Strong normalization: If Ψ;Φ; Ø; Ø; true; i ` (M, e :
τ), then (M, e) steps to a value (M, v) in a finite number of
steps

9

Erasure: If Ψ; Φ; Ø; Ø; true; limit ` (M, e : τ), then
(i) If (M, e) steps to (M ′, e′), then erase((M, e)) steps to

erase((M ′, e′)) in zero or one steps,
(ii) If erase(e) is a value, then (M, e) steps to some (M ′, v)

such that erase((M, e))= erase((M ′, v)) in zero or more steps,
(iii) If erase((M, e)) steps to some (M ′

erase, e
′
erase), then

(M, e) steps in one or more steps to some (M ′, e′) that erases
to (M ′

erase, e
′
erase).

Our definition of erase((M, e)) erases types and calls to
coercion functions, just as the real Clay compiler does.

6.1 Delayed types
Type sequences are sufficient to implement regions, but

they seem uncomfortably complicated and ad hoc. This sec-
tion shows that type sequences can be implemented using
simpler constructs. Rather than adding types Eq(τ1, τ2),
Gen(τ, I), and InDomain(I, τ) to the type system directly,
this section builds these types out of a single new type,
Delayed(τ). Using the encodings from this section, we reim-
plemented regions in Clay without relying on built-in Eq(τ1, τ2),
Gen(τ, I), and InDomain(I, τ) types.

First, it’s easy to emulate the Eq(τ1, τ2) type with coer-
cion functions. Following the encoding of Eq(τ1, τ2) with
functions presented in Baars and Swierstra [3], we write:

EqK (α : K) (β : K) :
·

0, ∀F : K →
∧

0 .F α
·,0
−→ F β

make eqK = Λα : K.ΛF : K →
∧

0 .λx : F α
·,0
−→ x

apply eq
K,

∧

0
= Λα : K.Λβ : K.ΛF : K →

∧

0 .

λeq : (EqK α β)
·

−→ λx : F α
·

−→ eq F x

apply eq
K,

·

0
= Λα : K.Λβ : K.ΛF : K →

·

0 .

λeq : (EqK α β)
·

−→ λx : F α
·

−→
let 〈y〉 = eq (λγ : K. ∧〈F γ〉) ∧ 〈x〉 in y

One drawback to this encoding is that a coercion function
only returns size-zero values, so apply eq can only act on

arguments x with type of kind
∧

0 or
·

0. In practice, this
has only been a minor inconvenience. For example, instead
of using apply eq to modify the type of a one-word value
loaded from a region, as in the previous section, our new
region implementation uses apply eq to modify the type of
the Mem(Base + I, F I) value to Mem(Base + I, τ) before
performing the load.

To implement the Gen(τ, I) and InDomain(I, τ) types, we
introduce delayed types, which implement individual holes
instead of infinite vectors of holes. Only two new expressions
are needed, one to create a delayed type (creating one new
hole named α), and the other to fill in the hole (specifying
that α is in fact equal to a new type τb):

Extensions to λlow for delayed types
types

τ = . . . |FK |Delayed(τ)

expressions
e = . . . | delay type(K) | specify type(edelayed, τb, τf , ef)

kinding

Φ; ∆ ` τ : K

Φ; ∆ ` Delayed(τ) :
∧

0

typing

Ċ ` delay type(K) : ∃α : K.Delayed(α)

C1 ` edelayed : Delayed(τa)
C1, C2 ` τa : K C1, C2 ` τb : K

C1, C2 ` τf : K → J C2 ` ef : τf τa

C1, C2 ` specify type(edelayed, τb, τf , ef) : τf τb

The delay type expression is similar to new seq, while spec-
ify type is similar to define seq. Note that specify type con-
sumes its Delayed(τ) argument, so no separate expression
is needed to discard Delayed(τ) values. Furthermore, spec-
ify type substitutes τb for τa directly, rather than relying on
Eq and apply eq.

Consider a type sequence F that grows to include types
F 0 = τ0, F 1 = τ1, F 2 = τ2, and so on. Delayed types can
emulate this with a series of functions F0, F1, F2, ..., which
are defined so that:

F0 M = (if M = 0 then τ0 else F1 M)
F1 M = (if M = 1 then τ1 else F2 M)
F2 M = (if M = 2 then τ2 else F3 M)
. . .

Each function Fi fills in one element of the type sequence,
but defers the rest of the sequence to the next function Fi+1.
The result is that the function F0 fulfills the obligations of
the type sequence F : F0 0 = τ0, F0 1 = τ1, F0 2 = τ2, and so
on, but we don’t have to specify all the τi at once, because
the specification of each function Fi is delayed until τi is
known. Here is an implementation of this idea that almost
implements Gen(F, I) (call it PreGenF I):

PreGenJ (F0 : int → J) (N : int) :
∧

0,

∃FN : int → J. ∧ 〈Delayed(FN),

∀M : int; M ≥ N. · 〈〉
·,N
−→ Eq(F0 M, FN M)〉

For any particular N , (PreGenF0 N) describes a state where
FN is yet to be specified, but all F0,F1,. . .,FN−1 are already
specified, so that for any M ≥ N , we know

F0 M = (if M = 0 then τ0 else F1 M)
= F1 M = (if M = 1 then τ1 else F2 M)
. . .
= FN−1 M = (if M = N − 1 then τN−1 else FN M)
= FN M

