
Implementation and Performance Evaluation of a Safe
Runtime System in Cyclone

Matthew Fluet
Cornell University

Department of Computer Science
4133 Upson Hall
Ithaca, NY 14853

fluet@cs.cornell.edu

Daniel Wang
∗

Princeton University
Department of Computer Science

35 Olden Street
Princeton, NJ 08544

danwang@cs.princeton.edu

ABSTRACT
In this paper we outline the implementation of a simple
Scheme interpreter and a copying garbage collector that
manages the memory allocated by the interpreter. The en-
tire system including the garbage collector is implemented
in Cyclone [11], a safe dialect of C, which supports safe and
explicit memory management. We describe the high-level
design of the system, report preliminary benchmarks, and
compare our approach to other Scheme systems. Our pre-
liminary benchmarks demonstrate that one can build a sys-
tem with reasonable performance when compared to other
approaches that guarantee safety. More importantly we can
significantly reduce the amount of unsafe code needed to
implement the system. Our benchmarks also identify some
key algorithmic bottlenecks related to our approach that we
hope to address in the future.

Although most of the theoretical ideas in this work are not
by themselves novel, there are a few interesting variations
and combinations of the existing literature we will discuss.
However, the primary motivation and goal is to build a re-
alistic working system that puts all the existing theory to
test against existing systems which rely on larger amounts
of unsafe code in their implementation.

1. INTRODUCTION
Network servers written in unsafe languages, such as C,

are a significant source of known security exploits [19]. For-
tunately, many new web based applications are written in
high-level, safe languages such as C#, Java, Perl, PHP,
Python, or Tcl. Web based applications written in safe lan-
guages are immune to common buffer overflow and other

∗This research was supported in part by ARDA contract
NBCHC030106; this work does not necessarily reflect the
opinion or policy of the federal government and no official
endorsement should be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPACE2004 2004 Venice, Italy
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

related security problems found in applications written in
C. In addition to ensuring safety, these high-level languages
are more convenient and preferable to low-level system lan-
guages for building web based applications. One major con-
venience, that also improves security, is automatic memory
management.

Although the majority of web based applications are writ-
ten in safe languages, the applications are typically hosted
on servers or web application platforms that are imple-
mented with unsafe languages such as C. For example, Perl
based web applications are hosted on the Apache web server
by dynamically loading a native code module that imple-
ments the Perl interpreter. Since the interpreter is written
in C, we should be concerned that a bug in the module may
introduce a security hole. In fact since Apache itself is writ-
ten in C, we must be concerned about its immunity to buffer
overruns.

Some web application platforms such as Jetty [10] are
written completely in Java. Even in this situation, we must
trust the implementation of the Java Virtual Machine to be
free from bugs. The implementation of a JVM contains a
significant amount of code written in unsafe languages.

Reducing or eliminating code written in unsafe languages
from the implementation of a web application server in-
creases our confidence that the server is immune to com-
mon security bugs. There already has been a great deal
of work demonstrating how to build dynamically extensible
web servers in safe programming languages [8]. What has
not been addressed is how to implement an interpreter that
executes the actual web application itself.

Implementing the core of an interpreter in a safe language
is not in itself a significant challenge. What is challeng-
ing is implementing the runtime system for the interpreter
that provides automatic memory management. Currently,
all systems rely on a trusted runtime system to provide some
sort of storage management. Significant advances in type
and proof systems have made it possible to implement a run-
time system that provides garbage-collection services using
programming languages that guarantee safety.

In this paper we outline the implementation of a sim-
ple Scheme interpreter and a copying garbage collector that
manages the memory allocated by the interpreter. The en-
tire system including the garbage collector is implemented
in Cyclone [11], a safe dialect of C, which supports the safe
and explicit management of memory. In Section 2 we mo-
tivate and describe the high-level design of the system. In

Section 3 we report some preliminary benchmarks and com-
pare our approach to other Scheme systems. In Section 4
we compare the amount of unsafe code needed to implement
our system. Our preliminary benchmarks demonstrate that
one can build a system with reasonable performance when
compared to other approaches that guarantee safety. More
importantly we can significantly reduce the amount of un-
safe code needed to implement the system. Our benchmarks
also identify some key algorithmic bottlenecks related to our
approach that we hope to address in the future in order to
build a realistic production system.

2. WRITING A SCHEME INTERPRETER
IN CYCLONE

2.1 Why Scheme
We have chosen Scheme as our test bed language, primar-

ily because of the relative ease of implementation1 and the
existence of well known benchmarks. Our implementation
is small, because we rely on an existing Scheme front-end [4]
to expand the majority of the full Scheme language into a
core Scheme subset. The existing front-end handles parsing
and macro expansion of full Scheme. We take the resulting
output and emit Cyclone source code that builds an abstract
syntax tree, which we compile and link with our interpreter
and runtime system.

Not only is Scheme a well studied and compact language,
but it also has many features that make it desirable for web
programming. In particular first class continuations allows
for a much more natural structuring of web applications [17].
Scheme seems to be developing a large and useful set of
tools for manipulating XML. Given that IEEE Scheme was
the original processing language for SGML from which XML
and HTML are derived, we see a great future for Scheme as
a web programming language.

2.2 Key Features of Cyclone
Cyclone [5] is a safe dialect of C. Cyclone attempts to

give programmers significant control over data represen-
tation, memory management, and performance (like C),
while preventing buffer overflows, format-string attacks, and
dangling-pointer dereferences (unlike C). Cyclone ensures
the safety of programs through a combination of compile-
time and run-time checks. Cyclone’s combination of per-
formance, control, and safety make it a good language for
writing low-level software, like runtime systems.

In this section, we briefly introduce the key features of
Cyclone that are used in the implementation of our Scheme
interpreter described in Sections 2.3 and 2.4.

Pointers
As with C programs, Cyclone programs make extensive use
of pointers. However, improper use of pointers can lead
to core dumps and buffer overflows. To prevent these er-
rors, Cyclone introduces different kinds of pointers, which
make various tradeoffs between expressiveness and run-time
checks.

The type of a (traditional) nullable pointer is written t*,
as in C. For the most part, such pointers have the same be-
havior as their counterparts in C. However, there are some
restrictions on the use of nullable pointers in Cyclone. First,

1Our core interpreter loop is only ∼500 lines of code.

one cannot cast an integer to a pointer. (Cyclone accepts 0

as a legal pointer value, but using NULL (a Cyclone keyword)
is preferred.) Second, one cannot perform arbitrary pointer
arithmetic on a * pointer, which would also allow the pro-
grammer to overwrite arbitrary memory locations. Finally,
Cyclone inserts a null check whenever the program deref-
erences a * pointer. While these may appear to be drastic
restrictions, there are many patterns of pointer usage that
are unaffected by them. For example, in our interpreter,
Scheme values are naturally represented by nullable pointers
to data-structures, where NULL corresponds to the Scheme
value nil.

A variation on a nullable pointer is a non-null pointer,
written t*@notnull. Such a pointer is guaranteed to not
be NULL, which eliminates the need for null checks at deref-
erences. In addition to this performance benefit, non-null
pointers capture a useful programming invariant which can
be statically checked. For example, in our interpreter, the
abstract machine state is represented as a non-null pointer
to a data-structure, which is side-effected by each transition
of the abstract machine.

A third kind of pointer available in Cyclone is a fat
pointer, written t*@fat. A fat pointer comes with bounds
information (thus, is “fatter” than a traditional pointer).
Each time a fat pointer is dereferenced or its contents are
assigned to, Cyclone inserts both a null check and a bounds
check.2 The bounds information and these run-time checks
ensure the safety of pointer arithmetic and array indexing.
In addition, a fat pointer allows its size to be queried at run
time. In our interpreter, a Scheme vector is represented by
a fat pointer to an array of values.

