
Monadic Regions

[Extended Abstract]

Matthew Fluet
Cornell University

Department of Computer Science
4133 Upson Hall
Ithaca, NY 14853

fluet@cs.cornell.edu

ABSTRACT
Drawing together two lines of research (that done in type-
safe region-based memory management and that done in
monadic encapsuation of effects), we give a type-preserving
translation from a variation of the region calculus of Tofte
and Talpin into an extension of System F augmented with
monadic types and operations. Our source language is a
novel region calculus, dubbed the Single Effect Calculus, in
which sets of effects are specified by a single region represent-
ing an upper bound on the set. Our target language is FRGN,
which provides an encapsulation operator whose parametric
type ensures that regions (and values allocated therein) are
neither accessible nor visible outside the appropriate scope.

1. INTRODUCTION
Region-based memory management is a particular way to

manage the dynamically (or heap) allocated memory of a
program. It stands in contrast to explicit memory manage-
ment by the programmer using operations like C’s malloc

and free and to fully automatic memory management using
a garbage collector. In a region-based memory management
system, regions are areas of memory holding heap allocated
data. Regions have syntactic lifetimes, following the block
structure of the program. A region is created upon entering
a region delimited block; for the duration of the block, data
can be allocated into the region; upon exiting the block,
the entire region (including all data allocated within it) is
destroyed. Tofte and Talpin’s region calculus [24, 25] intro-
duced a type system, based on effects, that ensures the safety
of this allocation and deallocation mechanism. A unique
feature of this scheme is that evaluation can lead to dan-
gling pointers: a pointer to data that has been deallocated.
So long as the program never dereferences such a pointer (a
fact that the type system verifies), the program can be safely
run. This aspect of region-based memory management sys-
tems can lead to better memory usage than that achieved

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPACE2004 2004 Venice, Italy
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

by garbage collectors, which do not allow dangling pointers,
on some programs.

While there has been some work aimed at integrating
garbage collection and region-based memory management
[9, 6], it is not possible to manage particular data by one
scheme or the other. Cyclone [12] offers multiple forms of
memory management in the context of a safe dialect of C.
However, it makes use of a sophisticated type-and-effect sys-
tem to ensure safety. We seek, therefore, a simple account
that supports region-based memory management within a
“traditional” functional programming language that primar-
ily relies upon garbage collection and a simple type system.

A separate line of research has investigated mechanisms by
which imperative (and otherwise “foreign”) constructs can
be safely integrated into pure functional languages. Launch-
bury and Peyton Jones [14, 15] introduced monadic state as
a means by which imperative computations could be embed-
ded in the pure evaluation of a functional program. The en-
capsulation operator runST has a type that statically guar-
antees that stateful computations appear as pure functions
to the rest of the program. Inspired by this work, we propose
monadic regions as a mechanism for embedding region-based
memory management within a pure functional language.

The main contributions of this paper are three-fold. First,
we introduce a novel region calculus, dubbed the Single Ef-
fect Calculus. The Single Effect Calculus tracks a partial
order on regions; this order can be used allow a single re-
gion to bound the effect of a set of regions. Second, we
introduce a novel monadic language, dubbed FRGN, which
is an extension of System F that adds monadic types and
operations for manipulating regions. A key aspect of this
language is that no extension (beyond adding three type
constructors) to the type system of System F is required; in
particular, type equality in FRGN is syntactic and all new
language expressions can be interpreted as constants with
polymorphic types. Encapsulation of region computations
in FRGN is ensured by the type system, using parametric-
ity. Finally, we give a type preserving translation from the
Single Effect Calculus to FRGN, an important first step to-
wards demonstrating the adequacy of FRGN for expressing
region-based memory management.

The remainder of this paper is structured as follows. In
the next two sections, we describe the Single Effect Calcu-
lus and FRGN. Section 4 presents a type preserving transla-
tion from the Single Effect Calculus to FRGN. In Section 5,
we consider related work. Section 6 concludes and notes



i ∈ Z

ε, % ∈ RVarsSEC where H ∈ RVarsSEC

f, x ∈ VarsSEC

Types
τ ::= bool | (µ, ρ)

Boxed types

µ ::= int | τ1
ε
−→ τ2 | τ1 × τ2 | Π% � ϕ.ετ

Effects
ϕ ::= {ρ1, . . . , ρn}

Places
ε, ρ ::= %

Programs
p ::= e

Terms
e ::= i at ρ | e1 � e2 at ρ | e1 4 e2 |

tt | ff | if eb then et else ef |
x | λx : τ.εe at ρ | e1 e2 |
(e1, e2) at ρ | fst e | snd e |
new %.e | λ% � ϕ.εu at ρ | e [ρ] |
fix f : τ.u

Abstractions
u ::= λx : τ.εe at ρ | λ% � ϕ.εu at ρ

Figure 1: Single Effect Calculus: Syntax

some directions for future work. Supplemental figures can
be found in the appendix.

2. THE SINGLE EFFECT CALCULUS
The Single Effect Calculus is a variation of the region cal-

culus of Tofte and Talpin [24, 25], in the spirit of [11], and
taking inspiration from the Capability Calculus [5] and Cy-
clone [8]. Essentially, the Single Effect Calculus capitalizes
on the fact that a LIFO stack of regions imposes a partial
order on live (allocated) regions. Regions lower on the stack
outlive regions higher on the stack. Hence, the liveness of
a region implies the liveness of all regions below it on the
stack. Thus, it is the case that a single region can serve as
a witness for a set of effects: the region appears as a single
effect in place of the set.

Figure 1 presents the syntax of “initial programs” (that is,
excluding intermediate terms that would appear in an oper-
ational semantics) of the Single Effect Calculus. Figures 2
and 3 presents a type system for this external language.
Figure 10 in the Appendix presents a simple large-step op-
erational semantics in terms of a run-time store. In the
following sections, we explain and motivate the main con-
structs and typing rules of the Single Effect Calculus.

2.1 Types
In Tofte and Talpin’s original region calculus, a region

is associated with every type that requires heap allocated
storage. We assume that integers, pairs, and closures require
heap allocated storage, while booleans do not. The type
(µ, ρ) pairs together a boxed type (a type requiring heap
allocated storage) and a place (a region); we interpret (µ, ρ)
as the type of objects of boxed type µ, allocated in region
ρ. For our external language, it suffices to allows places

to range over region variables (RVarsSEC ), which include a
distinguished member H, corresponding to a global region
that remains live throughout the execution of the program.
Various operational semantics extend the syntactic class of
places to include concrete region names [25] and/or a special
constant corresponding to a deallocated region [4].

Of the boxed types, integers and pairs are standard. More
interesting are the two boxed types corresponding to ab-
stractions. Recall that in previous formulations of region
calculi, the types of functions and region abstractions are
given by:

τ1
ϕ
−→ τ2 and Π%.ϕτ

where ϕ is an effect, a finite set of places. In the function
and region-abstraction types, the effect ϕ denotes a latent
effect, the set of regions read from or written to when an
argument is supplied to the function or a region supplied to
the region abstraction.

Our formulation of function and region abstraction types
differ. The type of a function is given by:

τ1
ε
−→ τ2

where ε is a (single) place. Whereas ϕ denoted the set of re-
gions affected by executing the function, ε denotes an upper
bound (in the partial order of regions) on the set of regions
affected by executing the function. In the case of the former,
the typing judgement for an application requires showing
that all regions in ϕ are live. In the case of the latter, the
typing judgement for an application only requires showing
that ε is live; the liveness of all regions below ε are implied
by the stack discipline.

The type of a region abstraction is given by:

Π% � ϕ.ετ

where ϕ and ε are a finite set of places and a place, respec-
tively. (Note that the region variable % is bound within ε
and τ , but not ϕ.) The bounded quantification in this type
requires that at the instantiation of % by a region ρ, we must
be able to show that ρ is outlived by all of the regions in
ϕ. Within the body of the abstraction, we assume that % is
an upper bound on the set of regions ϕ. As with a function
type, ε denotes an upper bound on the set of regions affected
when the region abstraction is applied to a region.

2.2 Programs and Terms
Programs in the Single Effect Calculus are simply terms.

We distinguish programs as a syntactic class because the
type system presented in the next section has a special
judgement for top-level programs. Essentially, this judge-
ment establishes reasonable “boundary conditions” for a
program’s execution, an aspect that is often overlooked in
previous descriptions of region calculi.

Terms in the Single Effect Calculus are similar to those
found in the λ-calculus. One major difference is that terms
yielding heap allocated values carry a region annotation
at ρ, which indicates the region in which the value is to
be allocated. New regions are introduced (and implicitly
created and destroyed) by the new %.e term. The region
variable % is bound within e, demarcating the scope of the
region. Within e, values may be read from or allocated in
the region %. Executing new %.e allocates a new region of
memory, then executes e, and finally deallocates the region.



The term Π% � ϕ.εu at ρ introduces a region abstraction
(allocated in the region ρ), where the term u is polymorphic
in the region %.1 Such region polymorphism is particularly
useful in the definition of functions, in which we parame-
terize over the regions necessary for the evaluation of the
function. As explained in the previous section, region ab-
stractions make use of bounded quantification; the intention
is that % is outlived by all the regions in ϕ. The term e [ρ]
eliminates a region abstraction; operationally, it substitutes
the place ρ for the region variable % in u and evaluates re-
sulting term.

Finally, we include a fixed-point term, fix f : τ.u. Since
we intend the Single Effect Calculus to obey a call-by-value
evaluation semantics, we limit the body of a fixed-point to
abstractions.

