
Comparing the expressive power of Separation logic and
classical logic

Short Presentation

Lozes Etienne LIP - ENS Lyon
46,allée d’Italie - 69364 Lyon - FRANCE

elozes@ens-lyon.fr

ABSTRACT
This paper compares separation logic to a classical fragment
of it. We prove that they are equally expressive, and that
the separative power is obtained using only monotonic as-
sertions.

1. INTRODUCTION
Imperative programming languages manipulating pointers

allow one to change the value a variable refers to without
explicitly mentioning this variable. Such multiple accesses
to data make the axiomatic semantics [4] of these programs
difficult to handle using classical logic as an assertion lan-
guage [6]. Separation logic [7] is a proposal for an extension
of the assertion language that nicely handles the subtleties
of pointer manipulation. It provides two new connectives: a
separative conjunction P ∗Q asserting that P and Q hold in
separate parts of the memory, and a separating implication
P −∗ Q allowing one to introduce ‘spatial hypotheses’ about
the memory. In [7], the example proof of an in-place rever-
sal of a list turns out to require complex invariants in the
standard classical logic, whereas it has a simple formulation
in separation logic.

So separation logic offers more concise and meaningful
assertions than classical logic. We may raise the question
whether it also provides new assertions, that is assertions
that cannot be formulated in classical logic. For several ex-
amples, classical logic provides a formulation of any given in-
variant, although usually through costly and poorly scalable
methods, as the list reversal example shows. In other words,
separation logic could have the same expressive power as
classical logic. Our aim in this work is to give a formal
account of this intuition, at least for a simple though signif-
icant assertion language.

We consider the spatial assertion language presented in [1]
for a proof of decidability. We define a classical fragment
excluding the connectives ∗ and−∗ and adding new primitive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPACE’04 Venezia, Italy
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

assertions, and prove it to be as expressive as the whole
language. The proof relies on the use of an intensional model
equivalence; such equivalences are common for the study
of the expressiveness of a logic (see [3, 5] for spatial logic
cases), but were also exploited for decidability issues in [1, 2].
Our intensional equivalence factorize with the equivalence
relation presented in [1], which shows its correction respect
to Separation logic.

In Section 2 we collect all definitions of the assertion lan-
guages; Section 3 defines the intensional equivalence and es-
tablishes its correction; Section 4 gives the essential facts to
establish the translation from separation logic in our classi-
cal fragment, and Section 5 gives some concluding remarks.

2. DEFINITIONS
We consider the assertion language presented in [1].
We assume a countable set Var of variables, ranged over

with x, y, and a set Loc of locations such that Loc. Expres-
sions and assertions are defined by the following grammar:

e ::= x | nil
P ::= (e 7→ e, e) | e = e | emp | ⊥ | P⇒P

| P ∗ P | P −∗ P

We write v(P) for the set of variables occuring in P . As-
sertions express properties of memory states, modelled as a
pair consisting of a store and a heap, as follows:

Val
def
= Loc t {nil}

Store
def
= Var → Val

Heap
def
= Loc ⇀fin Val

State
def
= Stack×Heap

where ⇀fin stands for a partial function with finite domain.
We range over stores with s, over heaps with h, and over
states with σ. We note σ1⊥σ2 for s1 = s2 and dom(h1) ∩
dom(h2) = ∅, and, when this holds, σ1 ∗ σ2 is the state
defined by keeping the same store and by setting h1∗h2(x) =
h1(x) or h2(x).

We note [[e]]σ for the evaluation of e in σ, that is [[x]]σ =
s(x) and [[nil]]σ = nil. The condition for a state σ to match
an assertion P , written σ |= P , is defined inductively by:

σ |= ⊥ never

σ |= (e 7→ e1, e2) iff dom(h) = {[[e]]σ} and
h([[e]]σ) = ([[e1]]σ, [[e2]]σ)