Regions
In the description of pointers above, we have demonstrated
the ways in which Cyclone prevents programs from access-
ing arbitrary memory. Another violation is to dereference a
dangling pointer : a pointer to storage that has been deal-
located. To prevent such violations, Cyclone adopts a type
system for region-based memory management, based on the
work of Tofte and Talpin [18], and described in detail in
previous work [6]. Here, we discuss only the aspects most
crucial to our implementation.

Cyclone pointer types have the form t*‘r, where t is the
type of the pointed to object and ‘r is a region name describ-
ing the object’s lifetime. The Cyclone type system tracks
the set of live regions at each program point; dereferencing
a pointer of type t*‘r requires that the region ‘r is in the
set. (If ‘r is not in the set, a compile-time error signals
a possible dangling pointer dereference.) Region polymor-
phism lets functions and data-structures abstract over the
region of their arguments and fields. Region parameters in
Cyclone are indicated by annotations of the form <‘r::R>

on functions and types, where R distinguishes region param-
eters from other kinds of parameters.

Cyclone provides a number of different kinds of regions,
suitable for different allocation and deallocation patterns.
Stack regions correspond to local-declaration blocks: enter-
ing a block creates a region and allocates objects, while ex-
iting the block deallocates the region’s objects. Hence, a
stack region has lexical scope, but the number and sizes of

2In many cases, Cyclone’s flow analysis determines that the
checks are superfluous and removes them.

stack allocated objects is fixed at compile time. Lexical re-
gions are also created and deallocated according to program
scoping, but a region handle allows objects to be allocated
into the region throughout the region’s lifetime. Hence, a
lexical region has lexical scope, but the number and sizes of
region allocated objects are not fixed at compile time.

The Cyclone heap is a special region with the name ‘H.
All data allocated in the heap is managed by the Boehm-
Demers-Weiser (BDW) conservative garbage collector [3].
Conceptually, the Cyclone heap is just a lexical region with
global scope, and the global variable heap_region is its han-
dle. In order to understand the cost of a safe garbage collec-
tor, we use the Cyclone heap to implement a version of our
Scheme interpreter in which all interpreter data is managed
by the (trusted) conservative garbage collector.

The lifetimes of stack and lexical regions follow the block
structure of the program, beginning and ending in a last-
in-first-out (LIFO) discipline. Clearly, such a discipline can
be too restrictive, as it can not accommodate objects with
overlapping, non-nested lifetimes.

Recent work has added unique pointers and dynamic re-
gions to Cyclone [9]. Unique pointers are based on linear
type systems and provide fine-grained memory management
for individual objects. In particular, a unique pointer’s ob-
ject can be deallocated at any program point. On the other
hand, unique pointers cannot be freely copied and there are
further restrictions on their use in Cyclone programs. A
unique pointer is written t*‘U; conceptually, a pointer into
a special unique region with the name ‘U. While there is
much more to be said concerning Cyclone’s unique pointers,
for our purposes it suffices to reiterate that unique pointers
are treated as linear objects, where the type system and a
conventional flow analysis ensures that, at every program
point, there is at most one usable copy of a value assigned a
unique-pointer type. We make use of unique pointers both
to manage the garbage collector’s frontier data-structures
and to implement our dynamic-region sequences.

A dynamic region resembles a lexical region in many
ways; the crucial difference is that a dynamic region can be
created and freed at (almost) any point within a program.
However, before accessing or allocating data within a
dynamic region, the region must be opened. Opening a
dynamic region adds the region to the set of live regions
and prevents the region from being freed while it is open.
The interface for creating and freeing dynamic regions is
given by the following:

typedef struct DynamicRegion<‘r>*@notnull‘U

uregion_key_t<‘r::R>;

struct NewDynamicRegion { <‘r::R>

uregion_key_t<‘r> key;

};

struct NewDynamicRegion new_ukey();

void free_ukey(uregion_key_t<‘r> k);

A dynamic region is represented as a unique non-null pointer
to an abstract struct DynamicRegion<‘r> (which is param-
eterized by the region ‘r and internally contains the handle
to the region). This unique pointer is called the key, which
serves as a run-time capability granting access to the region.

The new_ukey function creates a fresh dynamic region and
returns the unique key for the region. (The <‘r::R> anno-
tation in the struct NewDynamicRegion type indicates that

Symbols:
q ∈ Q

Booleans:
b ∈ B = {true, false}

Numbers:
x ∈ N ⊇ C ⊇ R ⊇ Q ⊇ Z

Characters:
c ∈ C

Constants:
K ∈ Const
K ::= q | b | x | c | nil |

undefined | unspecified

deBruijn Indices:
ij ∈ N× N

Expressions:
e ∈ Exp
e ::= K | ij | (e e1 . . . en) |

(lambdan e) | (valambdam e) |
(if e1 e2 e3) | (set! ij e)

Figure 1: Core Scheme Syntax (Expressions)

the region variable is existentially bound. Unpacking this
existential type yields a region variable which does not con-
flict with any other region name. This is precisely the be-
havior we require for a function that creates a fresh region.)
The free_ukey function reclaims the key’s region and the
storage for the key. Since the key is unique, it must be used
in a linear manner; the free_ukey function consumes the
key.

To access or allocate data within a dynamic re-
gion, a key is presented to a special open primitive:
region r = open(k). Within the remainder of the current
scope, the region handle r can be used to access k’s re-
gion; furthermore, k is temporarily consumed throughout
the scope (preventing deallocation) and becomes accessible
again when control leaves the scope.

2.3 The Core Scheme Interpreter
In this section, we introduce the Core Scheme language,

its semantics, and its implementation in Cyclone. While
each of these components is relatively straightforward, it is
useful to have a concrete implementation in preparation for
the description of the garbage collector.

Formalism
The reader familiar with Scheme interpreters may feel free
to proceed directly to the next section, referring back to this
reference formalism as necessary. Figure 1 describes the syn-
tax of Core Scheme expressions. Literal constants for various
types are provided. Variables are given as deBruijn indices.
Hence, procedures elide variable names and are instead an-
notated with the number of arguments required for applica-
tion. In the case of a procedure with a variable number of
arguments, the annotation indicates the minimum number
of required arguments. Likewise, an assignment indicates
the location to be updated by a deBruijn index. Finally,
procedure calls and conditionals are standard.

The Core Scheme expression language corresponds closely
to the primitive expression forms that appear in the Scheme
standard [12]. As described in the standard, they are suffi-

Locations:
l ∈ Loc

Values:
v ∈ Val
v ::= (const K) | (prim p) | (throw S ρ) |

(closuren ρ e) | (vaclosurem ρ e) |
(pair l1 l2) | (vector l∗)

Primitives:
p ∈ (Heap × Stack × Env × Loc∗) ⇀ State

Stacks:
S ∈ Stack = (Env × Frame)∗

S ::= · | 〈ρ, F 〉 :: S

Frames:
F ∈ Frame
F ::= (l1 . . . li−1 2 ei+1 en) |

(if 2 e2 e3) | (set! ij 2)
Environments:
ρ ∈ Env = Loc∗

ρ ::= · | l :: ρ

Results:
r ∈ Res
r ::= e | l

Heaps:
H ∈ Heap = Loc ⇀ Val
States:
σ ∈ State = Heap × Stack × Env × Res
σ ::= 〈H, S, ρ, r〉

Figure 2: Core Scheme Syntax (Runtime objects)

ciently expressive to encode the various derived expression
forms that appear in realistic Scheme programs. Hence, we
expect an external Scheme program to first have derived ex-
pression forms expanded into primitive expression forms and
symbolic variables converted into deBruijn indices, yielding
a Core Scheme expression, before being executed. As ex-
plained in Section 2.1, we use an external Scheme front-end
to do so, producing a Cyclone function that builds an ab-
stract syntax tree.