As an example, consider the following term to compute a
factorial (in which we elide the type annotation on fact):

fix fact .
(Π%i � {}.%i (Π%o � {}.%i (Π%b � {%i, %o}.%i (λn : (int, %i).%b

if new %.n ≤ (1 at %)
then 1 at %o

else new %o′ .(new %i′ .
(fact [%i′ ] [%o′ ] [%i′ ]

(new %.n − (1 at %) at %i′ ))) ∗ n at %o

) at %i) at %i) at %i) at %f

The function fact is parameterized by three regions: %i is
the region in which the input integer is allocated, %o is the
region in which the output integer is to be allocated, and
%b is a region that bounds the latent effect of the function.
We see that the bounds on %i and %o indicate that they are
not constrained to be outlived by any other regions. On
the other hand, the bound on %b indicates that both %i and
%o must outlive %b. Hence, %b suffices to bound the effects
within the body of the function, in which we expect region
%i to be read from and region %o to be allocated in. Note
that the regions passed to the recursive call to fact satisfy
the bounds, as %i′ clearly outlives itself and %o′ is allocated
before (and deallocated after) %i′ .

2.3 Typing Judgements
The typing rules for the Single Effect Calculus appear in

Figures 2 and 3. Region contexts ∆ are ordered lists of
region variables bounded by effect sets. Value contexts Γ
are ordered lists of variables and types. We summarize the
main typing judgements in the following table:

Judgement Meaning
∆ `btype µ Boxed type µ is well-formed.

∆ `type τ Type τ is well-formed.

∆ `rr ε � ρ If region ε is live, then region ρ is live.
(Alt.: region ρ outlives region ε.)

∆ `re ε � ϕ If region ε is live, then all regions in ϕ
are live. (Alt.: all regions in ϕ outlive
region ε.)

∆; Γ `exp e : τ, ε Term e has type τ and effects
bounded by region ε.

`prog p ok Program p is well-typed.

Previous formulations of region calculi make use of a
judgement of the form Γ `exp e : τ, ϕ, where ϕ indicates
the set of regions that may be effected by the evaluation
of e (and the set of bound region variables is left implicit).

1Limiting the body of a region abstraction to abstractions
ensures that an erasure function that removes region annota-
tions and produces a λ-calculus term is meaning preserving.

The Single Effect Calculus simply replaces ϕ with a single
region ε that bounds the effects in ϕ. In practice, and as
suggested by the typing rules, ε corresponds to the most re-
cently allocated region (also referred to as the top or current
region).

We start by noting that the typing rules for the judge-
ments ∆ `rr ε � ρ and ∆ `re ε � ϕ simply formalize the
reflexive, transitive closure of the syntactic constraints in
∆, each of which asserts a particular “outlived by” relation
between a region variable and an effect set.

The key judgement in region calculi is the typing rule for
new %.e:

% 6∈ dom(∆) ∆ `type τ
∆, % � {ε}; Γ `exp e : τ,%

∆; Γ `exp new %.e : τ, ε

The antecedent ∆ `type τ asserts that the new region vari-
able % does not appear in the result type, including any ef-
fects occurring in region abstraction types that appear in the
result type. Note further that the antecedent % /∈ dom(∆)
and the implicit judgement `ctxt ∆; Γ; ε ensure that % does
not appear in the types of the value environment. Together,
these facts guarantee that the region % is not needed before
the evaluation of e, nor is it needed after, corresponding to
the allocation and deallocation of a new region. This new re-
gion is clearly related to the current region ε — it is outlived
by the “old” current region and becomes the “new” current
region for the evaluation of e. These facts are captured by
the final antecedent ∆, % � {ε}; Γ `exp e : τ, %.

It is worth comparing the treatment of latent effects in
the Single Effect Calculus with their treatment in previous
formulations of region calculi. In previous work, the typing
rule for application appears as follows:

Γ `exp e1 : (τ1
ϕ
−→ τ2, ρ), ϕ1 Γ `exp e2 : τ2, ϕ2

Γ `exp e1 e2 : τ2, ϕ ∪ ϕ1 ∪ ϕ2 ∪ {ρ}

In the Single Effect Calculus, the composite effect ϕ ∪ ϕ1 ∪
ϕ2 ∪ {ρ} is witnessed by a single effect ε that subsumes
the effect of the entire expression. We interpret ε as an
upper bound on the composite effect; hence, ε is an upper
bound on each of the effect sets ϕ1 and ϕ2, which explains
why ε is used in the antecedents that type-check the sub-
expressions e1 and e2. In order to execute the application,
the operational semantics must read the function out of the
region ρ; therefore, we require ρ to outlive the current region
ε by the antecedent ∆ `rr ε � ρ. Finally, we require the
latent single effect ε′, which is an upper bound on the set
of regions affected by executing the function, to outlive the
current region, which ensures that ε is also an upper bound
on the set of regions affected by executing the function.

As alluded to in the previous section, the typing rule for
region application requires that we be able to show that the
formal region parameter ρ is outlived by all of the regions
in the region abstraction bound ϕ.

Finally, the rule for top-level programs requires that an
expression evaluate to a boolean value in the context of dis-
tinguished region H that remains live throughout the ex-
ecution of the program. It also serves as the single effect
that bounds the effects of the entire program. Alternative
formulations of these “boundary conditions” exist; we have
adopted these to simplify the translation in Section 4.



Region contexts
∆ ::= · | ∆, % � ϕ

Value contexts
Γ ::= · | Γ, x : τ

`rctxt ∆

`rctxt ·

`rctxt ∆ % 6∈ dom(∆) ∆ `eff ϕ

`rctxt ∆, % � ϕ

∆ `place ρ

% ∈ dom(∆)

∆ `place %

∆ `eff ϕ

∆ `place ρi
i∈1...n

∆ `eff {ρ1, . . . , ρn}

∆ `btype µ

∆ `btype int

∆ `type τ1 ∆ `place ε ∆ `type τ2

∆ `btype τ1
ε
−→ τ2

∆ `type τ1 ∆ `type τ2

∆ `btype τ1 × τ2

% 6∈ dom(∆) ∆ `eff ϕ ∆, % � ϕ `place ε ∆, % � ϕ `type τ

∆ `btype Π% � ϕ.ετ

∆ `type τ

∆ `type bool

∆ `btype µ ∆ `place ρ

∆ `type (µ, ρ)

∆ `rr ε � ρ

∆(ε) = {ρ1, . . . , ρi, . . . , ρn}

∆ `rr ε � ρi

∆ `place ε

∆ `rr ε � ε

∆ `rr ε � ε′ ∆ `rr ε′ � ρ

∆ `rr ε � ρ

∆ `re ε � ϕ

∆ `rr ε � ρi
i∈1...n

∆ `re ε � {ρ1, . . . , ρn}

∆ `vctxt Γ

∆ `vctxt ·

∆ `vctxt Γ x 6∈ dom(Γ) ∆ `type τ

∆ `vctxt Γ, x : τ

`ctxt ∆; Γ; ε

`rctxt ∆ ∆ `vctxt Γ ∆ `place ε

`ctxt ∆; Γ; ε

Figure 2: Single Effect Calculus: Static Semantics (I)



∆; Γ `exp e : τ, ε

∆ `place ρ ∆ `rr ε � ρ

∆; Γ `exp i at ρ : (int, ρ), ε

∆; Γ `exp e1 : (int, ρ1), ε ∆ `rr ε � ρ1

∆; Γ `exp e2 : (int, ρ2), ε ∆ `rr ε � ρ2

∆ `place ρ ∆ `rr ε � ρ

∆; Γ `exp e1 � e2 at ρ : (int, ρ), ε

∆; Γ `exp e1 : (int, ρ1), ε ∆ `rr ε � ρ1

∆; Γ `exp e2 : (int, ρ2), ε ∆ `rr ε � ρ1

∆; Γ `exp e1 4 e2 : bool, ε

∆; Γ `exp tt : bool, ε ∆; Γ `exp ff : bool, ε

∆; Γ `exp eb : bool, ε
∆; Γ `exp et : τ, ε ∆; Γ `exp ef : τ, ε

∆; Γ `exp if eb then et else ef : τ, ε

Γ(x) = τ

∆; Γ `exp x : τ, ε

x 6∈ dom(Γ) ∆ `type τ1 ∆ `place ε′

∆; Γ, x : τ1 `exp e : τ2, ε
′

∆ `place ρ ∆ `rr ε � ρ

∆; Γ `exp λx : τ1.
ε′e at ρ : (τ1

ε′

−→ τ2, ρ), ε

∆; Γ `exp e1 : (τ1
ε′

−→ τ2, ρ), ε ∆ `rr ε � ρ
∆; Γ `exp e2 : τ1, ε ∆ `rr ε � ε′

∆; Γ `exp e1 e2 : τ2, ε

∆; Γ `exp e1 : τ1, ε
∆; Γ `exp e2 : τ2, ε

∆ `place ρ ∆ `rr ε � ρ

∆; Γ `exp (e1, e2) at ρ : (τ1 × τ2, ρ), ε

∆; Γ `exp e : (τ1 × τ2, ρ), ε ∆ `rr ε � ρ

∆; Γ `exp fst e : τ1, ε

∆; Γ `exp e : (τ1 × τ2, ρ), ε ∆ `rr ε � ρ

∆; Γ `exp snd e : τ2, ε

% 6∈ dom(∆) ∆ `type τ
∆, % � {ε}; Γ `exp e : τ,%

∆; Γ `exp new %.e : τ, ε

% 6∈ dom(∆) ∆ `eff ϕ ∆ `place ε′

∆, % � ϕ; Γ `exp u : τ, ε′

∆ `place ρ ∆ `rr ε � ρ

∆; Γ `exp λ% � ϕ.ε
′

u at ρ : (Π% � ϕ.ε
′

τ, ρ), ε

∆; Γ `exp e : (Π% � ϕ.ε
′

τ, ρ′), ε ∆ `rr ε � ρ′

∆ `place ρ ∆ `re ρ � ϕ
∆ `rr ε � ε′[ρ/%]

∆; Γ `exp e [ρ] : τ [ρ/%], ε

f 6∈ dom(Γ) ∆ `type τ
∆; Γ, f : τ `exp u : τ, ε

∆; Γ `exp fix f : τ.u : τ, ε

`prog p ok

·,H � {}; · `exp p : bool,H

`prog p ok

Figure 3: Single Effect Calculus: Static Semantics (II)



2.4 Discussion
An important issue to consider is the expressiveness of the

Single Effect Calculus relative to Tofte and Talpin’s original
region calculus. Tofte and Talpin’s formulation of the region
calculus as the implicit target of an inference system makes
a direct comparison difficult. Fortunately, there has been
sufficient interest in region-based memory management to
warrant direct presentations of the region calculus [10, 3, 4,
11], which are better suited for comparison. Three aspects
of the region calculus are highlighted as essential features:
region polymorphism, region polymorphic recursion, and ef-
fect polymorphism.