σ |= e1 = e2 iff [[e1]]σ = [[e2]]σ

σ |= emp iff dom(h) = ∅
σ |= P1⇒P2 iff σ|=P1 implies σ|=P2

σ |= P1 ∗ P2 iff there exist σ1 and σ2 such that
σ = σ1 ∗ σ2; σ1|=P1 and σ2|=P2

σ |= P1 −∗ P2 iff for all σ1 such that σ⊥σ1,
σ1|=P1 implies σ ∗ σ1|=P2

We may define as usual the connectives ∧,∨,>,¬ ,⇔ in
the obvious way. We also introduce three monotonic1 asser-
tions with the following semantic:

(e ↪→ e′)
def
= (e 7→ e′) ∗ >

σ |= (e ↪→ e′) ⇔ [[e]]σ ∈ dom(h), h([[e]]σ) = [[e′]]σ

alloc x
def
= (x 7→ nil)−∗ ⊥

σ |= alloc x ⇔ s(x) ∈ dom(h)

size ≥ n
def
= ¬ emp ∗ . . . ∗ ¬ emp︸ ︷︷ ︸

n times
σ |= size ≥ n ⇔]dom(h) ≥ n

Any assertion of this form, or of the form e = e′ will be
said to be atomic. In the remainder, we actually take these
as primitive, which allows us to encode e 7→ e′ and emp
assertions by boolean combinations (on the contrary, it is
not possible to encode (e ↪→ e′) and size ≥ n from e 7→ e′

and emp using boolean combinations – this point is also
discussed in conclusion). We call classical fragment the set
of assertions given by the following grammar:

P ::= P⇒P | ⊥
| (e ↪→ e′) | alloc x | e1 = e2 | size ≥ n .

We will note w(P) for the maximal n such that size ≥ n is
a subassertion of P , and v(P) for the set of variables of P .

Our main result is the following:

Theorem 2.1. For all assertion P , there exists a classi-
cal assertion P ′ such that |=P ⇔ P ′.

At the same time, we also prove the following result: the
monotonic (indeed atomic) fragment is as separative as the
whole language, that is if two states satisfy the same mono-
tonic assertions, then they satisfy the same assertions.

3. INTENSIONAL EQUIVALENCE
The encoding is based on a notion of equivalence between

states that is reminiscent of intensional bisimilarity in the
context of process algebras [3]. Let X be a finite set of
variables, and w and integer. We say that two states σ and
σ′ are intensionally equivalent for X, w, written σ ≈X,w σ′,
if for all classical assertion P with v(P) ⊆ X and w(P) ≤ w,
σ|=P ⇔ σ′|=P .
Remarks:

1or intuitionistic, using the terminology of [7], that is asser-
tions P such that σ|=P implies σ′|=P for all σ′ ≥ σ.

• This definition amounts to say that σ and σ′ satisfy
the same atomic classical assertions P with v(P) ⊆ X
and w(P) ≤ w.

• Let us write w(σ) =]dom(h). Given three natural
numbers a, b, w, we write a =w b if either a = b or
a, b ≥ w. Then for any σ, σ′ such that σ ≈X,w σ′,
w(σ) =w w(σ′).

• Equality assertions x = y only depend on the store.
We note s =X s′ if these stores satisfy the same equal-
ity assertions with variables in X. Then for any σ, σ′

such that σ ≈X,w σ′, s =X s′.

• Let V be some set of values. We note v =V v′ if either
v = v′ or {v, v′}∩V = ∅. Then for any s, h, h′ such that
(s, h) ≈X,w (s, h′), dom(h) ∩ s(X) = dom(h′) ∩ s(X)
due to assertions alloc x, and for all l ∈ s(X)∩dom(h),
h(l) =s(X)∪nil h′(l) due to assertions e ↪→ e′.

Let say more about store equivalence. Consider a store s0

and a state σ = (s, h) such that s0 =Var s. Then we may
define a new state shifts0σ of store s0 and heap h′ defined
such that

• dom(h′) = s0

(
s−1(dom(h))∩Var

)
∪B with B some ar-

bitrary set of locations such that]dom(h) =]dom(h′)
and B ∩ s0(Var) = ∅.

• for all l ∈ dom(h′), if l = s0(x) and hs(x) = (s(y), s(z))
for some x, y, z ∈ Var, h′s0(x) is set to be (s0(y), s0(z)),
otherwise h′(l) is arbitrarily defined out of s0(Var).

