
Automatic Inference of Reference-Count Invariants

David Detlefs
Sun Microsystems

1 Network Drive, Burlington, MA 01803
david.detlefs@sun.com

ABSTRACT
While we know how to eÆciently collect short-lived garbage,
collecting long-lived garbage usually requires expensive trac-
ing traversals. This paper suggests a static analysis tech-
nique that can identify program points that make objects
unreachable, allowing automatic insertion of explicit deallo-
cation functions.

1. INTRODUCTION
This paper proposes a new form of compile-time garbage

collection. While techniques such as generational garbage
collection make it easy to eÆciently collect short-lived ob-
jects, collection of long-lived objects can be considerably
less eÆcient. Techniques to identify exactly the point in
execution at which an object becomes unreachable might
signi�cantly decrease collection overhead.

2. ILLUSTRATIVE EXAMPLE
Consider the simple object type shown in Figure 1 (in

the Java Programming Language). It implements a set
of objects using a linked list representation. This example
is illustrative of more practically interesting situations: for
example, the bucket lists of a closed-address hash table are
essentially the same data structure.
The aim of this paper is to suggest for data structures like

this that it might be feasible to automatically infer invari-
ants that would allow a compiler to safely insert code to deal-
locate Nodes that become unreachable because of delete.
That is, the compiler would essentially insert a new line
\34.5": free(hd).

3. EXAMPLE INVARIANT
What invariant would be necessary to justify the safety of

this deallocation? First, we add two new implicit speci�ca-
tion variables to the program's state space:

� rc: a map from objects to integers, indicating the ref-
erence count of each object.

� owner, a map from objects to objects, indicating the
ownership relationship (as in ownership types [6]).

The precondition of free(o) is that rc[o] = 1; I will con-
sider free to take its argument by reference, and to have the
side e�ect of setting the argument to null.1

I believe that tracking owner relations can greatly aid pro-
gram veri�cation (which has much in common with the anal-
ysis described in this paper). One of the most diÆcult as-
pects of veri�cation of programs in languages with multiple
levels of data abstraction is translating a speci�cation of
what variables may be modi�ed at one level of abstraction
into modi�able variables at a more concrete level (see, e.g.,
[9]). The owner relation can be very useful in this transla-
tion. An abstraction function de�nes an abstract variable a

of an object in terms of more concrete variables c1; :::; cn.
When objects are involved, this de�nition may involve �elds
of sub-objects { in our example, the abstract state of the
SetViaList object is de�ned in terms of �elds of Node ob-
jects, but which Node objects? I claim that we should re-
strict the domain of such de�nitions to those Node objects
owned by the SetViaList object. With this restriction, if a
method of object x modi�es only �elds of objects owned by
x, then it modi�es the abstract state of x only. A method of
x that modi�es �elds of objects whose ownership is unknown
would have to be assumed to modify all abstract �elds of all
objects, and veri�cation of such a method's modi�es clause
would therefore fail.
Note that this methodology does not necessarily require

that owned objects are reachable only from their owner.
This methodology allows the possibility of controlled \rep
exposure," since exposed objects may not be modi�ed with-
out altering the abstract state of the owner.
A newly allocated object is unowned, and may not be

in the domain of any abstraction function. The ownership
1Obviously, this is impossible to express in the Java lan-
guage.

1 | class SetViaList implements Set {
2 | private class Node {
3 | public Object elem;
4 | public Node next;
5 | public Node(Object e; Node n) {
6 | elem = e; next = n;
7 | }
8 | }
9 |
10 | private Node head;
11 |
12 | public SetViaList() { head = null; }
13 |
14 | public boolean contains(Object o) {
15 | Node hd = head;
16 | while (hd != null && !o.equals(hd.elem))
17 | hd = hd.next;
18 | return hd != null;
19 | }
20 |
21 | public void insert(Object o) {
22 | if (contains(o)) return;
23 | // Otherwise...
24 | Node n = new Node(o, head);
25 | head = n;
26 | }
27 |
28 | public void delete(Object o) {
29 | Node hd = head;
30 | Node prev = null;
31 | while (hd != null) {
32 | if (o.equals(hd.elem)) {
33 | if (prev == null) head = hd.next;
34 | else prev.next = hd.next;
35 | return;
36 | } else {
37 | prev = hd;
38 | hd = hd.next;
39 | }
40 | }
41 | }
42 | }