This invariant is maintained by a coercion function that
returns Eq(F0 M, FN M) for any M ≥ N . Suppose that
(PreGenF0 N) exists, and we want to add τN to the se-
quence, producing a (PreGenF0 N+1) value and an Eq(F0 N, τN)
value. We allocate a new delayed type Delayed(FN+1), and
consume the old value Delayed(FN) by specifying

FN = λM : int.(if M = N then τN else FN+1 M)

This definition immediately implies that Eq(FN N, τN). The
invariant that Eq(F0 M, FN M) for all M ≥ N implies that
Eq(F0 N, FN N), so we can combine the two Eq values to
conclude Eq(F0 N, τN). The definition of FN also implies

10

that for any M ≥ N + 1, Eq(FN M, FN+1 M). Since we
already know that for any M ≥ N , Eq(F0 M, FN M), we
can combine Eq values to conclude that for any M ≥ N +
1, Eq(F0 M, FN+1 M). Together with the Delayed(FN+1)
value, this gives us a value of type (PreGenF0 N + 1).

Gen(F, N) supports one feature that (PreGenF N) lacks:
its sequence extension expression returns not only Gen(F, N+
1) and Eq(F N, τN) values, but also an InDomain(N, F)
value, which is essential to the region encoding. To im-
plement this, we define a (Gen F G N) type that uses two
PreGen values, one to handle the type sequence F , and one
dedicated to producing (InDomain N G) values. The func-
tions F and G are defined so that F 0 = τ0, F 1 = τ1, ...,
F N−1 = τN−1, and G 0 = ·〈〉, G 1 = ·〈〉, ..., G N−1 = ·〈〉.

InDomain (M : int) (G : int →
·

0) :
·

0, G M

GenJ (F : int → J) (G : int →
·

0) (N : int) :
∧

0,
∧ 〈PreGenJ F N, PreGen·

0
G N〉

A (PreGenGN) value is evidence that types G 0, G 1, ...,
G N−1 have all been specified, but that types G N , G N +1,
G N +2, ... are still unspecified. An (InDomain M G) value
is evidence that G M has been specified (because there’s no
way to construct a value of an unspecified type). Logically,
then, we would conclude from a (PreGenG N) value and
an (InDomain M G) value that M cannot be in the range
N , N + 1, N + 2, ... because G M cannot be both specified
and unspecified. Thus, we conclude that M < N . In our
type system, a program derives this conclusion using the
expression “if M < N then e1 else e2”. In e1, M < N is
known to be true. In e2, M ≥ N is known to be true, but this
leads to a contradiction: (PreGenG N) lets e2 specify G M
any way it wants if M ≥ N ; instead of making G M = ·〈〉,

e2 defines G M = ∀α :
·

0 .α, so that Eq(GM, ∀α :
·

0 .α) holds.
But this lets e2 change the type of the (InDomain M G)

value from (GM) to ∀α :
·

0 .α, and suddenly e2 holds a

“contradiction”: a value of type ∀α :
·

0 .α, which can be
used to prove anything, including M < N . Thus, both e1

and e2 prove M < N . Note that this “contradiction” does
not mean that the type system is unsafe; instead, it simply
means that e2 is never evaluated – in any expression of the
form “if true then e1 else e2”, e2 can derive a contradiction
because it assumes true to be false, but this is harmless at
run-time, because e1 is executed, not e2.

7. SIMPLE COPYING COLLECTION
We have used λlow’s type system to implement several

typed garbage collectors, including an incremental mark-
sweep collector and two polymorphic copying collectors. The
collectors follow the ideas of Wang et al[30] and Monnier et
al[15], but adds several new improvements:

• The copying collectors are genuine Cheney queues, in
which all the collection state is stored in to-space. In
contrast to the previously described typed garbage col-
lectors, our collectors do not need an auxiliary stack to
implement a recursive descent through the live data.

• The approach of Wang et al requires that the heap
have a monomorphic type, which imposes inefficien-
cies on the compiled code. The approach of Monnier
et al uses intentional type analysis to handle polymor-
phism, but this still leaves a subtle inefficiency in the

collector: the collector must perform run-time anal-
ysis and processing to pack, unpack, roll, and unroll
expressions. In addition, there must be some sort of
run-time tag bits or tag words to identify existentials,
rolled types, and so on. λlow can hide these operations
inside coercion functions, which impose no run-time
space or time cost.

• The collectors supports cyclic data structures, cor-
rectly handling mixtures of pointers that may be null
and pointer types that don’t allow null.

• The collectors make all data layout and tag informa-
tion explicit, down to the last bit. This demonstrates
that it is possible to implement efficient representa-
tions of header words and forwarding pointers in a
typed collector.

More information about these collectors, including complete
implementations in Clay, is available in Wei[31] and at the
URL http://www.cs.dartmouth.edu/˜hawblitz/. The tech-
nical report[12] also contains a translation from λC , a CPS
and closure-converted intermediate language developed for
typed assembly language by Morrisett et al[17], to λlow, us-
ing one of our copying collectors for memory management.
Since [17] already provides a translation from a variant of Gi-
rard’s System-F (the polymorphic lambda calculus) to λC ,
this forms a complete translation from a high-level poly-
morphic language to λlow. The details of the collectors are
beyond the scope of this paper, though; for brevity’s sake,
this section describes only a simple monomorphic Cheney
queue typed garbage collector, based on the regions from
the previous section.