This is easy to check that σ and shifts0σ satisfy the same
atomic assertions. Moreover, this transformation is compo-
sitional, in the sense that shifts0(σ∗σ′) = shifts0σ ∗ shifts0σ′.
This transformation is not completely deterministic, but as-
suming that every choice of a “fresh” value is made differ-
ent at each time and at each call to shift, σ⊥τ will imply
shifts0σ⊥shifts0τ . We actually have the following stronger
result:

Lemma 3.1. For all assertion P (of Separation logic),
σ|=P iff shifts0σ|=P .

The proof is by induction on the assertion P exploiting
the previous remarks.

We now recall the equivalence relation defined by Yang
in [8] for the decidability proof, and use it to derive the
correction of ≈X,w.

Definition 3.2 (∼s,n,X [8]). Given a stack s, a natural
number n and a set X of variables, ∼s,n,X is a relation
between heaps such that h ∼s,n,X h′ iff

1. s(X) ∩ dom(h) = s(X) ∩ dom(h′);

2. for all l ∈ s(X) ∩ dom(h), h(l) =s(X) h′(l);

3.]
(
dom(h)− s(X)

)
=n]

(
dom(h′)− s(X)

)
.

The first step of the correction proof is to factorize ≈X,w

in ∼s,n,X .

Lemma 3.3. For any X, w, n such that n +]X ≤ w, for
any σ, σ′, s, h, h′ such that σ = (s, h), σ ≈X,w σ′, and shiftsσ

′ =
(s, h′), it holds that h ∼s,n,X h′.

Proof. By Lemma 3.1, (s, h) ≈X,w (s, h′). Then condi-
tions 1 and 2 in Definition 3.2 holds by the previous remark,
so the proof follows from the verification of the condition 3
on the heap size: let assume first that]

(
dom(h)−s(X)

)
< n;

then]dom(h) = k < n +]X ≤ w, so σ|=P = size ≥
k ∧ ¬ size ≥ k + 1, and w(P) = k + 1 ≤ w. By defi-
nition of ≈X,w, σ′|=P , so]dom(h′) = k =]dom(h), and
finaly]

(
dom(h) − s(X)

)
=]

(
dom(h′) − s(X)

)
. (since

s(X) ∩ dom(h) = s(X) ∩ dom(h′)). Let assume now that
]
(
dom(h)− s(X)

)
≥ n; then]dom(h) ≥ k ≥ n+]

(
dom(h)∩

s(X)
)
, where k = min(]dom(h), w). So σ|=size ≥ k, and by

definition of ≈X,w, σ′|=size ≥ k, so that finaly]dom(h′) ≥
n +]

(
dom(h′) ∩ s(X)

)
. 2

We recall now the correction result obtained by Yang and
derive our correction from it. First we recall the notion of
formula’s size used by Yang:

| (e 7→ e1, e2) | = 1 | e1 = e2 | = 0
| P⇒Q | = max(| P |, | Q |) | ⊥ | = 0
| P ∗Q | = | P | + | Q | | P −∗ Q | = | Q |
| emp | = 1

Lemma 3.4 ([8]). For all s, h, h′, n, X, P such that v(P) ⊆
X, | P |≤ n and h ∼s,n,X h′, (s, h)|=P iff (s, h′)|=P .

Corollary 3.5 (Correction). For all σ, σ′, w, X, P
such that v(P) ⊆ X, | P | +]X ≤ w and σ ≈X,w σ′, σ|=P
iff σ′|=P .

Proof. By Lemma 3.3, h ≈s,n,X h′ with σ = (s, h),
shiftsσ

′ = (s, h′), and n = w −]X. Then σ|=P implies
shiftsσ

′|=P by Lemma 3.4, which implies σ′|=P by Lemma 3.1.
2

4. TRANSLATION
We deals now with the translation of Separation logic into

the classical fragment. Whereas for decidability issues, the
concluding argument was to exhibit an effective enumeration
of the classes of ∼s,n,X , the property required here is more
logical; we actually need only the finiteness of the classes
of ≈X,w together with their expressibility in the classical
fragment.