Figure 2 describes the syntax of run-time objects that ap-
pear during the evaluation of a Core Scheme expression and
Figure 3 describes the operational semantics of the language.
The operational semantics define a small-step rewriting rela-
tion from states to states. A state has the form 〈H,S, ρ, r〉,
where H is the heap, S is the stack, ρ is the environment,
and r is the result (expression or value) in the current active
position.

A heap is a partial map from an infinite set of locations
(Loc) to values. A stack is a finite sequence of environ-
ments and stack frames. A stack frame is a partially eval-
uated expression with a hole, corresponding to Wright and
Felleisen-style semantics [21]. Conditional and assignments
have exactly one hole, while applications enforce a left-to-
right evaluation order by requiring locations (corresponding
to heap allocated values) to the left of the hole and expres-
sions to the right of the hole.

An environment is a sequence of locations; each location is
expected to corresponds to a heap allocated vector. The de-
Bruijn index ij denotes the jth element of the vector pointed
to by the ith location in the environment. We further as-

struct Value<‘r::R>;
typedef struct Value<‘r>*‘r value_t<‘r::R>;
datatype ValueD<‘r> {
Const_v(const_t<‘r> K);
Primop_v(primop_t p);
Throw_v(stack_t<‘r> S, env_t<‘r> rho);
Closure_v(unsigned int n,

env_t<‘r> rho, exp_t<‘r> e);
VarArgsClosure_v(unsigned int m,

env_t<‘r> rho, exp_t<‘r> e);
Pair_v(value_t<‘r> l1, value_t<‘r> l2);
Vector_v(value_t<‘r>*@fat‘r ls);

};
struct Value<‘r::R> {
datatype ValueD<‘r> value;

};

Figure 4: Cyclone Implementation (Values)

sume an initial heap H0 and an initial environment ρ0 in
which all primitive operations are bound.

A primitive operation is a partial map from a heap, stack,
environment, and location sequence to a state. The location
sequence corresponds to the arguments to the primitive op-
eration. The other components of the state are provided for
primitive operations that perform heap allocation or require
access to the stack and environment.

Values correspond to heap allocated data. In addi-
tion to primitive operations, there are three other pro-
cedure forms. The throw carries a stack and environ-
ment; this is the form of the “escape procedure” passed
as an argument to the argument of the primitive opera-
tion call-with-current-continuation. The closure and
vaclosure forms correspond to the evaluation of lambda
and valambda expression-types; the closure forms capture
the current environment to be extended at the point of ap-
plication.

The final two value forms, pair and vector, combine lo-
cations into larger data-structures.

Figure 3 describes the operational semantics of the lan-
guage. The main judgment σ → σ′ defines a small-step
rewriting relation from states to states. Rules in which the
result is an expression either immediately return a loca-
tion (possibly having performed an allocation) or push a
frame onto the stack and start evaluating a sub-expression.
Rules in which the result is a location pop a frame, fill the
hole, and continue as appropriate. The auxiliary judgments
〈H, ij @ ρ〉 ⇓get l and 〈H, ij @ ρ ← l〉 ⇓set H ′ are con-
cerned with getting and setting deBruijn indexed variables,
while the judgment 〈H, 〈l1, . . . , ln〉〉 ⇓listify 〈H

′, l′〉 allocates
arguments in a Scheme list.

Implementation
We turn now to the implementation of the Core Scheme
interpreter in Cyclone. As Cyclone is a C-like language,
values are represented using allocated data-structures and
pointers (see Figure 4).

Recall from Section 2.2 that region polymorphism lets
data-structures abstract over the region of their fields.
Hence, in Figure 4, struct Value<‘r::R> is a forward dec-
laration of a structure type, which is polymorphic in a re-
gion ‘r. The typedef defines value_t<‘r> to be a (null-
able) pointer to a struct Value<‘r> object in region ‘r;
essentially, value_t<‘r> corresponds to locations in the op-

〈H, ρ @ ij〉 ⇓get l

H(l) = (vector 〈l1, . . . , ln〉)

〈H, l :: ρ @ 0j〉 ⇓get lj
(1 ≤ j ≤ n)

〈H, ρ @ ij〉 ⇓get l′

〈H, l :: ρ @ (i + 1)j〉 ⇓ l′

〈H, ρ @ ij ← l〉 ⇓set H′

H(l) = (vector 〈l1, . . . , ln〉)

〈H, l :: ρ @ 0j ← l′〉 ⇓set H[l 7→ (vector 〈l1 , . . . , lj−1, l′, lj+1, . . . , ln〉)]
(1 ≤ j ≤ n)

〈H, ρ @ ij ← l′〉 ⇓set H′

〈H, l :: ρ @ (i + 1)j ← l′〉 ⇓set H′

〈H, 〈l1, . . . , ln〉〉 ⇓listify 〈H
′, l′〉

l′ /∈ dom(H)

〈H, 〈〉〉 ⇓listify 〈H[l′ 7→ (const nil)], l′〉

〈H, 〈l2, . . . , ln〉〉 ⇓listify 〈H
′, l′〉 l′′ /∈ dom(H′)

〈H, 〈l1, . . . , ln〉〉 ⇓listify 〈H
′[l′′ 7→ (pair l1 l′)], l′′〉

σ → σ′

const
l /∈ dom(H)

〈H, S, ρ, K〉 → 〈H[l 7→ (const K)], S, ρ, l〉
var

〈H, ρ @ ij〉 ⇓get l

〈H, S, ρ, ij〉 → 〈H, S, ρ, l〉

apply
〈H, S, ρ, (e e1 . . . en)〉 → 〈H, 〈(2 e1 . . . en), ρ〉 :: S, ρ, e〉

lambda
l /∈ dom(H)

〈H, S, ρ, (lambdan e)〉 → 〈H[l 7→ (closuren ρ e)], S, ρ, l〉

valambda
l /∈ dom(H)

〈H, S, ρ, (valambdan e)〉 → 〈H[l 7→ (vaclosurem ρ e)], S, ρ, l〉

if
〈H, S, ρ, (if e1 e2 e3)〉 → 〈H, 〈(if 2 e2 e3), ρ〉 :: S, ρ, e1〉

set!
〈H, S, ρ, (set! ij e)〉 → 〈H, 〈(set! ij 2), ρ〉 :: S, ρ, e〉

apply-arg-eval
〈H, 〈(l1 . . . li−1 2 ei+1 . . . en), ρ′〉 :: S, ρ, l〉 → 〈H, 〈(l1 . . . li−1 l 2 ei+2 . . . en), ρ′〉 :: S, ρ′, ei+1〉

apply-prim-eval
H(l) = (prim p)

〈H, 〈(l l1 . . . ln−1 2), ρ′〉 :: S, ρ, ln〉 → p(H,S, ρ, 〈l1, . . . , ln〉)

apply-throw-eval
H(l) = (throw S′′ ρ′′)

〈H, 〈(l 2), ρ′〉 :: S, ρ, l′〉 → 〈H, S′′, ρ′′, l′〉

apply-closure-eval
H(l) = (closuren ρ′′ e′′) l′′ /∈ dom(H)

〈H, 〈(l l1 . . . ln−1 2), ρ′〉 :: S, ρ, ln〉 → 〈H[l′′ 7→ (vector 〈l1, . . . , ln〉)], S, l′′ :: ρ′′, e′′〉

apply-vaclosure-eval
H(l) = (vaclosurem ρ′′ e′′) 〈H, 〈lm+1, . . . , ln〉〉 ⇓listify 〈H

′, l′〉 l′′ /∈ dom(H′)

〈H, 〈(l l1 . . . ln−1 2), ρ′〉 :: S, ρ, ln〉 → 〈H′[l′′ 7→ (vector 〈l1, . . . , lm, l′〉)], S, l′′ :: ρ′′, e′′〉
(m ≤ n)

if-true-eval
H(l) 6= (const false)