A Cheney queue collector starts with a root pointer into
a region of memory (from-space), and makes a breadth-first
traverse through all the data reachable from that root. The
collector blindly copies each traversed object into the to-
space region, even though the object still contains pointers
that point to from-space, and then later goes back to fix up
the pointers so that to-space objects points to other to-space
objects. After all live data is traversed, the collector deal-
locates the from-space region and, for the next collection,
allocates a new to-space region (which is usually just the
old from-space region, recycled).

Ideally, the type of each pointer in from-space would say
that it points to another object in from-space, and the type
of each pointer in to-space would say that it points to an-
other object in to-space; in this case, each object need only
concern itself with its own region. Unfortunately, the blind
copy leaves temporary objects in the to-space Cheney queue
pointing back to from-space. Furthermore, the collector tags
the copied from-space object with a forwarding pointer into
to-space, so that it won’t attempt to copy the same object
more than once. Since there are pointers into to-space from
from-space and vice-versa, the type of each object must be
aware not only of its own region, but of the previous and
next regions.

To equip the objects with information about multiple re-
gions, we build a type sequence of type sequences: the outer
type sequence R contains one type sequence (R E) for each
region number E (the E is supposed to stand for “epoch”),
and each (R E I) describes the Ith word of memory in region
number E. If region E is from-space, then a from-space ob-
ject can name the type of the Ith word in to-space using the

11

type (R (E + 1) I). To add even more flexibility, each word
descriptor (R E I) is actually a type operator that takes a
region number as an argument: (R E I E′) is the type of the
word stored in region E, word I, configured with the extra
information E′. This extra information describes the types
of the pointers contained in an object: even though the ob-
ject lives in region E, it might point to a different region E ′.
This captures the state of the objects in the Cheney queue,
which have been copied to region E, but still point to region
E − 1. The type of region E now contains three arrays: one
for the finished objects that point to region E, one for the
Cheney queue objects that still point to region E − 1, and
one for the free space.

GcRegion (R : KR) (E : int) (Scan : int) (Alloc : int) :
∧

0,
∧〈Gen(R E, Alloc),
(LArray 0 Scan (λI : int.Mem(Addr(E, I), R E I E))),
(LArray Scan Alloc (λI : int.

Mem(Addr(E, I), R E I (E − 1)))),
(LArray Alloc SIZE (λI : int.

∃β :
·

1 .Mem(Addr(E, I), β)))〉

KR , int → int → int →
·

1

Before the types get too complicated, we introduce a simpli-
fying assumption: all regions have the same size SIZE, all
even numbered regions use memory words BASE...(BASE+
SIZE−1), and all odd numbered regions use memory words
(BASE+SIZE) . . . (BASE+2∗SIZE−1). The (Base+I)
from the previous definition of regions is changed to

Addr(E, I) , (BASE + SIZE ∗ (E mod 2) + I)

The type language doesn’t yet contain a mod operator, so
the real Clay implementation of the collector uses two vari-
ables Ehi and Elo to form a region number 2 ∗ Ehi + Elo,
where 0 ≤ Elo ≤ 1. Since this would add much clutter and
little illumination to the presentation below, this paper uses
just the single variable E.

The simple collector in this section only supports one ob-
ject type, GcObject, defined to contain a forwarding pointer,
one floating point data field, and two possibly-null pointers
to other GcObjects. The GcObject type describes the non-
linear type of each of the 4 words of the object:

GcObject (R : KR) (E : int) (This : int) :
·

0, ·〈
(GcWord R E (This + 0) (GcFwd R)),
(GcWord R E (This + 1) (GcPrim float)),
(GcWord R E (This + 2) (GcPtr R)),
(GcWord R E (This + 3) (GcPtr R))〉

GcWord (R : KR) (E : int) (This : int) (A : int →
·

1) :
·

0, ·〈
Eq(R E This, A),
InDomain(This,R E)〉

The abbreviation GcWord describes the type A of a single
word This in a region E, where the type A is actually a

type operator (A : int →
·

1) that takes a region number E′

as an argument. For non-pointer data types, like float, the
E′ argument is irrelevant, and the A operator always returns
the same type:

GcPrim (T :
·

1) (E′ : int) :
·

1, T

Pointer types, on the other hand, use the E′ to identify the
region containing the pointed-to object:

GcPtr (R : KR) (E′ : int) :
·

1, ∃α : int. · 〈Int(Addr(E′, α)),
if Addr(E′, α) = 0 then · 〈〉 else GcObject R E′ α〉

A non-null pointer is a pair of the singleton integer con-
taining the real memory address of the target object, and
a GcObject describing the state of the target object. A
null pointer is just the singleton integer Int(0). Forward-
ing pointers are just like ordinary pointers, except that they
point into the next region:

GcFwd (R : KR) (E′ : int) :
·

1, GcPtr R (E′ + 1)

Garbage collection starts with to-space entirely free. Sup-
pose that from-space is region number 5, to-space is region
number 6, and root from-space pointer points to a GcObject
in words 100 . . . 103 of region 5. Then the root pointer has
type (GcPtr R 5), and from-space has four linear facts:

Mem(Addr(5, 100), GcFwd R 5), . . .
. . . , Mem(Addr(5, 103), GcP tr R 5)