The Single Effect Calculus clearly supports region poly-
morphism (albeit, in a slightly different form). Furthermore,
region polymorphic recursion is supported by fixing a re-
gion abstraction, as demonstrated in the fact example. One
can give a straightforward translation from a source region
calculus without effect polymorphism into the Single Effect
Calculus. At the type level, this transation expands every
function type into a function and region abstraction type:

T
r
(τ1

ϕ
−→ τ2, ρ)

z
= (T Jτ1K ρ

−→ (Πε � ϕ.εT Jτ2K , ρ), ρ)

At the term level, source functions become functions and re-
gion abstractions and applications become applications and
region applications. A similar approach deals with region
abstractions in the source language. Essentially, this trans-
lation works by looking for the places where region sets are
used in the source calculus and simply replacing them by
an abstraction over that set. Clearly, this is not the most
efficient translation. For example, in places where we could
statically identify an upper bound on the region set (e.g.,
a singleton region set), we could elide the abstraction and
simply use the upper bound.

Effect polymorphism can be simulated in the Single Ef-
fect Calculus, although at a heavier notational cost. Recall
that effect polymorphism provides a means to abstract over
an entire set of regions. Effect instantiation applies an effect
abstraction to a set of regions. Effect polymorphism is espe-
cially useful for typing higher-order functions. For example,
the type of the list map function is polymorphic in the effect
of the functional argument.

Encoding effect polymorphism in the Single Effect Calcu-
lus begins by replacing effect abstractions (∀ε.ρτ ) by region
abstractions with an empty bound (Πε � {}.ρτ ). Effect
instantiation must be translated to region instantiation; in
particular, the set of regions must be translated to a single
region denoting the upper bound of the set. In the pres-
ence of region polymorphism, this can be complicated, be-
cause a set of region variables may have no obvious upper
bound. Hence, we must extend the translation to include
upper bounds for each set of region variables that may be
used in an effect instantiation. For example, a source type
like (Π%1.

ϕ1 (Π%2.
ϕ2 .(Π%3.

ϕ3τ, ρ3), ρ2), ρ3) (where any sub-
set of {%1, %2, %3} may be used in an effect instantiation) is
translated to

(Π%1 � {}.ρ1 (Πε1 � ϕ1.
ε1

(Π%2 � {}.ρ2 (Πε2 � ϕ2.
ε2

(Π%12 � {%1, %2}.
ρ2

(Π%3 � {}.ρ3 (Πε3 � ϕ3.
ε3

(Π%13 � {%1, %3}.
ρ3 (Π%23 � {%2, %3}.

ρ3

(Π%123 � {%1, %2, %3}.
ρ3

(T JτK , ρ3), ρ3), ρ3), ρ3), ρ3), ρ3), ρ2).ρ2), ρ2), ρ1), ρ1)

i ∈ Z

α ∈ TVarsFRGN

f, x ∈ VarsFRGN

Types
τ ::= int | bool | τ1 → τ2 | τ1 × · · · × τn | α | ∀α.τ |

RGN τr τa | RGNVar τr τa | RGNHandle τr

Terms
e ::= i | e1 � e2 | e1 4 e3 |

tt | ff | if eb then et else ef |
x | λx : τ.e | e1 e2 | (e1, . . . , en) | seli e |
Λα.e | e [τ ] | let x = e1 in e2 |
runRGN [τa] v | κ

Commands
κ ::= returnRGN [τr] [τa] v |

thenRGN [τr] [τa] [τb] v1 v2 |
allocRGNVar [τr] [τa] vr va |
readRGNVar [τr] [τa] v |
fixRGNVar [τr] [τa] vr vf |
newRGN [τr] [τa] v

Values
v ::= i | tt | ff | x | λx : τ.e | Λα.e | (v1, v2) | κ

Figure 4: FRGN: Syntax

In the term translation, %12, %23, and %123 can be used for re-
gion instantiations when the source term performs an effect
instantiation with the corresponding set of region variables.
The burden of instantiating %12, %23, and %123 falls to the
term that instantiates %1, %2, and %3, which will have suffi-
cient information to choose the right upper bounds.

A formal translation could be given, but doing so detracts
from the work at hand.

3. THE F
RGN CALCULUS

The language FRGN is an extension of System F [20, 7] (also
referred to as the polymorphic λ-calculus), adding monadic
types and operations and taking inspiration from the work
on monadic state [14, 15, 16, 1, 23, 19]. Essentially, FRGN

uses an explicit region monad to enforce the locality of region
allocated values.

Figure 4 presents the syntax of “initial programs” (that
is, excluding intermediate terms that would appear in an
operational semantics) of FRGN. Figure 5 presents a type
system for this external language. Figure 11 in the Appendix
presents a simple large-step operational semantics in terms
of a run-time store. In the following sections, we explain
and motivate the main constructs and typing rules of FRGN.

3.1 Types
Types in FRGN are similar to those found in System F.

We include the primitives types int and bool, function and
product types, and type abstractions. In addition, we have
RGN τr τa as the type of monadic region computations,
RGNVar τr τa as the type of region allocated values, and
RGNHandle τr as the type of region handles. Intuitively,
RGN τr τa is the type of computations that yield values
of type τa and that take place in the region indexed by the
type τr. Likewise, RGNVar τr τa is the type of values of type



τa allocated in the region indexed by the type τr. Finally,
RGNHandle τr is the type of handles for the region indexed
by the type τr. A value of such a type is a region handle – a
run-time value holding the data necessary to allocate values
within a region. Region indices (types) and region handles
(values) are distinguished in order to maintain a phase dis-
tinction between compile-time and run-time expressions and
to more accurately reflect implementation of regions. Re-
gion indices, like other types, have no run-time significance
and may be erased from compiled code. On the other hand,
region handles are necessary at run-time to allocate values
within a region.

Although the remainder of this paper will never require
a region index to be represented by anything other than
a type variable, we choose to allow an arbitrary type in
the first argument of the RGN monad type. We can thus
interpret RGN as a primitive type constructor, without any
special restrictions that may not be expressible in a practical
programming language. Furthermore, in a semantics not
based on type-erasure, type variables used as region indices
will be instantiated with region types (see Figure 11).

3.2 Terms
As with types, most of the terms in FRGN are similar to

those found in System F. Constants, arithmetic and boolean
operations, function abstraction and application, tuple in-
troduction and elimination, and type abstraction and in-
stantiation are all completely standard.

We let κ range over the syntactic class of monadic com-
mands. (Equivalently, and as suggested by the explicit type
annotations and the restriction of sub-expressions to val-
ues, we can consider the monadic commands as constants
with polymorphic types in a call-by-value interpretation of
FRGN.) Each command corresponds to a particular trans-
formation on a monadic region. The commands returnRGN

and thenRGN are the unit and bind operations of the region
monad respectively.

The command allocRGNVar [τr] [τa] vr va allocates the
value va of type τa in the region indexed by the type τr.
The additional value vr is the region handle for the region
indexed by τr, which is necessary to allocate values within
the region.

The command readRGNVar [τr] [τa] v reads a value of type
τa stored at the location v in the region indexed by the type
τr. The command fixRGNVar [τr] [τa] vr vf allocates a value
of type τa in the region indexed by τr; the value is produced
by the function vf which is applied to the location where
the allocated value is to be stored. This provides a means
of allocating recursive structures. We discuss this command
in more detail when we examine the typing rules for FRGN.

The command newRGN [τr] [τa] v first, creates a new re-
gion, executes the region computation described by v in the
new region, and finally deallocates the new region. This en-
tire execution is a computation that yields a value of type
τa taking place in the region indexed by τr. We will have
more to say about the computation described by v shortly.

Finally, the expression runRGN [τa] v eliminates region-
transformer operations. In particular, if v describes a region
computation yielding a value of type τa, then runRGN [τa] v
executes that computation in a region, returning the final
value produced by v and destroying the region (and any
values allocated within it). The region (and any new regions
introduced by newRGN) is neither accessible nor visible from

outside the runRGN [τa] v expression.

3.3 Typing Judgements
The typing rules for FRGN appear in Figure 5. Type con-

texts ∆ are ordered lists of type variables and value contexts
Γ are ordered lists of variables and types. We introduce the
(suggestive) abbreviation τr � τs for a function that coerces
any computation taking place in the region indexed by τr

into a computation taking place in the region indexed by τs.
We call such functions witnesses and explain their role in
more detail below.

The only typing judgement of interest is ∆; Γ `exp e : τ
meaning that term e has type τ . The rules for constants,
arithmetic and boolean operations, function abstraction and
application, tuple introduction and elimination, and type
abstraction and instantiation are all completely standard.
As expected in a monadic language, each command expres-
sion is given the monadic type RGN τr τa for appropriate re-
gion index and return type. The typing rules for returnRGN

and thenRGN correspond to the standard typing rules for
monadic unit and bind operations. The typing rules for
allocRGNVar and readRGNVar are straight-forward.