〈H, 〈(if 2 e1 e2), ρ′〉 :: S, ρ, l〉 → 〈H, S, ρ′, e1〉
if-false-eval

H(l) = (const false)

〈H, 〈(if 2 e1 e2), ρ′〉 :: S, ρ, l〉 → 〈H, S, ρ′, e2〉

set!-eval
〈H, ρ′ @ ij ← l〉 ⇓set H′ l′ /∈ dom(H′)

〈H, 〈(set! ij 2), ρ′〉 :: S, ρ, l〉 → 〈H′[l′ 7→ (const unspecified)], S, ρ′, l′〉

Figure 3: Core Scheme Operational Semantics

void scheme(exp_t<‘r> prog<‘r>(region_t<‘r>)) {
// load the program into the Cyclone heap
exp_t<‘H> e = prog(heap_region);
// load the initial environment
env_t<‘H> env = initial_env(heap_region);
// construct the initial state
// - an empty stack,
// - the initial environment
// - the expression to the evaluated
state_t<‘H> state = State{NULL,env,{.expr = e}};
// take an unbounded number of steps
bool done = stepi(-1,heap_region,&state);

}

Figure 5: Heap Allocated Interpreter

erational semantics (and NULL corresponds to (const nil)).
The concrete representation of an expression is given by

the datatype ValueD<‘r> declaration. Cyclone provides
datatypes as a safe alternative to unions for supporting het-
erogenous values. Furthermore, while unions require space
proportional to the largest member, a datatype only requires
space for the member being used and is thus more efficient
in its use of memory. Note the use of a fat pointer in the
Vector_v variant of the ValueD<‘r> datatype, which en-
sures the saftey of array accesses and supports querying the
vector’s length.

At the present time, the struct Value declaration serves
little purpose, as it simply embeds a datatype ValueD<‘r>

as the only member of a structure. In Section 2.4, we will
see how the garbage collector extends this structure with a
forwarding pointer.

Expressions are immutable – they do not change during
the execution of the program. However, as Cyclone is a C-
like language, an expression is represented using allocated
data-structures and pointers, in a manner similar to val-
ues. Stacks and environments are represented as linked list
structures, where NULL corresponds to an empty stack or an
empty environment.

We conclude this section by examining a simple Core
Scheme interpreter (see Figure 5), in which all data is al-
located in the Cyclone heap and managed by a conservative
garbage collector. The function scheme takes one argument,
pointer to a function that takes a region handle argument
and returns an expression allocated in that region. (Note
that the <‘r> annotation universally quantifies the region
variable.) The remainder of the code is straightforward.
First, the function pointer is executed to yield the initial ex-
pression. Next, the initial environment is allocated. The ini-
tial expression and environment are combined with an empty
stack to create the initial state. Finally, the interpreter re-
peatedly makes transitions corresponding to σ → σ′, until
termination. Note that all region parameters in expression,
environment, and state types are instantiated with the heap
region (‘H) and all functions performing allocations take the
heap-region handle (heap_region) as a parameter. (Unlike
the operational semantics given above, the state is implicitly
side-effected and no state is returned by the stepi function.)

2.4 The Garbage Collector
In this section, we describe a safe, copying garbage collec-

tor for the Core Scheme language described above. Before
proceeding, we point out some novelties in comparison to
other type-preserving garbage collectors [15, 20]. As demon-

����������������	
��

97

nil

97 nil

From−space

To−space

root objects object pointer forwarding pointer

��

Figure 6: Copying GC Example

strated in the previous section, we choose to write our inter-
preter in a trampoline style, rather than in a continuation
passing style. This gives rise to a simpler implementation,
one more in keeping with a byte-code interpreter. Previ-
ous work requires a continuation passing style, with each
continuation polymorphic in the heap region, complicating
the garbage collector interface. Also, as will be explained,
the use of dynamic-region sequences and the next_rgn type
constructor gives rise to a more natural typing of forwarding
pointers.

The remainder of this section proceeds in the following
manner. First, we briefly review the copying algorithm.
Next, we consider an intuitive implementation in Cyclone.
Finally, we refine our implementation using our dynamic-
region sequence abstraction to achieve a complete implemen-
tation in Cyclone.

Figure 6 illustrates a simple stop-and-copy collector. The
collector stops the user program and begins with (live and
dead) cells in the From-space and an empty To-space. The
collector traverses the data structure in From-space, copying
each live cell into To-space when the cell is first visited. The
collector preserves sharing by leaving a forwarding pointer
in each From-space cell when it is copied. The forwarding
pointer points to the copied cell in To-space. Whenever a cell
in From-space is visited, the copying function first examines
the forwarding pointer. If it is non-NULL, then the copy
function returns the forwarding address. Otherwise, space
for the cell is reserved in To-space, the forwarding pointer
is set to the address of the reserved space, and the fields of
the cell are copied. After all live cells in From-space have
been copied (depicted in Figure 6), the collector can free
all memory in From-space and the program can continue
execution, allocating new cells in To-space.

In the copying algorithm, the separation of managed
memory into a From-space and a To-space suggests a
natural correspondence with Cyclone’s regions. Clearly, the
LIFO discipline of Cyclone’s lexical regions is insufficient for
our copying garbage collector, as we would like the lifetime
of From-space to end after the beginning but before the
end of To-space’s lifetime. Hence, we turn our attention to

Cyclone’s dynamic regions, where it appears that we have
sufficient expressiveness to write a simple copying garbage
collector:

...

// create the to-space’s key

let NewDynamicRegion {<‘to> to_key} = new_ukey();

state_t<‘to> to_state;

// open the from-space’s key

{ region from_r = open(from_key);

// open the to-space’s key

{ region to_r = open(to_key);

to_state = copy_state(to_r, from_state);

}

}

// free the from-space

free_ukey(from_key);

...

While this captures the spirit of the garbage collector, a
number of details remain. As we described in Section 2.3,
the struct Value<‘r::R> declaration is intended to be
extended with a forwarding pointer. The question is:
“what is the type of the forwarding pointer?” The an-
swer is (something along the lines of): “a pointer to a
struct Value in To-space, whose forwarding pointer is a
pointer to a struct Value in To-space’s To-space, whose
forwarding pointer” What we need is a name for all
of the unwindings of the infinite sequence of pointers. We
provide such a name in the form of a type constructor,
which maps region names to region names and generates an
infinite supply of region names:

typedef _::R next_rgn<‘r::R>

Thus, we give each garbage-collected value a forwarding
pointer in the following manner:

typedef struct Value<‘r>*‘r value_t<‘r::R>;

struct Value<‘r::R> {

value_t<next_rgn<‘r>> forward;

datatype ValueD value;

};

Note that although the region names ‘r and next_rgn<‘r>

are related, the lifetimes of their corresponding regions are
not. In a similar manner, value_t<next_rgn<‘r>> is a well-
formed type anywhere in the scope of ‘r – even if the region
handle corresponding to next_rgn<‘r> has not been created.
The original inspiration for the next_rgn type constructor
comes from Hawblitzel et. al. [7], where type sequences
(mappings from integers to types) are used to index regions
by a region number (“epoch”), yielding the connection be-
tween successive regions in a copying collector.