The collector copies the root object to to-space with load
and store expressions; the root object goes into the front of
the Cheney queue, at words 0 . . . 3 of region 6:

Mem(Addr(6, 0), GcFwd R 5), . . .
. . . , Mem(Addr(6, 3), GcP tr R 5)

The types of the words in to-space are initially exactly the
same as the types in from-space; the collector really does
perform a blind copy from one-space to the other. Since
each Mem fact is a mixture of region number 6 and and
region number 5, to-space’s linear array takes care of the
mismatch between the 6 and the 5:

(LArray Scan Alloc (λI : int.
Mem(Addr(E, I), R E I (E − 1))))

At this point, Scan = 0, Alloc = 4, E = 6, and E − 1 = 5,
while the type sequence (R 6) is defined as:

((R 6 0) = (GcFwd R)), . . . , ((R 6 3) = (GcPtr R))

The collector constructs a (GcObject R 6 0) with this se-
quence, which in turn is used to form a to-space pointer
of type (GcPtr R 6). In from-space, the root object’s for-
warding pointer has type (GcFwd R 5), which is equivalent
to (GcPtr R 6), allowing the forwarding pointer to point to
the to-space object.

Next, the collector starts to scan the Cheney queue, shift-
ing words from the Cheney queue linear array to the finished
object linear array. Since the finished object linear array
uses facts of the form Mem(Addr(6, I), R 6 I 6) instead of
Mem(Addr(6, I), R 6 I (6−1)), the collector must figure out
a way to convert each value of type (R 6 I 5) into a value
of type (R 6 I 6):

• The collector sets the forwarding pointer to null with
a store operation; it is easy to build a null pointer to
any region number.

• For the float value, the collector merely observes that
Mem(Addr(6, 1), GcPrim float 5) is equivalent to
Mem(Addr(6, 1), GcPrim float 6), since GcPrim ig-
nores the region number argument. No loads or stores
are necessary.

12

• For each of the two pointers, the collector must convert
a (GcPtr R 5) to a (GcPtr R 6). This is exactly the
problem that the collector solved when it copied the
root object. Thus, the collector just makes a blind
copy of whatever from-space objects the (GcPtr R 5)
pointers point to.

The collector continues scanning and copying until the Ch-
eney queue is empty. As it progresses, it must keep track of
the types of the objects in the Cheney queue, so that it can
repeatedly pop the front object off the queue and process
it. The fact that the queue is full of objects, each of size 4
words, is stored in a nonlinear array of type:

(NArray (Scan ÷ 4) (Alloc ÷ 4)
(λα : int.(GcObject R 6 (4 ∗ α))))

NArray is exactly like LArray, except that it is nonlinear
and holds nonlinear size-0 elements. As was the case with
mod, the abstract machine doesn’t actually have a division
operation, but it simplifies the presentation to use one. The
real Clay implementation changes the definitions to make
Scan and Alloc object indices rather than word offsets, so
that it multiplies them by 4 to compute the word offset
rather than dividing by 4 to compute the object index.

8. RELATED WORK
The previous section compared our collectors to some

other typed garbage collectors. Particularly close to our
work, although not as low-level, is Monnier et al’s second
region calculus and collector[16]. The region calculus ex-
tends ordinary regions with a type operator that the pro-
gram updates linearly at run-time; the types of the object
are filtered by this type operator. The linear control over the
type operator is similar to the way our linear arrays control
the types of words in a region.

Linear TAL [6] shares our goal of building a memory man-
agement system from low-level linear memory primitives.
However, their approach uses copying to transform nonlinear
data into linear data, eliminating all aliasing, while our ap-
proach maintains the aliasing present in the nonlinear data.
Since purely linear data doesn’t need a tracing garbage col-
lector, their type system need not be complicated enough
to implement type-safe collection. On the other hand, the
data copying imposes a steep run-time cost.

Separation logics[14][21] share our goal of using techniques
derived from linear logic to describe data structures. In [12],
we add an expression to λlow that deduces I1 6= I2 if a value
of type Mem(I1, τ1) and a value of type Mem(I2, τ2) exist
simultaneously; this is similar to an axiom in [21], and we’ve
used it to develop a usable linear circular list type.

Birkedal et al [5] use separation logic to prove the correct-
ness of a simple Cheney queue copying collector. Like our
approach, they describe the intermediate state of the col-
lector with a linear invariant, partitioned into 0...Scan − 1,
Scan...Alloc − 1, Alloc...SIZE − 1 portions for to-space.
Unlike our approach, they also track the changing state in
from-space. They have not yet integrated their verified col-
lector with a richly typed programming language; this may
require a separate proof that a well-typed expression’s type
is maintained after the collector reorganizes the heap.

Walker[1] explores a variant of separation logic that de-
scribes memory location adjacency, rather than treating lo-
cations as integers. It would be interesting to see how much

of our λlow and Clay code could be rewritten with adjacency
rules rather than integer arithmetic rules.

Igarashi and Kobayashi[13] developed a hybrid memory
management strategy combining garbage collection and lin-
ear data. However, the collector was not written in a safe
language; rather, the focus was on making sure that linear
data deallocation and traditional garbage collection did not
interfere with each other. Petersen et al[19] also assume an
existing garbage collector, but use an ordered variation of
linearity to expose the memory allocation process to high
level programs in a safe way.