As in the Single Effect Calculus, the key judgements are
those relating to the creation of new regions. We first ex-
amine the typing rule for the runRGN expression:

∆; Γ `exp v : ∀α.RGNHandle α → RGN α τa

∆; Γ `exp runRGN [τa] v : τa

As stated above, the argument to runRGN should describe a
region computation. In fact, we require v to be a polymor-
phic function that yields a region computation after being
applied to a region handle. Recall that we can consider a
value of type RGN τr τa as a region-transformer – that is,
it accepts a region (indexed by the type τr), performs some
operations (such as allocating into the region), and returns
a value and the modified region. The effect of universally
quantifying the region index in the type of v is to require
v to make no assumptions about the input region (e.g., the
existence of pre-allocated values). Furthermore, all opera-
tions that manipulate a region are “infected” with the region
index: when combining operations, the rule for returnRGN

requires the region index type to be the same; locations
allocated and read using allocRGNVar and readRGNVar re-
quire the region index of the RGNVar to be the same as the
computation in which the operation occurs. Thus, if a re-
gion computation RGN τr τa were to return a value that
depended upon the region indexed by τr, then τr would ap-
pear in the type τa. Since the type τa appears outside the
scope of the type variable α in the typing rule for runRGN,
it follows that α cannot appear in the type τa. Therefore, it
must be the case that the value returned by the computation
described by v does not depend upon the region index which
will instantiate α. Taken together, these facts ensure that
an arbitrary new region can be supplied to the computation
and that the value returned will not leak any means of ac-
cessing the region or values allocated within it; hence, the
region can be destroyed at the end of the computation. Fi-
nally, because we require region handles for allocating within
regions, we provide the region handle for the newly created
region as the argument to a function that yields the compu-
tation we wish to execute.



Type contexts
∆ ::= · | ∆, α

Value contexts
Γ ::= · | Γ, x : τ

τr � τs ≡ ∀α.RGN τr α → RGN τs α

`tctxt ∆

`tctxt ·

`rctxt ∆ α 6∈ dom(∆)

`tctxt ∆, α

∆ `type τ

∆ `type int ∆ `type bool

∆ ` τ1 ∆ ` τ2

∆ `type τ1 → τ2

∆ `type τi
i∈1...n

∆ `type τ1 × · · · × τn

α ∈ dom(∆)

∆ `type α

α 6∈ dom(∆) ∆, α `type τ

∆ `type ∀α.τ

∆ `type τr ∆ `type τa

∆ `type RGN τr τa

∆ `type τr ∆ `type τa

∆ ` RGNVar τr τa

∆ `vctxt Γ

∆ `vctxt ·

∆ `vctxt Γ x 6∈ dom(Γ) ∆ `type τ

∆ `vctxt Γ, x : τ

`ctxt ∆; Γ

`tctxt ∆ ∆ `vctxt Γ

`ctxt ∆; Γ

∆; Γ `exp e : τ

∆; Γ `exp i : int

∆; Γ `exp e1 : int

∆; Γ `exp e2 : int

∆; Γ `exp e1 � e2 : int

∆; Γ `exp e1 : int

∆; Γ `exp e2 : int

∆; Γ `exp e1 4 e2 : bool ∆; Γ `exp tt : bool ∆; Γ `exp ff : bool

∆; Γ `exp eb : bool

∆; Γ `exp et : τ ∆; Γ `exp ef : τ

∆; Γ `exp if eb then et else ef : τ

Γ(x) = τ

∆; Γ `exp x : τ

∆ `type τ1 x 6∈ dom(Γ)
∆; Γ, x : τ1 `exp e : τ2

∆; Γ `exp λx : τ1.e : τ1 → τ2

∆; Γ `exp e1 : τ1 → τ2

∆; Γ `exp e2 : τ1

∆; Γ `exp e1 e2 : τ2

∆; Γ `exp e1 : τi
i∈1...n

∆; Γ `exp (e1, . . . , en) : τ1 × · · · × τn

1 ≤ i ≤ n
∆; Γ `exp e : τ1 × · · · × τn

∆; Γ `exp seli e : τi

α 6∈ dom(∆)
∆, α; Γ `exp e : τ

∆; Γ `exp Λα.e : ∀α.τ

∆ `type τ ′

∆; Γ `exp e : ∀α.τ

∆; Γ `exp e [τ ′] : τ [τ ′/α]

∆; Γ `exp e1 : τ1

x 6∈ dom(Γ) ∆; Γ, x : τ1 `exp e2 : τ2

∆; Γ `exp let x = e1 in e2 : τ2

∆; Γ `exp v : ∀α.RGNHandle α → RGN α τa

∆; Γ `exp runRGN [τa] v : τa

∆ `type τr ∆; Γ `exp v : τa

∆; Γ `exp returnRGN [τr] [τa] v : RGN τr τa

∆; Γ `exp v1 : RGN τr τa

∆; Γ `exp v2 : τa → RGN τr τb

∆; Γ `exp thenRGN [τr] [τa] [τb] v1 v2 : RGN τr τb

∆; Γ `exp v1 : RGNHandle τr ∆; Γ `exp v2 : τa

∆; Γ `exp allocRGNVar [τr] [τa] v1 v2 : RGN τr (RGNVar τr τa)

∆; Γ `exp v : RGNVar τr τa

∆; Γ `exp readRGNVar [τr] [τa] v : RGN τr τa

∆; Γ `exp v1 : RGNHandle τr

∆; Γ `exp v2 : RGNVar τr τa → τa

∆; Γ `exp fixRGNVar [τr] [τa] v1 v2 : RGN τr (RGNVar τr τa)

∆; Γ `exp v : ∀α.τr � α → RGNHandle α → RGN α τa

∆; Γ `exp newRGN [τr] [τa] v : RGN τr τa

Figure 5: FRGN: Static Semantics



The typing rule for newRGN is very similar:

∆; Γ `exp v : ∀α.τr � α → RGNHandle α → RGN α τa

∆; Γ `exp newRGN [τr] [τa] v : RGN τr τa

Ignoring for the moment the argument of type τr � α, we see
that exactly the same argument as above applies. In par-
ticular, the computation makes no assumptions about the
newly created region, nor can the region be leaked through
the returned value of type τa. What, then, is the role of
the witness argument? The answer lies in the fact that we
do not really intend the execution to take place in an arbi-
trary region. Instead, we expect the newly allocated region
to be related to previously allocated regions according to a
stack discipline (just as in region calculi). Hence, the notion
of “execution taking place in a region” is somewhat inaccu-
rate; instead, we have executions taking place in a stack of
regions. The region index in a type RGN τr τa indicates a
particular member of the region stack; in practice, it often
coincides with the most recently allocated region. Thus, any
computation taking place in a stack of regions where τs is
a member (i.e., a RGN τs τa term) is also a computation
taking place in a stack of regions where τr is a member (i.e.,
a RGN τr τa term) whenever τs outlives τr. A function of
type τs � τr witnesses this coercion. This explains the role
of the witness argument – it is provided to the computation
taking place in the inner region in order to coerce compu-
tations (such as allocating a new value in the outer region)
from the outer region to the inner region. Operationally,
such a witness function acts as the identity function.

Finally, we note that the typing rule for fixRGNVar re-
quires that the function vf has the type RGNVar τr τa → τa.
Note that this is a pure function, not a monadic computa-
tion. Hence, it is safe to pass the location where the allo-
cated value is to be stored, because no computation (hence,
no reading of region allocated values) can occur during the
evaluation of the application of vf to a location. On the
other hand, vf can return a computation that reads the
allocated value, since this computation cannot occur until
after the knot has been tied.

4. THE TRANSLATION
In this section we present a type-preserving translation

from the Single Effect Calculus to FRGN. Many of the key
components of the translation should be obvious from the
suggestive naming of the previous sections. We clearly in-
tend new to be translated (in some fashion) to newRGN.
Likewise, we can expect types of the form (µ, ρ) to be trans-
lated to types of the form RGNVar. It further seems likely
that the outlives relation ε � ρ should be related to the wit-
ness functions τr � τs. We present the translation in stages,
as there are some subtleties that require explanation.

We start with a few preliminaries. We assume injections
from the sets RVarsSEC and VarsSEC to the sets TVarsFRGN

and VarsFRGN respectively. In the translation, applications
of such injections will be clear from context and we freely use
variables from source objects in target objects. We further
assume two additional injections from the set RVarsSEC to
the set VarsFRGN ; the image of a region variable % under
these injections are written %h and %w respectively.

The translation is a typed call-by-value monad transla-
tion, similar to the standard translation given by Sabry and
Wadler [22]. We have not attempted to optimize the transla-

tion to avoid the introduction of “administrative” redexes.
We feel that this simplifies the translation, although it is
likely to complicate a proof that the translation preserves
the semantics. We intend to investigate an optimized trans-
lation in future work.

Figure 6 shows the translation of types and contexts. As
expected, the type (µ, ρ) is translated to RGNVar ρ Tµ JµK,
whereby region allocated values in the source are also re-
gion allocated in the target. The translations of primitive
types and product types are trivial. More interesting are
the translations of function types and region abstraction
types. Functions with effects bounded by the region ε are
translated into pure functions that yield computations tak-
ing place in stack of regions with ε as a member. Region
abstractions are translated into type abstractions. Because
the target calculus requires explicit region handles for allo-
cation, each time a region is in scope in the source calculus,
the region handle must be in scope in the target calculus.
This explains the appearance of the RGNHandle % type in
the translation. Likewise, the target calculus makes witness
functions explicit, whereas in the source calculus such coer-
cions are implied by � related regions. Hence, we interpret
% � {ρ1, . . . , ρn} as an n-tuple of functions, each witness-
ing a coercion from region ρi to %. This interpretation is
formalized by the T� J·K translations.2

We extend the type translation to contexts in the obvi-
ous way. In addition to translating region variables to type
variables and translating the types of variables in value con-
texts, we have additional translations from region contexts
to value contexts. As explained above, region handles and
witness functions are explicit values in the target calculus.
Hence, our translation maintains the invariant that when-
ever a region variable % is in scope in the source calculus,
the variables %h and %w are in scope in the target calculus.
The variable %h (of type RGNHandle %) is the handle for the
region % and the variable %w (of type T� J% � ϕK) is the tuple
holding the witness functions that coerce to region %.