Operationally, we expect dynamic region sequences to
behave as dynamic regions, with access mediated by a key.
In particular, we expect operations to create, open, and
free dynamic-region sequence keys. In addition, we need
an operation to produce the key for next_rgn<‘r>. While
this operation yields an infinite supply of dynamic region
sequence keys, it is not quite enough. We need to ensure
that the supply is linear; i.e., there is exactly one way to
generate a key for next_rgn<‘r> for any ‘r. Cyclone’s

unique pointers provide exactly this linearity. Thus, we
declare

struct DynamicRegionGen<‘r::R>;

typedef struct DynamicRegionGen<‘r>*@notnull‘U

uregion_gen_t<‘r>;

where struct DynamicRegionGen<‘r::R> is abstract.
Because uregion_gen_t<‘r> is a unique pointer, it serves
as a capability; in particular, it will serve as a capability
to produce the key for <next_rgn<‘r>> and the next
generator. Taken together, a key and a generator form a
dynamic-region sequence:

struct DynamicRegionSeq<‘r> {

uregion_key_t<‘r> key;

uregion_gen_t<‘r> gen;

};

typedef struct DynamicRegionSeq<‘r> drseq_t<‘r>;

Finally, the interface for dynamic-region sequences is given
by the following:

struct NewDynamicRegionSeq { <‘r::R>

struct DynamicRegionSeq<‘r> drseq;

};

struct NewDynamicRegionSeq new_drseq();

struct DynamicRegionSeq<next_rgn<‘r>>

next_drseq(uregion_gen_t<‘r> gen);

The new_drseq function creates a fresh dynamic-region se-
quence and returns the key to the first region and a genera-
tor for the next element in the sequence. (Note that the
new_drseq function returns a structure that existentially
quantifies the region variable. Unpacking this existential
yields a region variable which does not conflict with any
other region name.) The next_drseq function returns the
key for next_rgn<‘r> and a new generator. Because the gen-
erator is unique and the next_drseq function consumes it,
it follows that we can only create one key for next_rgn<‘r>;
hence, the sequence of regions is linear. Furthermore, the
key (and region handle) for next_rgn<‘r> need only be cre-
ated when next_drseq is called; no keys or handles need be
pre-allocated. Opening and freeing a key is accomplished
through the dynamic region operations: the open primitive
and the free_ukey function.

Figures 7 and 8 present the Cyclone code implementing
the central functions in the Core Scheme garbage collector
and interpreter. The struct GCState existentially binds the
current region being used as the Core Scheme heap; each
time the interpreter or garbage collector needs to access or
allocate data in this region, the state is unpacked and the
region opened. The doGC function directly implements the
example code given above, modified to pack and unpack the
state and to generate the To-space from the dynamic-region
sequence. The scheme function is very similar to the one
given in Figure 5, modified to create the dynamic-region
sequence and allocate the initial program and environment
in the initial dynamic region. The termination check uses a
goto in order to transfer control from a scope in which the
current region is opened to a scope where the current region
can be freed. This ensures that the final heap is reclaimed
before terminating the Core Scheme interpreter.

// the gc state encapsulates
// - the current region (existentially bound)
// - a dynamic region sequence (containing a key and generator)
// - the state (containing roots)
typedef struct GCState { <‘r>
drseq_t<‘r> key_gen;
state_t<‘r> state;

} gcstate_t;

gcstate_t doGC(gcstate_t gcs) {
// unpack the gc state, naming the existentially bound region (‘r)
let GCState{<‘r> DynamicRegionSeq {from_key, from_gen}, from_state} = gcs;
// generate the to-space (next_rgn<‘r>)
let DynamicRegionSeq{to_key, to_gen} = next_drseq(from_gen);
state_t<next_rgn<‘r>> to_state;
// open the from-space’s key
{ region from_r = open(from_key);

// open the to-space’s key
{ region to_r = open(to_key);

// copy the state and reachable data
to_state = copy_state(to_r, from_state);

}
// pack the new gc state
gcs = GCState{DynamicRegionSeq{to_key, to_gen}, to_state};

}
// free the from-space and return the new gc state
free_ukey(from_key);
return gcs;

}

Figure 7: Garbage Collector

void scheme(exp_t<‘r> prog<‘r>(region_t<‘r>)) {
// construct the initial heap
let NewDynamicRegionSeq {<‘r> DynamicRegionSeq{key, gen}} = new_drseq();
// load the program and initial environment into the initial heap
exp_t<‘r> e;
env_t<‘r> env;
{ region r = open(key);

e = prog(r);
env = initial_env(r);

}
// construct the initial state
state_t<‘r> state = State{NULL,env,{.expr = e}};
// construct the initial gc state with
// - the dynamic region sequence
// - the initial state
struct GCState gcs = GCState{{key,gen},state};
while (true) {

// unpack the current gc state, naming the existentially bound region (‘s)
let GCState{<‘s> DynamicRegionSeq{key, gen}, state} = gcs;
{ // open the current heap
region r = open(key);
// take a fixed number of steps
bool done = stepi(MAX_STEPS,r,&state);
// check for termination
if (done) { goto Finished; }

}
// pack the new gc state and allow a GC
gcs = GCState{DynamicRegionSeq{key, gen}, state};
gcs = maybeGC(gcs);

}
Finished:
// unpack the final gc state and free the final region
let GCState{<‘r> DynamicRegionSeq{key, gen}, state} = gcs;
free_ukey(key);

}

Figure 8: Dynamic Region Sequence Allocated Interpreter

static $(frontier_t<‘r>, value_t<next_rgn<‘r>>)
copy_value(frontier_t<‘r> frontier,

region_t<next_rgn<‘r>> to_r,
value_t<‘r> from_obj) {

switch (from_obj) {
case NULL: return $(frontier, NULL);
case &Value{*f,*from_obj_}:

// if a forwarding pointer is installed,
// return it and an unmodified frontier.
if (*f != NULL) return $(frontier,*f);
switch (from_obj_) {
case &Closure_v(n,from_env,from_exp):

// allocate a new Closure in to-space,
// extracting the addresses of child pointers
let to_obj as

&Value{_,Closure_v(_,*to_envp,*to_expp)} =
rnew(to_r) Value{NULL,Closure_v(n,NULL,NULL)};

// install the forwarding pointer
*f = to_obj;
// add children to the frontier
frontier = add_front(frontier,copy_env,

from_env,to_envp);
frontier = add_front(frontier,copy_exp,

from_exp,to_expp);
// return new frontier and pointer
return $(frontier, to_obj);

case &Pair_v(from_obj1,from_obj2):
// allocate a new Pair in to-space,
// extracting the addresses of child pointers
let to_obj as

&Value{_,Pair_v(*to_obj1p,*to_obj2p)} =
rnew(to_r) Value{NULL,Pair_v(NULL,NULL)};

// install the forwarding pointer
*f = to_obj;
// add children to the frontier
frontier = add_front(frontier,copy_value,

from_obj1,to_obj1p);
frontier = add_front(frontier,copy_value,

from_obj2,to_obj2p);
// return new frontier and pointer
return $(frontier,to_obj);

...
}

}
}

Figure 9: Copy Function (Values)

Thus far, we have said little about the actual copying of
Core Scheme objects. A careful inspection of the code in Fig-
ure 8 reveals that expressions, environments, and stacks are
allocated in the Scheme heap, in addition to values. Hence,
objects of each kind must be garbage collected. The copy-
ing algorithm needs space to manage the traversal of live
data.3 A recursive algorithm that uses the run-time stack
to maintain state runs the risk of stack overflow. There-
fore, we must maintain an explicit frontier of objects to be
forwarded. Our solution is to use unique pointer allocated
data-structures which are freed at the end of the garbage col-
lection. We use unique pointers in order to immediately free
the data-structure if it must be resized to accommodate a
larger frontier. During a garbage collection, three regions are
used: the From-space (‘r), the To-space (next_rgn<‘r>),
and the unique region (‘U).

Figure 9 presents the Cyclone code for copying a Core

3A Cheney-style copying collector cannot be accommodated
in this framework, as we cannot iterate through the objects
allocated in a region.