9. CONCLUSIONS AND FUTURE WORK
This paper has demonstrated that linear types, augmented

with support for simple arithmetic types, coercion functions,
and type sequences or delayed types, are sufficient to express
a variety of type-safe data structures, ranging from simple
lists to Cheney queues of nonlinear objects. Many issues re-
main. First, λlow forces programs to contain many explicit
coercions (pack, unpack, split, combine, type equality coer-
cions, etc.) to set up simple loads and stores, making pro-
gramming tedious. Second, our proof language is something
of a hack, but it isn’t yet clear what to replace it with. In
particular, we’re concerned that recursive types and type se-
quences will invalidate the strong normalization property of
a typical proof language based on the Curry-Howard corre-
spondence. On the other hand, if the nonlinear data struc-
tures from section 5 could be rewritten without recursive
types, then maybe we could achieve growable regions with
neither recursive types nor type sequences.

Acknowledgments
The authors would like to thank Fred Smith and the many
anonymous reviewers for their comments on various drafts
of this paper.

10. REFERENCES
[1] Amal Ahmed and David Walker. The logical approach

to stack typing. In 2003 ACM SIGPLAN Workshop on
Types in Language Design and Implementation, 2003.

[2] Andrew W. Appel. Foundational proof-carrying code.
In Logic in Computer Science, 2001.

[3] Arthur I. Baars and S. Doaitse Swierstra. Typing
dynamic typing. In International Conference on
Functional Programming, 2002.

[4] Henry G. Baker. Lively linear Lisp — ‘Look Ma, no
garbage!’. ACM SIGPLAN Notices, 27(9):89–98, 1992.

[5] L. Birkedal, N. Torp-Smith, and J.C. Reynolds. Local
reasoning about a copying garbage collector. In
Symposium on Principles of Programming Languages
(POPL), 2004.

[6] James Cheney and Greg Morrisett. A linearly typed
assembly language. Technical report, Department of
Computer Science, Cornell University.

[7] Karl Crary and Joseph C. Vanderwaart. An
expressive, scalable type theory for certified code. In
Proceedings of the seventh ACM SIGPLAN
international conference on Functional programming,
pages 191–205. ACM Press, 2002.

[8] Karl Crary, David Walker, and Greg Morrisett. Typed
memory management in a calculus of capabilities. In

13

Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 262–275. ACM Press, 1999.

[9] Pascal Fradet and Daniel Le Metayer. Shape types. In
Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 27–39. ACM Press, 1997.

[10] N. Hamid, Z. Shao, V. Trifonov, S. Monnier, and
Z. Ni. A syntactic approach to foundational proof
carrying-code. In Proc. Seventeenth Annual IEEE
Symposium on Logic In Computer Science (LICS’02),
2002.

[11] Robert Harper, Furio Honsell, and Gordon Plotkin. A
framework for defining logics. Journal of the ACM
(JACM), 40(1):143–184, 1993.

[12] Heng Huang, Lea Wittie, and Chris Hawblitzel.
Formal properties of linear memory types. Technical
Report TR2003-468, Dartmouth College, 2003.

[13] A. Igarashi and N. Kobayashi. Garbage collection
based on a linear type system, 2000.

[14] Samin S. Ishtiaq and Peter W. O’Hearn. BI as an
assertion language for mutable data structures. In
Symposium on Principles of Programming Languages,
pages 14–26, 2001.

[15] Stefan Monnier, Bratin Saha, and Zhong Shao.
Principled scavenging. In Proceedings of the ACM
SIGPLAN’01 conference on Programming language
design and implementation, pages 81–91. ACM Press,
2001.

[16] Stefan Monnier and Zhong Shao. Typed regions.
Technical Report YALEU/DCS/TR-1242, Department
of Computer Science, Yale University, 2002.

[17] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From system F to typed assembly language. In
ACM Transactions on Programming Languages and
Systems (TOPLAS), volume 21, pages 527–568. ACM
Press, 1999.

[18] George C. Necula and Peter Lee. Safe kernel
extensions without run-time checking. In 2nd
Symposium on Operating Systems Design and
Implementation (OSDI ’96), October 28–31, 1996.
Seattle, WA, pages 229–243, 1996.

[19] L. Petersen, R. Harper, K. Crary, and F. Pfenning. A
type theory for memory allocation and data layout. In
symposium on Principles of Programming Languages,
2003.

[20] William Pugh. The omega test: a fast and practical
integer programming algorithm for dependence
analysis. In Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, pages 4–13. ACM
Press, 1991.

[21] J. Reynolds. Separation logic: a logic for shared
mutable data structures, 2002.

[22] Z. Shao, B. Saha, V. Trifonov, and N. Papaspyrou. A
type system for certified binaries. In ACM Symposium
on Principles of Programming Languages, 2002.

[23] Frederick Smith, David Walker, and Greg Morrisett.
Alias types. In In European Symposium on
Programming, 2000.

[24] S.W. Smith and S.H. Weingart. Building a
high-performance, programmable secure coprocessor.

In Computer Networks (Special Issue on Computer
Network Security), volume 31, pages 831–860, 1999.

[25] David Teller and Zhong Shao. Algorithm-independent
framework for verifying integer constraints. Technical
Report YALEU/DCS/TR-1195, Department of
Computer Science, Yale University, 2000.

[26] Mads Tofte and Jean-Pierre Talpin. Region-based
memory management. Information and Computation,
132(2):109–176, 1997.