Figure 7 shows the translation of witness terms. The first
three translations map the reflexive, transitive closure of the
syntactic constraints in a source ∆ into an appropriate coer-
cion function. The final translation collects a set of coercion
functions into a tuple; such a term is suitable as an argument
to the translation of a region abstraction.

Figure 8 shows the translation of key terms. Figures 12
and 13 in the Appendix show the translation of the other
terms; these additional translations are straight-forward in
light of the translations given in Figure 8. In order to make
the translation easier to read, we introduce the following
notation:

bind f : τa ⇐ e1; e2 ≡ let k = e1 in

thenRGN [τr] [τa] [τb] k (λf : τa.e2)
where k fresh

2Note that in the Single Effect Calculus, we only substi-
tutes regions for region variables. This means that the sets
of regions that appear in the program never change size (al-
though they may change elements as a result of substitu-
tion). The T� J·K translations require keeping the ordering
of regions in a set {ρ1, . . . , ρn} constant. It does not re-
quire a global ordering on region variables; such an ordering
would not suffice for our purposes, because the ordering of
elements in a set might change after substitution. Instead,
we take {ρ1, . . . , ρn} as an ordered list, where substitution
preserves the order.



Lemma 1 (Translation preserves types (types and contexts)).

• If `rctxt ∆, then `rctxt C
T
∆ J∆K.

• If `rctxt ∆ and ∆ `btype µ, then CT
∆ J∆K `type Tµ JµK.

• If `rctxt ∆ and ∆ `type τ , then CT
∆ J∆K `type Tτ JτK.

• If `rctxt ∆ and ∆ `vctxt Γ, then CE
∆ J∆K `vctxt C

E
∆ J∆K , CE

Γ JΓK.

Translations yielding types

Types
Tτ JboolK = bool

Tτ J(µ, ρ)K = RGNVar ρ Tµ JµK

Boxed types
Tµ JintK = int

Tµ

r
τ1

ε
−→ τ2

z
= Tτ Jτ1K → RGN ε Tτ Jτ1K

Tµ Jτ1 × τ2K = Tτ Jτ1K × Tτ Jτ2K
Tµ JΠ% � ϕ.ετK = ∀%.T� J% � ϕK → RGNHandle % → RGN ε Tτ JτK

Effects
T� Jε � ρK = ρ � ε

T� Jε � {ρ1, . . . , ρn}K = T� Jε � ρ1K × · · · × T� Jε � ρnK
Translations yielding type contexts

Region contexts
CT
∆ J·K = ·

CT
∆ J∆, % � ϕK = CT

∆ J∆K , %

Translations yielding value contexts

Region contexts
CE
∆ J·K = ·

CE
∆ J∆, % � ϕK = CE

∆ J∆K , %h : RGNHandle %, %w : T� J% � ϕK

Value contexts
CE
Γ J·K = ·

CE
Γ JΓ, x : τK = CE

Γ JΓK , x : Tτ JτK

Figure 6: Translation from the Single Effect Calculus to FRGN (Types and Contexts)

Lemma 2 (Translation preserves types (Witnesses)).

• If `rctxt ∆ and ∆ `rr ε � ρ, then CT
∆ J∆K ; CE

∆ J∆K `exp E`rr
Jε � ρK : T� Jε � ρK.

• If `rctxt ∆ and ∆ `re ε � ϕ, then CT
∆ J∆K ; CE

∆ J∆K `exp E`re
Jε � ϕK : T� Jε � ϕK.

Translations yielding terms (witnesses)

E`rr

s
∆(ε) = {ρ1, . . . , ρi, . . . , ρn}

∆ `rr ε � ρi

{
= seli εw

E`rr

s
∆ `place ε

∆ `rr ε � ε

{
= Λα.λc : RGN ε α.c

E`rr

s
∆ `rr ε � ε′ ∆ `rr ε′ � ρ

∆ `rr ε � ρ

{
= Λα.λc : RGN ρ α.E`rr

J∆ `rr ε � ε′K [α] (E`rr
J∆ `rr ε′ � ρK [α] c)

E`re

t
∆ `rr ε � ρi

i∈1...n

∆ `re ε � {ρ1, . . . , ρn}

|
= (E`rr

J∆ `rr ε � ρ1K , . . . , E`rr
J∆ `rr ε � ρnK)

Figure 7: Translation from the Single Effect Calculus to FRGN (witnesses)



Lemma 3 (Translation preserves types (terms)).

• If `ctxt ∆; Γ; ε and ∆; Γ `exp e : τ, ε, then CT
∆ J∆K ; CE

∆ J∆K , CE
Γ JΓK `exp E`exp

J∆; Γ `exp e : τ, εK : RGN ε Tτ JτK.

Translations yielding terms (terms)

E`exp

s
∆ `place ρ ∆ `rr ε � ρ

∆; Γ `exp i at ρ : (int, ρ), ε

{
= E`rr

J∆ `rr ε � ρK [Tτ J(int, ρ)K] (allocRGNVar [ρ] [Tµ JintK] ρh i)

E`exp

s
Γ(x) = τ

∆; Γ `exp x : τ, ε

{
= returnRGN [ε] [Tτ JτK] x

E`exp

u
wwwv

x 6∈ dom(Γ) ∆ `type τ1 ∆ `place ε′

∆; Γ, x : τ1 `exp e : τ2, ε
′

∆ `place ρ ∆ `rr ε � ρ

∆; Γ `exp λx : τ1.
ε′e at ρ : (τ1

ε′

−→ τ2, ρ), ε

}
���~ =

E`rr
J∆ `rr ε � ρK [Tτ

s
(τ1

ε′

−→ τ2, ρ)

{
]

(allocRGNVar [ρ] [Tµ

s
τ1

ε′

−→ τ2

{
]

ρh (λx : Tτ Jτ1K .E`exp
J∆; Γ, x : τ1 `exp e : τ2, ε

′K))

E`exp

u
wv

∆; Γ `exp e1 : (τ1
ε′

−→ τ2, ρ), ε ∆ `rr ε � ρ
∆; Γ `exp e2 : τ1, ε ∆ `rr ε � ε′

∆; Γ `exp e1 e2 : τ2, ε

}
�~ =

bind f : Tτ

s
(τ1

ε′

−→ τ2, ρ)

{
⇐ E`exp

s
∆; Γ `exp e1 : (τ1

ε′

−→ τ2, ρ), ε

{
;

bind g : Tµ

s
τ1

ε′

−→ τ2

{
⇐ E`rr

J∆ `rr ε � ρK [Tµ

s
τ1

ε′

−→ τ2

{
] (readRGNVar [ρ] [Tµ

s
τ1

ε′

−→ τ2

{
] f);

bind a : Tτ Jτ1K ⇐ E`exp
J∆; Γ `exp e2 : τ1, εK ;

E`rr
J∆ `rr ε � ε′K Tτ Jτ2K (g a) where g, a fresh

E`exp

u
v

% 6∈ dom(∆) ∆ `type τ
∆, % � {ε}; Γ `exp e : τ,%

∆; Γ `exp new %.e : τ, ε

}
~ = newRGN [ε] [Tτ JτK] (Λ%.λ%w : T� J% � {ε}K .λ%h : RGNHandle %.

E`exp
J∆, % � {ε}; Γ `exp e : τ, %K)

E`exp

u
wwv

% 6∈ dom(∆) ∆ `eff ϕ ∆ `place ε′

∆, % � ϕ; Γ `exp u : τ, ε′

∆ `place ρ ∆ `rr ε � ρ

∆; Γ `exp λ% � ϕ.ε
′

u at ρ : (Π% � ϕ.ε
′

τ, ρ), ε

}
��~ =

E`rr
J∆ `rr ε � ρK [Tτ

r
(Π%.ε

′

τ, ρ)
z
]

(allocRGNVar [ρ] [Tµ

r
Π%.ε

′

τ
z
]

ρh (Λ%.λ%w : T� J% � ϕK .λ%h : RGNHandle %.
E`exp

J∆, % � ϕ; Γ `exp u : τ, ε′K))

E`exp

u
wwv

∆; Γ `exp e : (Π% � ϕ.ε
′

τ, ρ′), ε ∆ `rr ε � ρ′

∆ `place ρ ∆ `re ρ � ϕ
∆ `rr ε � ε′[ρ/%]

∆; Γ `exp e [ρ] : τ [ρ/%], ε

}
��~ =

bind f : Tτ

r
(Π%.ε

′

τ, ρ′)
z
⇐ E`exp

r
∆; Γ `exp e : (Π%.ε

′

τ, ρ′), ε
z

;

bind g : Tµ

r
Π%.ε

′

τ
z
⇐ E`rr

J∆ `rr ε � ρ′K [Tµ

r
Π%.ε

′

τ
z
] (readRGNVar [ρ′] [Tµ

r
Π%.ε

′

τ
z
] f);

E`rr
J∆ `rr ε � ε′K Tτ Jτ [ρ/%]K (g [ρ] E`re

J∆ `re ρ � ϕK ρh) where g fresh

Figure 8: Translation from the Single Effect Calculus to FRGN (Terms (I))



Lemma 4 (Translation preserves types (programs)).

• If `prog p ok, then ·; · `exp E`prog
J`prog p okK : bool.