Figure 1: Set implemented as a linked list.

of an object may be set freely if the precondition that the
object is unowned can be proved. A method of an object
may reset ownership of objects it owns to unowned.
I claim that predicates involving ownership are useful in

formulating class invariants for object types whose represen-
tation involves pointer-based data structures, such as the set
example I have presented. I intend the term class invariant
to denote a property that holds at the boundaries of all pub-
lic methods of a class. There is the question of calls between
methods: I intend that private helper methods may violate
the invariant, but public methods must preserve it. In our
example, when insert calls the public method contains,
the inferred invariant must hold at the call, and be pre-
served by contains. Public static methods should preserve
such invariants for all objects they modify.
As an example, the following class invariant is a suÆcient

condition for inferring the required precondition for the in-
troduction of free in the delete method.

8s : SetViaList :
(s:head = null
_ (s:head 6= null ^ owner[s:head] = s

^ (8n : Node : n 6= null ^ owner[n] = s)

(rc[n] = 1
^ (n:next = null
_ (n:next 6= null

^ owner[n:next] = s))))))

This says that for any set s, either s is empty (s:head =
null), or else s is non-empty and s is the owner of the head
element of the list. In addition, we also have a quanti�ed for-
mula expressing a property true of all non-null Nodes owned
by s: their reference count is exactly one, and their next
�eld is either null or points to another non-null Node owned
by s. In the latter case, the quanti�ed formula again applies
to this node, allowing us to prove that all elements in the
list are owned by s and have the desired reference count.

4. INVARIANT INFERENCE
The plan is to automatically infer invariants like the above

via abstract interpretation. It is well-known that abstract
interpretation can infer various kinds of invariants. One in-
fers the strong properties that hold at given program points
along certain executions, then weakens those properties in
order to encompass all possible executions. If the properties
and weakening strategy are chosen judiciously, then the re-
sult may still be strong enough to be useful. I propose to
apply abstract interpretation in a novel way: to the entire
class, in order to infer invariants of the class. Just as ab-
stract interpretation over a procedure body would assume
some start state and begin at the �rst statement of the pro-
cedure, interpretation over the class would start with the
constructor(s) of the class, and consider each method a pos-
sible successor of the constructor(s) and other methods. In
languages with destructors/�nalizers, these would be poten-
tial successors, but would themselves have no successors.
Figure 2 shows the analysis control ow within a class.

4.1 Abstract method execution
In our example the constructor is particularly simple: we

would infer the tentative class invariant

8s : SetViaList : s:head = null :

Let's say that next we consider insert as a successor.
The this argument is a SetViaList, so we assume that
our tentative invariant holds of it; that is, that this.head

is null. As discussed previously, the call to the public
contains method constitutes a point at which a class in-
variant must hold. If the calling method insert had made
modi�cations before the call, then the state at the point
of the call would be merged into the class invariant state,
and only the resulting invariant would be assumed on return
from the call. In our example, insert makes no modi�ca-
tions before calling contains, so this concern is not an issue.
In addition, contains has no side e�ects, so we can ignore
its e�ects on the analysis of insert.
Next, the allocation of a new Node yields a new object

r, distinct from all currently allocated objects, such that

constructor constructor

method method

Invariant State

Initial state

finalizer

Figure 2: Analysis ow within a class

owner[r] = none and rc[r] = 1. This reference is the one
due to the local variable n in our example.2 Next we con-
sider the constructor invocation for the new Node, essentially
\inlining" it into the analysis. We know nothing about the
o argument beyond its type, so the assignment to elem does
not augment our view of the program state. We have as-
sumed that this.head is null, so the next �eld of the new
Node becomes null.
Actually, I glossed over a subtle point in the argument