[27] P. Wadler. Linear types can change the world! In
M. Broy and C. Jones, editors, IFIP TC 2 Working
Conference on Programming Concepts and Methods,
Sea of Galilee, Israel, pages 347–359. North Holland,
1990.

[28] David Walker and Greg Morrisett. Alias types for
recursive data structures. Lecture Notes in Computer
Science (volume 2071), 2001.

[29] David Walker and Kevin Watkins. On regions and
linear types (extended abstract). In Proceedings of the
sixth ACM SIGPLAN international conference on
Functional programming, pages 181–192. ACM Press,
2001.

[30] Daniel C. Wang and Andrew W. Appel.
Type-preserving garbage collectors. In Proceedings of
the 28th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 166–178.
ACM Press, 2001.

[31] Ed Wei. Using low level linear memory management
for type-preserving mark-sweep garbage collector
(undergraduate thesis). Technical Report TR2003-465,
Dartmouth College, 2003.

[32] Hongwei Xi and Frank Pfenning. Eliminating array
bound checking through dependent types. In
Proceedings of the ACM SIGPLAN ’98 conference on
Programming language design and implementation,
pages 249–257. ACM Press, 1998.

Appendix A: Formal Definition of λlow

To save space, congruence rules are omitted here (they are
included in [12], as are the type erasure rules). Because
the proofs in [12] are based on type sequences rather than
delayed types, we present type sequences here but omit de-
layed types. The rules follow notational conventions from
Wadler[27], Walker et al[29], and [32].

abbreviations
∀α : K.τ , ∀α : K; true.τ
∃α : K.τ , ∃α : K; true.τ
Know(B) , ∃α : bool; B. · 〈〉

let x = e1 in e2 , let 〈x〉 = ∧〈e1〉 in e2

τ1
φ

−→ τ2 , τ1
φ,∞
−→ τ2

linearity: φ = · | ∧

kinds: K = J | int | bool J =
φ
n |K → J

arithmetic
i = · · · | − 2 | − 1 | 0 | 1 | 2 | · · · b = true | false
I = α | i | I1 iop I2 B = α | b | ¬B |B1 bop B2 | I1 cmp I2

iop = + | − | ∗ bop = ∧ |∨
cmp =< | > | ≤ | ≥ | = | 6=
op = iop | bop | cmp

14

types
limit = I |∞

τ = τ1
φ,limit
−→ τ2 |φ〈

⇀
τ 〉 |α | I |B |λα : K.τ | ∀α : K; B.τ

| ∃α : K; B.τ | τ1 τ2 |µα : K.τ | Int(I) |Bool(B)
| if B then τ1 else τ2 |Mem(I, τ) |Gen(τ, I) |Eq(τ1, τ2)
|FK | InDomain(I, τ)

expressions

e = i | b |x | e1 e2 | e τ |φ〈
⇀
e 〉 |λx : τ

φ,limit
−→ e | e1 op e2 | ¬e

|Λα : K; B.v | let 〈
⇀
x 〉 = e1 in e2

| if e1 then e2 else e3 | if B then e1 else e2

| pack[τ1, e] as ∃α : K; B.τ2 | unpackα, x = e1 in e2

| roll[(µα : K.τ0)τ1 · · · τn](e) | unroll(e) | fixx : τ.v
| load(eptr, eMem) | store(eptr , eMem, ev) | coerce(e)
|make eq(τ) | apply eq(τ, e1, e2) | new seq(K) | discard seq(e)
| define seq(e, τ) | in domain(I1, I2, e1, e2) | fact

values
v = i | b |Λα : K; B.v | pack[τ1, v] as ∃α : K; B.τ2

| roll[(µα : K.τ0)τ1 · · · τn](v) |λx : τ
φ,limit
−→ e

|φ〈
⇀
v 〉 | fact

environments
M = {1 7→ v1, · · · , n 7→ vn}
C = Ψ; Φ; ∆; Γ; B; limit
Ψ = {1 7→ τ1, · · · , n 7→ τn}

Φ = {F K1

1

φ17→ δ1, · · · , F Kn
n

φn
7→ δn}

δ = {0 7→ τ0, · · · , n 7→ τn}
∆ = {α1 7→ K1, · · · , αn 7→ Kn}
Γ = {x1 7→ τ1 · · · , xn 7→ τn}

judgments
Φ; ∆ ` τ : K

B ` B1
.
= B2

B ` I1
.
= I2

Φ; B ` τ1 ≡ τ2

C ` e : τ
C ` (M, e : τ)
(M, e) → (M ′, e′)

evaluation rules
(M, load(i, fact)) → (M, ∧〈M(i), fact〉)
(M, store(i, fact, v)) → ([i 7→ v]M, fact)

e→e′

(M,e)→(M,e′)

(λx : τ
φ,I
−→ e1)v2 → coerce([x 7→ v2]e1)