Translations yielding terms (programs)

E`prog

s
·,H � {}; · `exp p : bool,H

`prog p ok

{
= runRGN (ΛH.λHh : RGNHandle H.

let Hw = () in

E`exp
J·;H � {}; · `exp p : bool,HK)

Figure 9: Translation from the Single Effect Calculus to FRGN (Programs)

where τr and τb are inferred from context.
The translation of an integer constant is a canonical ex-

ample of allocation in the target calculus. The allocation is
accomplished by the allocRGNVar command, applied to the
appropriate region handle and value. However, the result-
ing command has type RGN ρ (RGNVar ρ int), whereas the
source typing judgement requires the computation to be ex-
pressed relative to the region ε. We coerce the computation
using a witness function, whose existence is implied by the
judgement ∆ `rr ε � ρ. Allocation of a function proceeds in
exactly the same manner. Function application, while nota-
tionally heavy, is simple. The thenRGN commands sequence
evaluating the function to a location, reading the location,
evaluating the argument, and applying the function to the
argument.

The translation of new %.e is pleasantly direct. As de-
scribed above, we introduce %, %h, and %w through Λ- and
λ-abstractions. The region handle and coercion function are
supplied by the newRGN command when the computation
is executed.

The translation of region abstraction is similar to the
translation of functions. Once again, region handles and
witness functions are λ-bound in accordance to the invari-
ants described above. During the translation of region ap-
plications, the appropriate tuple of witness functions (con-
structed by E`re

J·K) and region handle are supplied as argu-
ments.

Figure 9 shows the translation of programs. An entire re-
gion computation is encapsulated and run by the runRGN

expression. We bind Hw to an empty tuple, which corre-
sponds to the absence of any coercion functions to the region
H.

In each figure, we have indicated the particular type
preservation lemma implied by each component of the trans-
lation. The proofs are by (mutual) induction on the struc-
ture of the typing judgements.

5. RELATED WORK
The work in this paper draws heavily from two lines of

research. The first is the work done in type-safe region-based
memory management, introduced by Tofte and Talpin [24,
25]. Our Single Effect Calculus draws inspiration from the
Capability Calculus [5] and Cyclone [8], where the “outlives”
relationship between regions is recognized as an important
component of type-systems for region calculi.

The work of Banerjee, Heintze and Riecke [2] deserves
special mention. They show how to translate the region
calculus of Tofte and Talpin into an extension of the poly-
morphic λ-calculus called F#. A new type operator # is

used as a mechanism to hide and reveal the structure of
types. Capabilities to allocate and read values from a re-
gion are explicitly passed as polymorphic functions of types
∀α.α → (α#ρ) and ∀α.(α#ρ) → α; however, regions have
no run-time significance in F# and there is no notion of deal-
location upon exiting a region. The equality theory of types
in F# is nontrivial, due to the treatment of #; in contrast,
type equality on FRGN types is purely syntactic. Finally, it
is worth noting that there is almost certainly a connection
between the F# lift and seq expressions and the monadic
return and bind operations, although it is not mentioned or
explored in the paper.

The second line of research on which we draw is the work
done in monadic encapsulation of effects [17, 18, 21, 14, 26,
15, 16, 22, 1, 13, 23, 19, 27]. The majority of this work has
focused on effects arising from reading and writing mutable
state. While recent work [26, 19, 27] has considered more
general combinations of effects and monads, no work has
examined the combination of regions and monads.

Launchbury and Peyton Jones [14, 15] introduced a
monadic state transformer type ST s α for computations
which transform a state indexed by s and delivers a value of
type α. To run such state transforming computations, they
provide a term runST with the type ∀α.(∀s.ST s α) → α.
Our typing rules for runRGN and newRGN, inspired by that
of runST, use the same parametricity to ensure that com-
putations do not leak any (direct or indirect) references to
deallocated regions.

Launchbury and Sabry [16] argue that the principle be-
hind runST can be generalized to provide nested scope. They
introduce two constants

blockST :: (∀β.ST (α × β) τ ) → ST α τ
importVar :: MutVar α τ → MutVar (α × β) τ

where blockST encapsulates a new scope and importVar ex-
plicitly allows variables from an enclosing scope to be manip-
ulated by the inner scope. Similarly, Peyton Jones3 suggests
introducing the constant

liftST :: ST α τ → ST (α × β) τ

in lieu of importVar, with the same intention of importing
computations from an outer scope into the inner scope. At
first glance, this mechanism seems sufficient for supporting
a translation from a region calculus. However, in the pres-
ence of region polymorphism, such an approach proves dif-
ficult. The problem is that the explicit connection between
the outer and inner scopes in the product type enforces a
total order on regions. This total order is expressed in the

3private communication



types of region allocated values. Hence, one cannot write
a function polymorphic in the regions ρ1 and ρ2 and apply
it in all three of the following situations: (a) instantiate ρ1

and ρ2 with the same region, (b) instantiate ρ1 with a re-
gion that strictly outlives the region that instantiates ρ2, (c)
vice versa. To put it another way, the function doesn’t know
what the region stack is going to look like when it is called –
it doesn’t know where ρ1 and ρ2 are relative to each other or
to the top of the stack. Hence, we adopt the approach pre-
sented in this paper, where we pass evidence showing that
each of the regions is live.

Finally, we note that Wadler and Thiemann [27] advocate

marrying effects and monads by translating a type τ1
σ
−→ τ2

to the type T Jτ1K → Tσ T Jτ2K, where Tσ τ represents a
computation that yields a value of type τ and has effects
delimited by (the set) σ. As with the work of Banerjee et.
al. described above, this introduces a nontrivial theory of

equality (and subtyping) on types; the types Tσ τ and Tσ′

τ
are equal so long as σ and σ′ are (encodings of) equivalent
sets. However, few programming languages allow one to
express such nontrivial equalities between types.

6. CONCLUSIONS AND FUTURE WORK
We have given a type preserving translation from the Sin-

gle Effect Calculus to FRGN. Both the source and the target
calculi use a static type-system to delimit the effects of allo-
cating in and reading from regions. The Single Effect Calcu-
lus uses the partial order implied by the “outlives” relation
on regions to use single regions as bounds for sets of effects.
We feel that this is an important insight that leads to a
relatively straight-forward translation into the monadic set-
ting. FRGN draws from the work on monadic encapsulation
of state to give parametric types to runRGN and newRGN

that prevent access of regions beyond their lifetimes. Ex-
plicit functions witness the outlives relationship between re-
gions, enabling computations from outer regions to be cast
to computations in inner regions. Witness functions cannot
be forged and are only introduced via newRGN.

There are numerous directions for future work. Finaliz-
ing semantics for both the Single Effect Calculus and FRGN,
proving the type safety of each language, and proving that
the translation preserves the semantics of programs are fore-
most on our list. Exploring an optimized monad transla-
tion is likely to be important here. We are also interested
in mechanisms that relax the notational burden of passing
witness functions, such as type-classes. Finally, as is well
known, Tofte and Talpin’s original region calculus can lead
to inefficient memory usage in tail-recursive programs. We
would like to explore whether or not techniques developed
to overcome these problems (e.g., storage analysis and late
allocate/early deallocation analysis) can be adapted to the
monadic setting.

Acknowledgements
Greg Morrisett proposed an initial encoding of regions into
a monadic setting based on the ST monad and discussed the
many refinements leading to the present work. The anony-
mous referees made a number of helpful suggestions.

7. REFERENCES
[1] Z. Ariola and A. Sabry. Correctness of monadic state:

An imperative call-by-need calculus. In Proceedings of

the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’98),
pages 62–74, San Diego, CA, 1998. ACM Press.

[2] A. Banerjee, N. Heintze, and J. Riecke. Region
analysis and the polymorphic lambda calculus. In
Proceedings of the 14th IEEE Symposium on Logic in
Computer Science (LCS’99), pages 88–97, Trento,
Italy, 1999. IEEE Computer Society Press.

[3] C. Calcagno. Stratified operational semantics for
safety and correctness of the region calculus. In
Proceedings of the 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL’01), pages 155–165, London, England, 2001.
ACM Press.

[4] C. Calcagno, S. Helsen, and P. Thiemann. Syntactic
type soundness results for the region calculus.
Information and Computation, 173(2):199–332, Mar.
2002.

[5] K. Crary, D. Walker, and G. Morrisett. Typed
memory management in a calculus of capabilities. In
Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL’99), pages 262–275. ACM Press, 1999.

[6] M. Elsman. Garbage collection safety for region-based
memory management. In Proceedings of the ACM
SIGPLAN Workshop on Types in Language Design
and Implementation (TLDI’03), pages 123–134, New
Orleans, LA, 2003. ACM Press.

[7] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and
Types. Cambridge University Press, 1989.

[8] D. Grossman, G. Morrisett, Y. Wang, T. Jim,
M. Hicks, and J. Cheney. Formal type soundness for
Cyclone’s region system. Technical Report 2001-1856,
Department of Computer Science, Cornell University,
Nov. 2001.

[9] N. Hallenberg, M. Elsman, and M. Tofte. Combining
region inference and garbage collection. In Proceedings
of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’02),
pages 141–152. ACM Press, 2002. Berlin, Germany.

[10] S. Helsen and P. Thiemann. Syntactic type soundness
for the region calculus. In Proceedings of the 4th
International Workshop on Higher Order Operational
Techniques in Semantics (HOOTS’00), volume 41 of
Electronic Notes in Theoretical Computer Science,
pages 1–19, Montreal, Canada, Sept. 2000. Elsevier
Science Publishers.

[11] F. Henglein, H. Makholm, and H. Niss. Effect types
and region-based memory management. In B. Pierce,
editor, Advanced Topics in Types and Programming
Languages, chapter 5. MIT Press, 2003. In
preparation.