above. We have not discussed any aliasing analysis; the as-
signment elem = e in the Node constructor increments the
reference count of the current value of e; this reference value
might also be held by other variables. For example, one
could imagine convoluted code in which a SetViaList were
inserted into itself! In that case, the elem = e assignment
increments the reference count of the this variable of the
insert method. To handle this issue correctly, I must of
course assume that an update of the rc map at some ref-
erence r leaves rc unchanged only at references r0 that are
provably distinct from r. In my example, this is not a prob-
lem, because we're interested only in the reference counts of
the Node objects, and a reference to a newly allocated Node

is distinct from all previously-allocated references.
Finally, line 25 sets head to the new node. This tem-

porarily increases rc[r] to 2, but this quantity goes back to
1 when the local variable n becomes a dead variable after
its last use at 25. In addition, we apply a heuristic to this

2At the bytecode level, the initial reference is on the operand
stack; this reference is consumed when it is moved to the
local variable n.

assignment, giving it the additional side-e�ect of making
owner[r] = this: This may seem somewhat ad hoc; what
rules govern this heuristic, and why are they justi�ed? We
infer an ownership change an the �rst assignment of a refer-
ence r to an unowned object to a �eld of some other object
o. If the ownership of o is known, then we make n have the
same owner. Otherwise, we assume heuristically that o may
be a this value for the class under analysis, and make o the
owner of r. This last rule is the one invoked in our example.
A SetViaList that kept the elements in some order, and
would therefore insert elements in the interior of the list,
would use the previous rule.

4.2 Invariant Merging
The post-state resulting from this abstract execution of

insert both violates and extends our tentative class invari-
ant. We need to merge the previous invariant (since it cor-
rectly describes the post-state of the constructor) with a
predicate describing the post-state of insert (from this as-
sumed initial state), to get a predicate describing both. The
post-insert program state is described by

this:head 6= null
^ owner[this:head] = this

^ rc[this:head] = 1
^ this:head:next = null :

We abstract the above predicate over this, and merge via
disjunction with the previous tentative invariant, to get a
new tentative invariant:

8s : SetViaList :
(s:head = null
_ (s:head 6= null ^ owner[s:head] = s

^ rc[s:head] = 1 ^ s:head:next = null)) :

Stating this invariant in prose: the head �eld of a SetViaList
s is either null, or it is a non-null Node whose owner is s,
whose reference count is one, and whose next �eld is null.
When the class invariant changes, this changes the start

state of all methods; we reach a �xed point only when we
have an invariant that all methods preserve. In our case,
we could abstractly interpret insert again, starting from a
state described by the new start state. Since this start state
involves a disjunction, this implies several interpretations,
one starting from each of the states in the disjunction. We
would merge the predicates describing the resulting post-
state. In this way, we could add another disjunction de-
scribing sets with zero, one, or two elements. At some point
we would need to abstract further in hopes of reaching an
invariant suÆciently general to constitute a �xed point.
I propose abstraction over ownership as an appropriate

generalization technique. Given a predicate such as the one
shown above, this technique would heuristically recognize
conjunctions stating that some term (such as s:head in our
example above) is non-null and has a given owner and also
has some other properties. It would propose the generaliza-
tion that all non-null instances of the type of the term (i.e.,
Node in our example) that have the given owner also have
the other properties. In the truncated example we've given
this process would infer the invariant:

8s : SetViaList :
(s:head = null
_ (s:head 6= null ^ owner[s:head] = s

^ (8n : Node : n 6= null ^ owner[n] = s)

rc[n] = 1 ^ n:next = null))) :