We write ΦX,w for the set of atomic assertions P such
that v(P) ⊆ X and w(P) ≤ w. For X finite, ΦX,w is finite
as well. This has two important consequences:

Proposition 4.1 (Precompactness). For all w and
all finite X, ≈X,w has only finitely many classes.

Proof. A class is represented by a subset Φ ⊆ ΦX,w of
atomic assertions that are the ones satisfied by any state of
the class. So there are less than 2]ΦX,w distinct classes. 2

Proposition 4.2 (Characteristic formula). For all

states σ, for all X, w, there is a classical assertion F
(X,w)
σ

such that

∀σ′. σ′|=F (X,w)
σ iff σ ≈X,w σ′ .

Proof. Take∧
σ|=P,P∈ΦX,w

P ∧
∧

σ 6|=P,P∈ΦX,w

¬P .

2

We may now establish Theorem 2.1 noticing that any as-
sertion P is equivalent to the classical assertion:∨

σ∈State/≈X,w
,σ|=P

F (X,n)
σ ,

where the finiteness of this disjunction is ensured by Propo-
sition 4.1.

5. CONCLUSION
We defined a classical fragment of the separation logic,

excluding both ∗ and −∗ , and proved it to be as expressive
as the full separation logic. Our approach shows also that
all the separative power of the logic lies in the monotonic
fragment.

The elimination of the connective . (equivalent to −∗)
has been established for another spatial logic [5]. For Sep-
aration logic, it is even possible to eliminate spatial con-
junction, which cannot hold for other spatial logics where
multiple copies of the same structure may coexist. The use
of equality assertions is essential for that (relation =X and
Lemma 3.1), since the ∗ connective does express distinctions
between pointers. For instance, x ↪→ − ∗ y ↪→ − says that
x 6= y. Equalities play also an essential role to handle quan-
tifiers, as a counterexample in [5] tends to show.

When defining our classical fragment, we had to move
from the assertions e 7→ e′ and emp to e ↪→ e′ and size ≥ n
in order to capture the ∗ connective, and we needed as well
to define the extra primitive alloc x to capture the expres-
siveness of −∗ . This would not happen for an assertion
language with lookup and quantifiers, where the only neces-
sary atomic assertions are equality assertions.

We do not study the effectiveness of the translation, but
it could certainly be proved. However, our approach seems
independent from decidability issues (see [5]).

Yang proposed a clever counterexample to the elimination
of −∗ in a Separation logic with quantifiers; an equivalent
result was established for the static Ambient logic in [5],
but the example of Yang seems of deeper meaning. We do
not know wether our result remains true for the assertion
language with only ∗ and quantifiers.

Acknowledgements: I would like to thank Daniel Hirschkoff
for his support in the preparation of this work. I merely
thank Hongseok Yang for the rich discussions he took the
time to offer me about the first, approximative version of
this work. Without his contribution, this work would be a
lot different.

6. REFERENCES
[1] C. Calcagno, H. Yang, and P. O’Hearn. Computability

and Complexity Results for a Spatial Assertion
Language for Data Structures. In Proceedings of
FSTTCS ’01, volume 2245 of LNCS. Springer Verlag,
2001.

[2] C.Calcagno, L. Cardelli, and A. Gordon. Deciding
Validity in a Spatial Logic for Trees. In Proc. of
TLDI’03, pages 62–73. ACM, 2003.

[3] D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability,
Expressiveness and Decidability in the Ambients Logic.
In 17th IEEE Symposium on Logic in Computer
Science, pages 423–432. IEEE Computer Society, 2002.

[4] C.A.R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM, pages
12(10):576–580, october 1969.

[5] E. Lozes. Adjunct elimination in the static ambient
logic. In Proceedings of Express ’03, 2003.

[6] J. Reynolds. Intuitionistic reasoning about shared
mutable data structure, 2000.

[7] J. Reynolds. Separation logic: a logic for shared
mutable data structures. 2002.

[8] Hongseok Yang. Local Reasoning for Stateful programs.
PhD thesis, University of Illinois at Urbana
Champaign, 2001.