[12] M. Hicks, G. Morrisett, D. Grossman, and T. Jim.
Safe and flexible memory management in Cyclone.
Technical Report CS-TR-4514, University of Maryland
Department of Computer Science, July 2003.

[13] R. Kieburtz. Taming effects with monadic typing. In
Proceedings of the 3rd ACM SIGPLAN International
Conference on Functional Programming (ICFP’98),
pages 51–62, Baltimore, MD, 1998. ACM Press.

[14] J. Launchbury and S. Peyton Jones. State in Haskell.
Lisp and Symbolic Computation, 8(4):293–341, 1995.



[15] J. Launchbury and S. Peyton Jones. Lazy functional
state threads. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI’94), pages 24–35, Orlando, FL,
1997. ACM Press.

[16] J. Launchbury and A. Sabry. Monadic state:
Axiomatization and type safety. In Proceedings of the
2nd ACM SIGPLAN International Conference on
Functional Programming (ICFP’97), pages 227–237,
Amsterdam, The Netherlands, 1997. ACM Press.

[17] E. Moggi. Computational lambda calculus and
monads. In Proceedings of the 4th IEEE Symposium
on Logic in Computer Science (LCS’89), pages 14–23,
Pacific Grove, CA, 1989.

[18] E. Moggi. Notions of computation and monads.
Information and Computation, 93(1):55–92, Jan. 1991.

[19] E. Moggi and A. Sabry. Monadic encapsulation of
effects: a revised approach (extended version). Journal
of Functional Programming, 11(6):591–627, Nov. 2001.

[20] J. Reynolds. Towards a theory of type structure. In
Programming Symposium, volume 19 of Lecture Notes
in Computer Science, pages 408–425, Paris, France,
Apr. 1974. Springer-Verlag.

[21] J. Riecke and R. Viswanathan. Isolating side effects in
sequential languages. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’95), pages 1–12, San
Francisco, CA, 1995. ACM Press.

[22] A. Sabry and P. Wadler. A reflection on call-by-value.
ACM Transactions on Programming Languages and
Systems, 19(6):916–941, Nov. 1997.

[23] M. Semmelroth and A. Sabry. Monadic encapsulation
in ml. In Proceedings of the 4th ACM SIGPLAN
International Conference on Functional Programming
(ICFP’99), pages 8–17, Paris, France, 1999. ACM
Press.

[24] M. Tofte and J.-P. Talpin. Implementation of the
typed call-by-value λ-calculus using a stack of regions.
In Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL’94), pages 188–201, Portland, OR, 1994. ACM
Press.

[25] M. Tofte and J.-P. Talpin. Region-based memory
management. Information and Computation,
132(2):109–176, Feb. 1997.

[26] P. Wadler. The marriage of effects and monads. In
Proceedings of the 3rd ACM SIGPLAN International
Conference on Functional Programming (ICFP’98),
pages 63–74, Baltimore, MD, 1995. ACM Press.

[27] P. Wadler and P. Thiemann. The marriage of effects
and monads. Transactions on Computational Logic,
4(1):1–32, 2003.

APPENDIX
Figures 10 and 11 present simple large-step operational se-
mantics for the Single Effect Calculus and FRGN respectively.
Figures 12 and 13 show the translation of terms not covered
in Figure 8.

We use the following notational conventions in Figure 10:

− • denotes a deallocated region.

− 〈l〉ρ denotes a pointer to a storable in region ρ.

− Regions and region stacks that differ only in the order
of their fields are considered identical.

− The expression e[e′/x] denotes the capture-avoiding
substitution of e′ for x in e. Similar capture-avoiding
substitutions are defined for e[ρ/%] and w[ρ/%].

− Updates of finite maps R are denoted by M{l 7→ w}
and updates of finite maps S are denoted by S{% 7→ R}.
We abbreviate S{% 7→ S(%){l 7→ w}} by S{(%, l) 7→ w}.

− The notation S − % excludes % from the domain of S.

− The notation S[ρ/%] denotes

{%′ 7→ {l′ 7→ S(%′, l′)[ρ/%]}l′∈dom(S(%′))}%′∈dom(S).

We use the following notational conventions in Figure 11:

− • denotes a deallocated region.

− 〈l〉ρ denotes a pointer to a storable in region ρ.

− Regions and region stacks that differ only in the order
of their fields are considered identical.

− The expression e[e′/x] denotes the capture-avoiding
substitution of e′ for x in e. Similar capture-avoiding
substitutions are defined for e[ρ/r], e[τ ′/α], w[ρ/r],
w[τ ′/α], and τ [τ ′/α].

− Updates of finite maps R are denoted by M{l 7→ w}
and updates of finite maps S are denoted by S{r 7→ R}.
We abbreviate S{r 7→ S(r){l 7→ w}} by S{(r, l) 7→ w}.

− The notation S − r excludes r from the domain of S.

− The notation S[ρ/r] denotes

{r′ 7→ {l′ 7→ S(r′, l′)[ρ/r]}l′∈dom(S(r′))}r′∈dom(S).



l ∈ LocsSEC

Places
ε, ρ ::= . . . | •

Terms
e ::= . . . | 〈l〉ρ

Values
v ::= 〈l〉ρ

Storables
w ::= i | λx : τ.εe | (v1, v2) | λ% � ϕ : τ.εu

Regions
R ::= {l1 7→ w1, . . . , ln 7→ wn}

Region stacks
S ::= {%1 7→ R1, . . . , %m 7→ Rm}

S, e ↪→ S′, v

l 6∈ dom(S(%))

S, i at % ↪→ S{(%, l) 7→ i}, 〈l〉%

S, e1 ↪→ S1, 〈l1〉%1 S1(%1, l1) = i1
S1, e2 ↪→ S2, 〈l2〉%2 S2(%2, l2) = i2

l 6∈ dom(S2(%))

S, e1 � e2 at % ↪→ S2{(%, l) 7→ i1 � i2}, 〈l〉%

S, e1 ↪→ S1, 〈l1〉%1 S1(%1, l1) = i1
S1, e2 ↪→ S2, 〈l2〉%2 S2(%2, l2) = i2

S, e1 4 e2 at % ↪→ S2, i1 4 i2

S, tt ↪→ S, tt S, ff ↪→ S, ff

S, eb ↪→ S, tt
S′, et ↪→ S′′, v′′

S, if eb then et else ef ↪→ S′′, v′′

S, eb ↪→ S, ff
S′, ef ↪→ S′′, v′′

S, if eb then et else ef ↪→ S′′, v′′

l 6∈ dom(S(%))

S, λx : τ.εe at % ↪→ S{(%, l) 7→ λx : τ.εe}, 〈l〉%

S, e1 ↪→ S1, 〈l1〉%1

S1(%1, l1) = λx : τ.εe
S1, e2 ↪→ S2, v2

S2, e[v2/x] ↪→ S′, v′

S, e1 e2 ↪→ S′, v′

S, e1 ↪→ S1, v1 S1, e2 ↪→ S2, v2

l 6∈ dom(S2(%))

S, (e1, e2) at % ↪→ S2{(%, l) 7→ (v1, v2)}, 〈l〉%

S, e ↪→ S′, 〈l〉%

S′(%, l) = (v1, v2)

S, fst e ↪→ S′, v1

S, e ↪→ S′, 〈l〉%

S′(%, l) = (v1, v2)

S, snd e ↪→ S′, v2

% 6∈ dom(S) S{% 7→ ∅}, e ↪→ S′, v

S, new %.e ↪→ (S′ − %)[•/%], v[•/%]

l 6∈ dom(S(%))

S, λ%′ � ϕ.εu at % ↪→ S{(%, l) 7→ λ%′ � ϕ.εu}, 〈l〉%

S, e ↪→ S′, 〈l〉%

S(%, l) = λ%′ � ϕ.εu
S′, u[ρ/%′] ↪→ S′′, v′′

S, e [ρ] ↪→ S′′, v′′

l 6∈ dom(S(%))

S, fix f : (τ1
ε
−→ τ2, %).λx : τ1.

εe at % ↪→ S{(%, l) 7→ λx : τ1.
εe[〈l〉%/f ]}, 〈l〉%

l 6∈ dom(S(%))

S, fix f : (Π%′ � ϕ.ετ, %).λ%′ � ϕ.εu at % ↪→ S{(%, l) 7→ λ%′ � ϕ.εu[〈l〉%/f ]}, 〈l〉%

p ↪→ v

{H 7→ ∅}, p ↪→ S, v

p ↪→ v

Figure 10: Single Effect Calculus: Operational Semantics



l ∈ LocsFRGN

r ∈ (Rname,v)

Types
τ ::= . . . | ρ
Places
ρ ::= r | •

Terms
e ::= . . . | handle(ρ) | 〈l〉ρ

Commands
κ ::= . . . | witnessRGN [τa] [ρ1] [ρ2] v
Values
v ::= . . . | handle(ρ) | 〈l〉ρ