Scheme value. The &Value{*f,*from_obj_} “label” makes
use of Cyclone’s pattern matching facilities, which pro-
vide an efficient method of binding parts of large objects
to new local variables. In particular, this pattern binds
f to the address of the forwarding pointer component of
the Value<‘r> structure and from_obj_ to the address of
the datatype ValueD<‘r> component. The comparison
*f != NULL checks for an installed forwarding pointer; if
one exists, it is returned with an unmodified frontier. If
no forwarding pointer has been installed, then the value
variant is determined, a new object is allocated in To-
space (via rnew(to_r)), the forwarding pointer is installed
(*f = to_obj), and child pointers are extracted and added
to the frontier (via add_front).

We have also said little about the triggering of a garbage
collection. Currently, the Cyclone region interface allows the
programmer to query the current size of allocated data in a
region. We use a simple live-ratio method to set a heap limit,
which is checked after a fixed number of interpreter steps.
It is straightforward to extend the Cyclone region interface
to establish an upper bound on a region’s size, causing an
exception to be raised when an allocation would exceed the
limit. The only complication is how to resume the compu-
tation after the exception has occurred. We must structure
parts of our interpreter and primitives to guarantee they can
be correctly resumed in the case of such a region exhaustion
exception is rasied.

3. PERFORMANCE EVALUATION
Now that we have outlined the design and implementa-

tion of our safe Scheme interpreter and runtime system, we
wish to evaluate the performance of the system compared
to various alternatives. Because we have constrained our-
selves to programming in a safe language, some standard
implementation techniques that are applicable in unsafe im-
plementations are unavailable to us. We want to understand
how much of a performance penalty this causes. For com-
parison we compare our system with a safe garbage collector
against three different other Scheme implementations.

The Scheme Implementations and Benchmark Pro-
grams
We summarize the systems we study below.

Cyclone Safe GC - Our implementation of a Core Scheme
interpreter with a safe GC also written in Cyclone;
essentially, that of Figure 8.

Cyclone BDW GC - The same implementation of our
Core Scheme interpreter, but using the Bohem-
Demers-Weiser conservative collector; essentially that
of Figure 5.

SISC Sun JVM - A freely available high-performance im-
plementation of Scheme written in Java [14]. It
supports first-class continuations and is fully tail-
recursive. It relies on the native Java VM for it’s run-
time memory management.

MzScheme BDW GC - Widely used implementation of
Scheme written in C [16]. It also uses the Bohem-
Demers-Weiser conservative collector for storage man-
agement.

The table below summarizes the safety guarantees pro-
vided by each system.

Interpreter Runtime System
Cyclone Safe GC Safe Safe
Cyclone BDW GC Safe Unsafe

SISC Sun JVM Safe Unsafe
MzScheme BDW GC Unsafe Unsafe

By comparing the performance of the Cyclone Safe GC and
Cyclone BDW GC, we hope to understand the performance
cost of a safe garbage collector independent of the core in-
terpreter. Comparing SISC with both our Cyclone versions
gives us an idea of how efficient our core interpreter is com-
pared with another realistic safe implementation. Finally,
comparing MzScheme with the other systems give us an idea
of how much performance can be had if we forgo safety en-
tirely.

We report execution times and memory consumption for
all these systems on a subset of the Gabriel benchmarks4

translated into Scheme.

Important Caveats
Before we begin, we should highlight some important differ-
ences between the various systems in-order to properly in-
terpret the meaning of the benchmarks. The first caveat is
that not all systems implement the same subset of Scheme.
The Cyclone-based systems implement the bare minimum
set of primitives in order to properly execute the bench-
mark applications. The Cyclone-based systems also have a
space leak associated with the storage of symbols created
via string->symbol. This leak occurs because we do not
have support for weak pointers to properly collect useless
entries from the symbol table. It is straightforward to ex-
tend our system to do so. The Cyclone system does not
implement the full numeric tower or multiple return val-
ues. Doing both is straightforward. We do not expect the
lack of these features to significantly skew our results. Like
the other implementations our Cyclone implementations are
fully tail-recursive and support first-class continuations.

MzScheme stack allocates activations frames and uses
setjmp/longjmp to implement first-class continuations,
while all of the other implementations heap allocate acti-
vation frames. This difference is apparent in the one bench-
mark (ctak) which heavily relies on first-class continuations.
Our safe GC uses a copying GC, the BDW collector uses a
mark-sweep GC. To the best of our knowledge the JVM uses
a hybrid two-generation scheme, where the first generation
use a copying GC and the second generation uses a mark-
sweep algorithm. These algorithmic difference makes fair
comparisons tricky to do at best.

In performing the benchmarks we do not artificially limit
the heap usage of each program. Since each program uses a
different amount of heap space and space can be traded for
time, it is not fair to simply examine execution times without
taking into consideration memory usage. However, since it is
tricky and difficult to limit memory usage to create a “fair”
playing field we simply report the time and space metrics for
“out of the box” configurations. Even with these caveats we
can still come to some sound qualitative conclusions.

4Note nboyer is a corrected version of the original boyer
benchmark that fixes correctness bugs in the original bench-
mark.

Total Execution Time
Our first experiment simply measures the execution time
for each benchmark. The execution times are measured in
terms of absolute wall clock time and do not include start
up overheads for any preprocessing or compilation. Table 1
summarizes the absolute execution times for the various sys-
tems on the benchmark programs. All times reported are
in milliseconds on a lightly loaded 993Mhz dual-processor
x86 with 256KB of L2 cache and 2GB of physical memory,
running a Linux 2.4 kernel.

The Cost of Safety
With the exception of ctak, it is clear that MzScheme
is significantly faster than all of the other systems. The
performance difference for ctak is due to the fact that
MzScheme does not bias the implementation in-order to sup-
port cheap first-class continuations. Some preliminary ex-
periments with stack allocation of activation frames in our
Cyclone implementation suggest that the performance dif-
ference between the systems can not be simply be accounted
for because of stack allocation. Being unsafe, MzScheme is
able to use more compact and efficient data representations
such as using the lower order bits of a pointer to encode type
tags. The other systems implemented in safe languages are
forced to use more heavyweight representations.

Comparison of Safe Interpreters
If we examine the ratio of execution times with respect to the
Cyclone Safe GC (presented in parentheses in Table 1), we
can see the relative costs of safety. Looking at the normal-
ized execution times it is clear that all three safe systems are
roughly comparable. Our Cyclone implementation is faster
in many cases when compared to SISC, but is slower in oth-
ers cases. Given that a great deal of effort has been placed
in optimizing SISC as well as the Java VM on which it runs,
we are happy with the performance of our core interpreter.
We hope to make the gap between the Cyclone based in-
terpreter meet or exceed the performance of SISC in all the
benchmarks.

Doing so will probably require changing our rather
straightforward implementation of the Scheme operational
semantics into more optimized code. We have applied many
of the key algorithmic optimizations [14] used by SISC into
our interpreter, but still believe there is room for optimiza-
tion of the core implementation as well as library procedures.
We also believe having the flexible memory management
primitives that Cyclone offers may also provide a significant
boost in the performance of web application servers. We
discuss this in more detail in Section 5.1.

Comparison of Safe vs. Unsafe GC
Examining the execution times of Cyclone Safe GC and Cy-
clone BDW GC, we can see that our safe collector does not
add any significant run-time penalty. In fact in many cases
it is slightly faster. However, this may be a misleading con-
clusion since the underlying GC algorithms are different.
Our safe GC uses a two-space copying GC while the com-
parable BDW GC is using a mark-sweep algorithm. This
difference is obvious when we look at the memory footprint
of the various implementations.