(λx : τ
φ,∞
−→ e1)v2 → [x 7→ v2]e1

coerce(v) → v
(Λα : K; B.v)τ → [α 7→ τ]v
v1 op v2 → simplify(v1 op v2)
¬v → simplify(¬v)
if true then e1 else e2 → e1

if false then e1 else e2 → e2
`B

.
=true

if B then e1 else e2→e1

`B
.
=false

if B then e1 else e2→e2

unroll(roll[τ](v)) → v
fixx : τ.v → [x 7→ fixx : τ.v]v
make eq(τ) → fact

apply eq(τ, fact, v) → v

discard seq(fact) → ·〈〉
define seq(fact, τ) → ∧〈fact, fact, fact〉

let 〈x1, · · · , xn〉 = φ〈v1, · · · , vn〉 in e → [x1 7→
v1, · · · , xn 7→ vn]e

unpackα, x = (pack[τ1, v1] as τ2)in e2 → [α 7→ τ1, x 7→
v1]e2

in domain(I1, I2, fact, fact) → ∧ 〈know(0 ≤ I1 ∧ I1 <
I2), fact〉

new seq(K) → pack[F K , fact] as ∃α : int →
K.FunGen(α, 0), where FK is fresh

kinding rules

Φ; ∆ ` i : int

Φ; ∆, α : K ` α : K

Φ; ∆ ` b : bool

Φ; ∆ ` I1 : int Φ; ∆ ` I2 : int

Φ; ∆ ` I1 iop I2 : int

Φ; ∆ ` I1 : int Φ; ∆ ` I2 : int

Φ; ∆ ` I1 cmp I2 : bool

Φ; ∆ ` B1 : bool Φ; ∆ ` B2 : bool

Φ; ∆ ` B1 bopB2 : bool

Φ; ∆ ` B : bool

Φ; ∆ ` ¬B : bool

Φ; ∆, α : Ka ` τ : Jb

Φ; ∆ ` λα : Ka.τ : Ka → Jb

Φ; ∆ ` τf : Ka → Jb Φ; ∆ ` τa : Ka

Φ; ∆ ` τfτa : Jb

Φ; ∆, α : K ` B : bool Φ; ∆, α : K ` τ :
φ

n

Φ; ∆ ` ∀α : K; B.τ :
φ

n

Φ; ∆, α : K ` B : bool Φ; ∆, α : K ` τ :
φ

n

Φ; ∆ ` ∃α : K; B.τ :
φ

n

Φ; ∆, α : K ` τ : K

Φ; ∆ ` µα : K.τ : K

Φ; ∆ ` τ1 :
φ1

n1 Φ; ∆ ` τ2 :
φ2

n2

(Φ; ∆ ` limit : int ∧ n = 0) or (limit = ∞∧ n = 1)

Φ; ∆ ` τ1
φ,limit
−→ τ2 :

φ

n

∀j.(Φ; ∆ ` τj :
·

nj) n =
∑

j
nj

Φ; ∆ ` ·〈
⇀
τ 〉 :

·

n

15

∀j.(Φ; ∆ ` τj :
φj

nj) n =
∑

j
nj

Φ; ∆ ` ∧ 〈
⇀
τ 〉 :

∧

n

Φ; ∆ ` I : int

Φ; ∆ ` Int(I) :
·

1

Φ; ∆ ` B : bool

Φ; ∆ ` Bool(B) :
·

1

Φ; ∆ ` B : bool Φ; ∆ ` τ1 : J Φ; ∆ ` τ2 : J

Φ; ∆ ` if B then τ1 else τ2 : J

Φ; ∆ ` I : int Φ; ∆ ` τ :
·

1

Φ; ∆ ` Mem(I, τ) :
∧

0

Φ; ∆ ` I : int Φ; ∆ ` τ : int → J

Φ; ∆ ` Gen(τ, I) :
∧

0

Φ; ∆ ` I : int Φ; ∆ ` τ : int → J

Φ; ∆ ` InDomain(I, τ) :
·

0

Φ; ∆ ` τ1 : K Φ; ∆ ` τ2 : K

Φ; ∆ ` Eq(τ1, τ2) :
·

0

Φ, FK φ
7→ δ; ∆ ` FK : int → K

type equivalence rules

Φ; B ` τ ≡ τ

Φ; B ` τ1 ≡ τ2

Φ; B ` τ2 ≡ τ1

Φ; B ` τ1 ≡ τ2 Φ; B ` τ2 ≡ τ3

Φ; B ` τ1 ≡ τ3

Φ; B ` (λα : K.τb)τa ≡ [α 7→ τa]τb

B ` I
.
= i

Φ, FK ·
7→ fun; B ` FKI ≡ fun(i)

B ` I1
.
= I2

Φ; B ` I1 ≡ I2

B ` B1
.
= B2

Φ; B ` B1 ≡ B2

Φ; B ` Eq(τ1, τ2) ≡ Eq(τ2, τ1)

Φ; B ` if true then τ1 else τ2 ≡ τ1

Φ; B ` if false then τ1 else τ2 ≡ τ2

type checking rules

Ψ = Ψspare, Ψe Φ =
·

Φspare, Φe

∀i ∈ dom(Ψ).(∅;
·

Φ; ∅; ∅; true;∞ ` M(i) : Ψ(i)))
Ψe; Φe; ∆; Γ; B; limit ` e : τ

Ψ; Φ; ∆; Γ; B; limit ` (M, e : τ)

·

C, x : τ ` x : τ

C, α : K, B ` v : τ

C ` Λα : K; B.v : ∀α : K; B.τ

C ` e : ∀α : K; B.τ1

C ` τ2 : K
C ` [α 7→ τ2]B

C ` eτ2 : [α 7→ τ2]τ1

Ψ; Φ; ∆; Γ; B; I2 ` e : τ

(limit1 = ∞∧ τ :
φ

0) or (limit1 = I1 ∧ B ` I1 > I2)