Storables
w ::= v

Regions
R ::= {ln 7→ wn, . . . , ln 7→ wn}
Region stacks
S ::= {rm 7→ Rm, . . . , rm 7→ Rm}

e ↪→ v

i ↪→ i

e1 ↪→ i1 e2 ↪→ i2

e1 � e2 ↪→ i1 � i2

e1 ↪→ i1 e2 ↪→ i2

e1 4 e2 ↪→ i1 4 i2 tt ↪→ tt ff ↪→ ff

eb ↪→ tt et ↪→ v

if eb then et else ef ↪→ v

eb ↪→ ff ef ↪→ v

if eb then et else ef ↪→ v λx : τ.e ↪→ λx : τ.e

e1 ↪→ λx : τ.e′ e2 ↪→ v e′[v/x] ↪→ v′

e1 e2 ↪→ v′ Λα.e ↪→ Λα.e

e ↪→ Λα.e′ e′[τ/α] ↪→ v

e [τ ] ↪→ v

e1 ↪→ v1 e2 ↪→ v2

(e1, e2) ↪→ (v1, v2)

e ↪→ (v1, v2)

fst e ↪→ v1

e ↪→ (v1, v2)

snd e ↪→ v2

v′ [r] handle(r) ↪→ κ {r 7→ ∅}, κ ↪→ S, v′

runRGN [τa] v ↪→ v′[•/r] κ ↪→ κ ρ ↪→ ρ 〈l〉ρ ↪→ 〈l〉ρ

S, κ ↪→ S′, v

S, returnRGN [r] [τa] v ↪→ S, v

S, κ ↪→ S′, v′ v v′ ↪→ κ′ S′, κ′ ↪→ S′′, v′′

S, thenRGN [r] [τa] [τb] κ v ↪→ S′′, v′′

r ∈ dom(S) l 6∈ dom(S(r))

S, allocRGNVar [τa] [r] handle(r) w ↪→ S{(r, l) 7→ w}, 〈l〉r

r ∈ dom(S) l ∈ dom(S(r))

S, readRGNVar [τa] [r] 〈l〉r ↪→ S, S(r, l)

r ∈ dom(S) l 6∈ dom(S(r)) v 〈l〉r ↪→ w

S, fixRGNVar [τa] [r] r v ↪→ S{(r, l) 7→ w}, 〈l〉r

r v r′ r′ /∈ dom(S)
v (Λα.λc : RGN r α.witnessRGN [α] [r] [r′] c) handle(r′) ↪→ κ S{r′ 7→ ∅}, κ ↪→ S′[r′ 7→ R], v′

S, newRGN [r] [τa] v ↪→ S′[•/r′], v′[•/r′]

r1 v r2 S, κ ↪→ S′, v

S, witnessRGN [τa] [r1] [r2] κ ↪→ S′, v

Figure 11: FRGN: Operational Semantics



Translations yielding terms (terms)

E`exp

u
wwv

∆; Γ `exp e1 : (int, ρ1), ε ∆ `rr ε � ρ1

∆; Γ `exp e2 : (int, ρ2), ε ∆ `rr ε � ρ2

∆ `place ρ ∆ `rr ε � ρ

∆; Γ `exp e1 � e2 at ρ : (int, ρ), ε

}
��~ =

bind a : Tτ J(int, ρ1)K ⇐ E`exp
J∆; Γ `exp e1 : (int, ρ1), εK ;

bind a′ : Tµ JintK ⇐ E`rr
J∆ `rr ε � ρ1K [Tµ JintK] (readRGNVar [ρ1] [Tµ JintK] a);

bind b : Tτ J(int, ρ2)K ⇐ E`exp
J∆; Γ `exp e2 : (int, ρ2), εK ;

bind b′ : Tµ JintK ⇐ E`rr
J∆ `rr ε � ρ2K [Tµ JintK] (readRGNVar [ρ2] [Tµ JintK] b);

let i = a′ � b′ in

E`rr
J∆ `rr ε � ρK [Tτ J(int, ρ)K] (allocRGNVar [ρ] [Tµ JintK] ρh i) where a, a′, b, b′, i fresh

E`exp

u
v

∆; Γ `exp e1 : (int, ρ1), ε ∆ `rr ε � ρ1

∆; Γ `exp e2 : (int, ρ2), ε ∆ `rr ε � ρ1

∆; Γ `exp e1 4 e2 : bool, ε

}
~ =

bind a : Tτ J(int, ρ1)K ⇐ E`exp
J∆; Γ `exp e1 : (int, ρ1), εK ;

bind a′ : Tµ JintK ⇐ E`rr
J∆ `rr ε � ρ1K [Tµ JintK] (readRGNVar [ρ1] [Tµ JintK] a);

bind b : Tτ J(int, ρ2)K ⇐ E`exp
J∆; Γ `exp e2 : (int, ρ2), εK ;

bind b′ : Tµ JintK ⇐ E`rr
J∆ `rr ε � ρ2K [Tµ JintK] (readRGNVar [ρ2] [Tµ JintK] b);

let i = a′ � b′ in

returnRGN [ε] [Tτ JboolK] z where a, a′, b, b′, i fresh

E`exp

r
∆; Γ `exp tt : bool, ε

z
= returnRGN [ε] [Tτ JboolK] tt

E`exp

r
∆; Γ `exp ff : bool, ε

z
= returnRGN [ε] [Tτ JboolK] ff

E`exp

u
v

∆; Γ `exp eb : bool, ε
∆; Γ `exp et : τ, ε ∆; Γ `exp ef : τ, ε

∆; Γ `exp if eb then et else ef : τ, ε

}
~ =

bind b : Tτ JboolK ⇐ E`exp
J∆; Γ `exp eb : bool, εK ;

if b then E`exp
J∆; Γ `exp et : τ, εK else E`exp

J∆; Γ `exp ef : τ, εK where b fresh

Figure 12: Translation from the Single Effect Calculus to FRGN (Terms (II))



Translations yielding terms (terms)

E`exp

u
wwv

∆; Γ `exp e1 : τ1, ε
∆; Γ `exp e2 : τ2, ε

∆ `place ρ ∆ `rr ε � ρ

∆; Γ `exp (e1, e2) at ρ : (τ1 × τ2, ρ), ε

}
��~ =

bind a : Tτ Jτ1K ⇐ E`exp
J∆; Γ `exp e1 : τ1, εK ;

bind b : Tτ Jτ2K ⇐ E`exp
J∆; Γ `exp e2 : τ2, εK ;

E`rr
J∆ `rr ε � ρK [Tτ J(τ1 × τ2, ρ)K] (allocRGNVar [ρ] [Tτ J(τ1 × τ2, ρ)K] ρh (a, b)) where a, b fresh

E`exp

s
∆; Γ `exp e : (τ1 × τ2, ρ), ε ∆ `rr ε � ρ

∆; Γ `exp fst e : τ1, ε

{
=

bind x : Tτ J(τ1 × τ2, ρ)K ⇐ E`exp
J∆; Γ `exp e : (τ1 × τ2, ρ), εK ;

bind y : Tµ Jτ1 × τ2K ⇐ E`rr
J∆ `rr ε � ρK [Tµ Jτ1 × τ2K] (readRGNVar [ρ] [Tµ Jτ1 × τ2K] a);

let z = sel1 y in

returnRGN [ε] [Tτ Jτ1K] z where x, y, z fresh

E`exp

s
∆; Γ `exp e : (τ1 × τ2, ρ), ε ∆ `rr ε � ρ

∆; Γ `exp snd e : τ2, ε

{
=

bind x : Tτ J(τ1 × τ2, ρ)K ⇐ E`exp
J∆; Γ `exp e : (τ1 × τ2, ρ), εK ;

bind y : Tµ Jτ1 × τ2K ⇐ E`rr
J∆ `rr ε � ρK [Tµ Jτ1 × τ2K] (readRGNVar [ρ] [Tµ Jτ1 × τ2K] a);

let z = sel2 y in

returnRGN [ε] [Tτ Jτ2K] z where x, y, z fresh

E`exp

u
wwwwwwwv

f 6∈ dom(Γ)

∆ `type (τ1
ε′

−→ τ2, ρ)

x 6∈ dom(Γ, f : (τ1
ε′

−→ τ2, ρ)) ∆ `type τ1

∆; Γ, f : (τ1
ε′

−→ τ2, ρ), x : τ1 `exp e : τ2, ε
′

∆ `place ρ ∆ `rr ε � ρ

∆; Γ, f : (τ1
ε′

−→ τ2, ρ) `exp λx : τ1.
ε′e at ρ : (τ1

ε′

−→ τ2, ρ), ε

∆; Γ `exp fix f : (τ1
ε′

−→ τ2, ρ).λx : τ1.
ε′e at ρ : (τ1

ε′

−→ τ2, ρ), ε

}
�������~

=

E`rr
J∆ `rr ε � ρK Tτ

s
(τ1

ε′

−→ τ2, ρ)

{

(fixRGNVar [ρ] [Tµ

s
τ1

ε′

−→ τ2

{
]

ρh (λf : Tτ

s
(τ1

ε′

−→ τ2, ρ)

{
.λx : Tτ Jτ1K .

E`exp

s
∆; Γ, f : (τ1

ε′

−→ τ2, ρ), x : τ1 `exp e : τ2, ε
′

{
))

E`exp

u
wwwwwwv

f 6∈ dom(Γ)

∆ `type (Π% � ϕ.ε
′

τ, ρ)

% 6∈ dom(∆) ∆ `eff ϕ

∆, % � ϕ; Γ, f : (Π% � ϕ.ε
′

τ, ρ) `exp u : τ, ε′

∆ `place ρ ∆ `rr ε � ρ

∆; Γ, f : (Π% � ϕ.ε
′

τ, ρ) `exp λ% � ϕ.ε
′

u at ρ : (Π% � ϕ.ε
′

τ, ρ), ε

∆; Γ `exp fix f : (Π% � ϕ.ε
′

τ, ρ).λ% � ϕ.ε
′

u at ρ : (Π% � ϕ.ε
′

τ, ρ), ε

}
������~

=

E`rr
J∆ `rr ε � ρK Tτ

r
(Π%.ε

′

.τ, ρ)
z

(fixRGNVar [ρ] [Tµ

r
Π%.ε

′

τ
z
]

ρh (λf : Tτ

r
(Π%.ε

′

τ, ρ)
z

.λ%w : T� J% � ϕK .λ%h : RGNHandle %.

E`exp

r
∆, % � ϕ; Γ, f : (Π%.ε

′

τ, ρ) `exp u : τ, ε′
z
))

Figure 13: Translation from the Single Effect Calculus to FRGN (Terms (III))