We provide two metrics to help understand memory con-
sumption. One is based on the garbage collector’s view of

Cyclone Cyclone SISC MzScheme
Safe GC BDW GC Sun JVM BDW GC

cpstak 248 (1.00) 263 (1.06) 279 (1.12) 93 (0.37)
ctak 357 (1.00) 381 (1.07) 412 (1.15) 3590 (10.05)
deriv 1160 (1.00) 1145 (0.99) 660 (0.57) 190 (0.16)
destruct 1027 (1.00) 1009 (0.98) 1027 (1.00) 351 (0.34)
div-iter 466 (1.00) 467 (1.00) 360 (0.77) 139 (0.30)
div-rec 448 (1.00) 453 (1.01) 363 (0.81) 133 (0.30)
fft 234 (1.00) 223 (0.96) 450 (1.92) 36 (0.16)
nboyer 4292 (1.00) 5018 (1.17) 3431 (0.80) 867 (0.20)
puzzle 55 (1.00) 62 (1.13) 51 (0.93) 11 (0.20)
tak 209 (1.00) 226 (1.08) 375 (1.79) 44 (0.21)
takl 2134 (1.00) 2281 (1.07) 2010 (0.94) 434 (0.20)
takr 241 (1.00) 258 (1.07) 238 (0.99) 46 (0.19)
traverse 19060 (1.00) 23594 (1.24) 16632 (0.87) 4168 (0.22)

Table 1: Total Execution Time in Milliseconds and with Ratio of Execution Times Normalized to Cyclone
Safe GC in Parentheses

the current heap size. The other is based on the real mem-
ory in use as reported by the underlying operating system.
Unfortunately, there is no easy portable way to measure
the actual heap usage of each system without including the
startup costs associated with each system.

The numbers we report include the overhead for start up
and compilation/parsing of the benchmark programs. This
makes SISC and MzScheme look artificially worse since we
are also measuring the overhead of their entire system, in-
cluding the infrastructure need to support an interactive
REPL. We provide these numbers for completeness, but will
focus on the comparisons between our two different Cyclone
versions. Both these systems have comparably small startup
costs.

To collect information about heap size, we enable de-
bugging information printed at each invocation of the GC.
For our own Cyclone Safe GC collector we simply instru-
mented our collector appropriately. For the BDW collector
we set the internal variable GC_print_stats which causes
the BDW collector to report the heap size after each GC.
For the JVM we simply enabled the -verbosegc option to
collect information about heap sizes. Table 2 summarizes
the maximum heap size as reported by the various collec-
tors. Note that we do not report some numbers for pro-
grams running under MzScheme because these programs do
not cause a garbage collection to occur.

If we look at the heap sizes for our two Cyclone systems,
we see that for small programs our heap sizes are compa-
rable, however one can see systematic difference in larger
programs such as nboyer and traverse. The heap resizing
policy of our safe copying collector resizes the heap based
on the amount of reachable data that remains in the heap
after a collection and a tunable “live ratio” parameter. In
all experiments we set our live ratio to 4.0. A larger live ra-
tio amortizes the cost of the a GC over more of the program
execution by consuming more space.

While heap sizes is a useful metric in a system with vir-
tual memory, a more important metric is the amount of
physical memory needed to hold the program’s working set.
Table 3 summarizes the size of the maximum resident set
of virtual memory pages as measured by repeated polling
of the /proc/ file system for each benchmark during execu-

tion. While the first numbers give us some insight into the
algorithmic consumption of space, these numbers allow us
to understand how those numbers may translate into real
system performance.

It is clear from both measurements that our Cyclone im-
plementation using the Safe GC has a significantly larger
footprint when compared to the equivalent implementation
that uses the BDW collector. This difference is accounted
for by the use of a copying GC compared to a mark-sweep
GC.

Figure 10 show the resident set size as a function of time
for the various systems during the execution of the nboyer

benchmark. The graphs clearly show the difference in the
algorithms used, and show that the actual working set size
at a particular point in time can be significantly smaller
than our maximum set. Regardless of this fact, the extra
copying will have a negative effect on overall performance if
we consider the costs of servicing page faults. In our cur-
rent experiments, memory is not a scare resource, so most
page faults can be serviced without going to disk. In a real-
istic server environment, all others things being equal, our
copying GC will perform worse.

Although a given server typically will have large amounts
of memory available, that memory must be shared across
many different instances of an application. Each applica-
tion has a limited amount of memory. Therefore, it is unre-
alistic to assume that memory is cheap or free. We should
explore how to implement other techniques such as mark-
sweep or generational-collection algorithms for our approach
to be competitive with other unsafe approaches. However,
our overall approach has other system level benefits that
may recover or ameliorate these costs in a web-application
server. We touch on these benefits in Section 5.1.

4. SIZE OF UNSAFE CODE
The primary goal of our approach is not to produce a

faster system, but to produce a system which we believe is
safer. It is important to compare the amount of unsafe code
in the system. Table 4 summarizes the approximate amount
of unsafe C code used in the implementation of each system.
The line counts ignore comments and whitespace.

The amount of unsafe C code need to implement the ba-

Cyclone Cyclone SISC MzScheme
Safe GC BDW GC Sun JVM BDW GC

cpstak 276 (1.00) 292 (1.06) 3306 (11.98) 1024 (3.71)
ctak 282 (1.00) 292 (1.04) 3312 (11.74) 3180 (11.28)
deriv 381 (1.00) 392 (1.03) 3319 (8.71) 1024 (2.69)
destruct 327 (1.00) 392 (1.20) 3364 (10.29) 1024 (3.13)
div-iter 360 (1.00) 392 (1.09) 3316 (9.21) 1024 (2.84)
div-rec 390 (1.00) 392 (1.01) 3319 (8.51) 1024 (2.63)
fft 794 (1.00) 700 (0.88) 4065 (5.12) N/A
nboyer 8913 (1.00) 2232 (0.25) 5522 (0.62) 2012 (0.23)
puzzle 1554 (1.00) 700 (0.45) 3438 (2.21) 1024 (0.66)
tak 269 (1.00) 292 (1.09) 3291 (12.23) N/A
takl 282 (1.00) 392 (1.39) 3301 (11.71) N/A
takr 955 (1.00) 524 (0.55) 3510 (3.68) 1024 (1.07)
traverse 4984 (1.00) 1672 (0.34) 4227 (0.85) 2012 (0.40)

Table 2: Maximum Heap Size in Kilobytes Observed at GC Points with Ratio of Sizes Normalized to Cyclone
Safe GC in Parentheses.

Cyclone Cyclone SISC MzScheme
Safe GC BDW GC Sun JVM BDW GC

cpstak 298 (1.00) 241 (0.81) 5072 (17.02) 652 (2.19)
ctak 301 (1.00) 239 (0.79) 5071 (16.85) 1203 (4.00)
deriv 335 (1.00) 276 (0.82) 5076 (15.15) 651 (1.94)
destruct 316 (1.00) 276 (0.87) 5097 (16.13) 652 (2.06)
div-iter 323 (1.00) 271 (0.84) 5067 (15.69) 650 (2.01)
div-rec 301 (1.00) 271 (0.90) 5070 (16.84) 653 (2.17)
fft 428 (1.00) 374 (0.87) 5299 (12.38) 627 (1.46)
nboyer 3092 (1.00) 844 (0.27) 5657 (1.83) 947 (0.31)
puzzle 593 (1.00) 380 (0.64) 5110 (8.62) 628 (1.06)
tak 274 (1.00) 238 (0.87) 5068 (18.50) 589 (2.15)
takl 292 (1.00) 240 (0.82) 5068 (17.36) 588 (2.01)
takr 563 (1.00) 388 (0.69) 5160 (9.17) 628 (1.12)
traverse 1828 (1.00) 628 (0.34) 5338 (2.92) 883 (0.48)

Table 3: Maximum Working Set in Virtual Pages with Ratio of Sizes Normalized to Cyclone Safe GC in
Parentheses.