Ψ; Φ; ∆; Γ; B; limit1 ` coerce(e) : τ

C ` e : τ1 C ` τ1 ≡ τ2

Φ; ∆ ` τ1 : K1 Φ; ∆ ` τ2 : K1

C ` e : τ2

C = C1, · · · , Cn

∀i.(Ci ` ei : τi) C ` φ〈
⇀
τ 〉 : K

C ` φ〈
⇀
e 〉 : φ〈

⇀
τ 〉

φ

Φ; ∆ ` τ1 : K
φ

Ψ;
φ

Φ; ∆;
φ

Γ, x : τ1; B; limit2 ` e : τ2

(limit2 = ∞) or (
φ

Φ; ∆ ` limit2 : int B ` limit2 ≥ 0)
φ

Ψ;
φ

Φ; ∆;
φ

Γ; B; limit1 ` λx : τ1
φ,limit2−→ e : τ1

φ,limit2−→ τ2

C1, C2 = Ψ; Φ; ∆; Γ; B; limitC

C1 ` e1 : τa

φ,limitf
−→ τb C2 ` e2 : τa

(limitC = limitf = ∞) or (B ` limitf < limitC)

or (limitC = ∞, limitf = I, Φ; ∆ ` τb :
φb

0)

C1, C2 ` e1e2 : τb

Ca ` ea : φ〈
⇀
τ 〉 Cb,

⇀
x : τ` eb : τb

Ca, Cb ` let〈
⇀
x〉 = ea in eb : τb

C ` τ :
φ

n

C, x : τ ` v : τ

C ` (fixx : τ.v) : τ

C ` τ1 :
φ

n C ` ∃α : K; B.τ2 :
φ

n

C ` e : [α 7→ τ1]τ2 C ` [α 7→ τ1]B

C ` pack[τ1, e] as ∃α : K; B.τ2 : ∃α : K; B.τ2

C1 ` e1 : ∃α : K; B.τ1

C2, α : K, x : τ1, B ` e2 : τ2

C1, C2 ` unpackα, x = e1 in e2 : τ2

16

τ = (µα : K.τ0)τ1 · · · τn

C ` τ : K

C ` e : ([α 7→ µα : K.τ0]τ0)τ1 · · · τn

C ` roll[τ](e) : τ

τ = (µα : K.τ0)τ1 · · · τn

C ` τ : K C ` e : τ

C ` unroll(e) : ([α 7→ µα : K.τ0]τ0)τ1 · · · τn

·

C, i 7→ τ ` fact : Mem(i, τ)

·

C, F
K ∧

7→ fun ` fact : Gen(F K
, i)

·

C` fact : Eq(τ, τ)

i ∈ dom(δ)
·

C , F K ·
7→ δ ` fact : InDomain(i, F K)

C1 ` eptr : Int(I) C2 ` eMem : Mem(I, τ)

C1, C2 ` load(eptr, eMem) : ∧ 〈τ, Mem(I, τ)〉

C = C1, C2, C3 = Ψ; Φ; ∆; Γ; B;∞
C2 ` eMem : Mem(I, τ1) C3 ` ev : τ2

C1 ` eptr : Int(I) C ` τ2 :
·

1

C ` store(eptr, eMem, ev) : Mem(I, τ2)

C ` e : Gen(τf , I) C ` τf : int → J C ` τa : J

C ` define seq(e, τa) : ∧〈Gen(τf , I + 1), Eq(τfI, τa), InDomain(I, τf)〉

C1, C2 ` I1 : int C1, C2 ` I2 : int
C1 ` e1 : InDomain(I1, τf) C2 ` e2 : Gen(τf , I2)

C1, C2 ` in domain(I1, I2, e1, e2) : ∧〈Know(0 ≤ I1 ∧ I1 < I2), Gen(τf , I2)〉

·

C` τ : K
·

C` make eq(τ) : Eq(τ, τ)

C1, C2 ` τf : K → J C1 ` eeq : Eq(τa, τb)
C1, C2 ` τa : K C1, C2 ` τb : K C2 ` ef : τfτa

C1, C2 ` apply eq(τf , eeq , ef) : τfτb

·

C` new seq(J) : ∃α : int → J.Gen(α, 0)

C ` e : Gen(τ, I)

C ` discard seq(e) : ·〈〉

·

C` i : Int(i)

·

C` b : Bool(b)

C1 ` e1 : Int(I1) C2 ` e2 : Int(I2)

C1, C2 ` e1 iop e2 : Int(I1 iop I2)

C1 ` e1 : Int(I1) C2 ` e2 : Int(I2)

C1, C2 ` e1 cmp e2 : Bool(I1 cmp I2)

C1 ` e1 : Bool(B1) C2 ` e2 : Bool(B2)

C1, C2 ` e1 bop e2 : Bool(B1 bop B2)

C ` e : Bool(B)

C ` ¬e : Bool(¬B)

Ca ` e1 : Bool(B) Cb, B ` e2 : τ Cb,¬B ` e3 : τ

Ca, Cb ` if e1 then e2 else e3 : τ

C = Ψ; Φ; ∆; Γ; BC ; I
C ` B : bool C, B ` e1 : τ C,¬B ` e2 : τ

C ` if B then e1 else e2 : τ

17