 0

 20

 40

 60

 80

 100

 0

 618

 1236

 1854

 2472

 3090

%
 o

f M
ax

. W
or

ki
ng

 S
et

W
or

ki
ng

 S
et

 S
iz

e

Time

Cyclone (Safe GC)

 0

 20

 40

 60

 80

 100

 0

 169

 338

 507

 676

 845

%
 o

f M
ax

. W
or

ki
ng

 S
et

W
or

ki
ng

 S
et

 S
iz

e

Time

Cyclone (BDW GC)

 0

 20

 40

 60

 80

 100

 0

 1131

 2262

 3393

 4524

 5655

%
 o

f M
ax

. W
or

ki
ng

 S
et

W
or

ki
ng

 S
et

 S
iz

e

Time

SISC (Sun JVM)

 0

 20

 40

 60

 80

 100

 0

 189

 378

 567

 756

 945

%
 o

f M
ax

. W
or

ki
ng

 S
et

W
or

ki
ng

 S
et

 S
iz

e

Time

MzScheme (BDW GC)

Figure 10: Working Set Over Time for nboyer

Interpreter Runtime System
Cyclone Safe GC 0 1800
Cyclone BDW GC 0 9000

SISC Sun JVM 0 229,100
MzScheme BDW GC 31,000 9000

Table 4: Approximate Number of Lines of Unsafe C
Code.

sic region primitives needed for our safe GC is very small
in comparison to other systems. The vast majority of the
code (1200 lines) is associated with a fast implementation of
malloc[13], on which the region primitives are built. In the-
ory one could build the region primitives on a much simpler
underlying storage system.

The BDW system is roughly 9000 lines of code. Despite its
wide usage and relatively small size there are several known
bugs that can cause the collector to fail in an unsafe way
because of compiler optimizations or unsafe pointer manip-
ulations [2]. Simple verification of the core 9000 line of code
does not guarantee safety of the system so the line count is
misleadingly on the low side. Arguably, one has to verify
the entire system it is linked with and verify the client does
not violate any invariants needed for the safe operation of
the collector.

Appel and Wang [1] analyze the size of the safety TCB
for several Java VMs. We quote their number used for the
Hotspot JIT compiler, which is now the standard Java VM
shipped by Sun. Of that 229,100 lines of code, the majority
is the actual optimizing compiler. Since in a web application
framework there needs to be a facility to dynamically extend
the functionality of a running server without halting the

system, running Java based servers must include a JIT and
bytecode verifier in order to perform dynamic loading. So
including the optimizing JIT compiler as part of the unsafe
code of the system is reasonable. Other approaches can
dynamically load native optimized code in a manner that
does not require a heavy weight JIT [8].

MzScheme has a relatively compact implementation, but
the total size of the system core is still on the order of 40,000
lines of code.

5. CONCLUSION
Compared to other systems, it is clear that our approach

can significantly reduce the amount of unsafe code needed
to implement a system. This increases our confidence in
the safety and security of the entire system. Unfortunately,
our copying-collection technique may incur a performance
penalty for this extra degree of safety. Hopefully, in the
future we can reduce this performance penalty so that the
extra safety comes with little or no cost at all.

5.1 Cyclone vs. Java and Other Safe VMs
We should also emphasize that our approach potentially

has some significant system-level performance advantages,
when compared to a pure Java web application framework
or any other safe virtual machine based approach. Typically,
each web application will be allocated a separate thread of
control to handle each web request. These threads are cre-
ated frequently and have short lifetimes. In a pure Java
environment there is no way to bound the allocation of a
given Java thread or cheaply reclaim all the storage associ-
ated with a thread when it dies. We must rely on a system
wide GC to efficiently reclaim storage for all our threads.
The only other alternative is to spawn a heavy-weight sys-

tem process.
In a pure Cyclone system we can allocate a unique Scheme

interpreter and garbage collector with its own private heap
on a per thread basis. We can tune the initial and maxi-
mum heap sizes as well as the heap resizing policy on a per
thread basis taking into account knowledge about the par-
ticular application servicing a request. More importantly,
we can immediately reclaim all the storage associated with
a terminated thread, without requiring a system wide GC.
These per thread policies are simply not possible if one relies
on a system wide GC. Exploiting these large scale system-
level benefits is one area which we would like to explore in
the future.

In general, if an application can benefit from a customized
runtime system a pure Cyclone approach, allows the de-
veloper to customize and deploy a runtime system without
compromising the safety of the system. This level of cus-
tomization is not typically available in systems like Java.

Acknowledgements
We benefited from discussions with Greg Morrisett, who also
contributed to the development of the Scheme interpreter
and garbage collector.

6. REFERENCES
[1] A. W. Appel and D. C. Wang. JVM TCB:

Measurements of the trusted computing base of Java
virtual machines. Technical Report CS-TR-647-02,
Princeton University, Apr. 2002.

[2] H.-J. Boehm. Simple garbage-collector safety. In
Proceedings of SIGPLAN’96 Conference on
Programming Languages Design and Implementation,
ACM SIGPLAN Notices, pages 89–98. ACM Press,
1996.

[3] H.-J. Boehm and M. Weiser. Garbage collection in an
uncooperative environment. Software – Practice and
Experience, 18(9):807–820, 1988.

[4] Chicken: A Scheme-to-C Compiler, 2003.
http://www.call-with-current-continuation.org/

chicken.html.

[5] Cyclone user’s manual. Technical Report 2001-1855,
Department of Computer Science, Cornell University,
Nov. 2001. Current version at
http://www.cs.cornell.edu/projects/cyclone/.

[6] D. Grossman, G. Morrisett, T. Jim, M. Hicks,
Y. Wang, and J. Cheney. Region-based memory
management in Cyclone. In Proceedings of the 2002
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 282–293,
Berlin, Germany, June 2002.

[7] C. Hawblitzel, H. Huang, E. Krupski, and E. Wei.
Low-level linear memory management.
http://www.cs.dartmouth.edu/~hawblitz/publish/

linearmem-draft4.ps, Dec. 2002.

[8] M. Hicks, J. T. Moore, and S. Nettles. Dynamic
software updating. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming
Language Design and Implementation (PLDI’01),
June 2001.

[9] M. Hicks, G. Morrisett, D. Grossman, and T. Jim.
Safe and flexible memory management in Cyclone.

Technical Report CS-TR-4514, University of Maryland
Department of Computer Science, July 2003.

[10] Jetty Web Server and Servlet Container, 2003.
http://jetty.mortbay.org/.

[11] T. Jim, G. Morrisett, D. Grossman, M. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe dialect of C.
In USENIX Annual Technical Conference, pages
275–288, Monterey, CA, June 2002.

[12] R. Kelsey, W. Clinger, and J. R. (Eds.). Revised5

report on the algorithmic language Scheme.
Higher-Order and Symbolic Computation, 11(1),
August 1998.

[13] D. Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html.

[14] S. G. Miller. SISC: A complete scheme interpreter in
java. http://sisc.sourceforge.net/sisc.pdf, 2003.

[15] S. Monnier, B. Saha, and Z. Shao. Principled
scavenging. Proceedings of the 2001 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 81–91, 2001.

[16] MzScheme, 2003.
http://www.plt-scheme.org/software/mzscheme.

[17] C. Queinnec. The influence of browsers on evaluators
or, continuations to program web servers. In
Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, pages 23–33.
ACM Press, 2000.

[18] M. Tofte and J.-P. Talpin. Region-based memory
management. Information and Computation,
132(2):109–176, Feb. 1997.

[19] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken.
A first step towards automated detection of buffer
overrun vulnerabilities. In Network and Distributed
System Security Symposium, pages 3–17, San Diego,
CA, February 2000.

[20] D. Wang and A. Appel. Type-preserving garbage
collectors. Conference Record of the Twenty-Eigth
Annual ACM Symposium on Principles of
Programming Languages, pages 166–178, 2001.

[21] A. K. Wright and M. Felleisen. A syntactic approach
to type soundness. Information and Computation,
115(1):38–94, 1994.