This invariant is not correct: it is not the case that all
Nodes have null next �elds. This is a result of applying this
generalization too early, before suÆciently many possibilities
have been elaborated. Consider applying this technique to
the more complicated \concrete" predicate we would have
obtained from executing insert once more from start states
described by the last tentative invariant: we would obtain
a predicate describing sets with zero, one, or two elements.
This predicate describes all the possible situations: in the
two-element case there would be a conjunction saying that
the �rst element of the list was a non-null Node owned by the
set, and that its next �eld was non-null and also owned by
set. From this possibility we would merge (after abstraction
over ownership) to the desired invariant we gave originally,
in which the next �eld of a Node is null or names another
Node with the same owner.
The other method that has side e�ects is delete, so we

must verify that delete preserves the invariant. Here there
are some details we need to resolve. In the case where the
element being deleted is found, we need to ensure that the
modi�cations made to the data structure do not violate the
invariant. In this case, we update either the head pointer of
the set object or the next pointer of one of the nodes (lines
33 and 34 in Figure 1). This pointer updating will decrease
the reference count of the deleted node to zero, and also,
if hd.next is non-null, increase the reference count of that
node to two. (By the invariant, we knew that both refer-
ence counts were one at the start of the method.) This latter
fact would seem to violate the invariant; we need a technique
to do \compile-time deallocation," recognizing that the in-
serted call to free(hd) updates the rc map not only for hd,
but also decrements reference counts of objects recursively
reachable from hd, recursively freeing them if they become
zero. This may create an intractable program veri�cation
problem; if so, it would be perfectly safe to bound this re-
cursion at, say, a single level. The reference counts would be
incorrect, but conservatively: they might prevent a deallo-
cation that could be permitted, but they will not permit an
incorrect deallocation. In our example, a single level would
mean decrementing but not freeing the reference count of
hd.next, which is exactly what we require to re-establish
the invariant.
Also, the invariant would seem also to fail for the freed

node, since it is a non-null Node owned by s, but its reference
count is no longer one. We will solve this problem by having
free(o) have the further side e�ect of setting owner[o] to
none. The speci�cation of void free(Object o) is now:

Requires: rc[o] = 1
Modi�es: o, rc, owner, 8f : f �eldof o : rc[o:f]
Ensures: rc0[o] = 0 ^ owner0[o] = none
^ (8f : f �eldof o : rc0[o:f] = rc[o:f]� 1)
^ o0 = null .

I have again glossed over another subtle issue in the discus-
sion of the delete method. As discussed previously, when
we modify the rc map at some expression e that evaluates to
a reference value r, we are also modifying rc at other expres-
sions e0 that also evaluate to r. So again there is the question
of aliasing: when (for example) we increment the reference
count of a deleted node's successor, how do we know that
the list doesn't have a cycle, allowing the successor node to
be the successor of more than one node? The answer is con-
tained in the reference count invariant itself. Since we know
that the successor node's reference count was one before the
update, we know there is no such aliasing. In general, if
t is some object, and we know that rc[t] = k, and we are
in a state where k distinct locations contain t, then we can
conclude that no other variable can be equal to t. (To put
this idea on a more formal footing: distinct local variables
are distinct locations; all local variables are distinct from
object �elds; distinct object �elds in the same object are
distinct locations; and any pair of �elds in distinct objects
are distinct locations.)

4.3 Summary of Invariant Inference
This generalization technique is clearly the most specula-

tive part of this proposal, and details still need to be worked
out. It may, for example, seem overly heuristic. Note, how-
ever, that in techniques like this we can always just \give
up," generalizing fully to the trivial invariant true. Since
this application is intended to introduce an optimization,
failure means only that the optimization may not be applied
in this case.
One might worry that I've oversimpli�ed the exposition

of the set example by carefully choosing the order in which
methods where chosen for interpretation. I don't think so:
the order should not matter. The contains method has
no side e�ects, and therefore has no e�ect on any class in-
variant. If we interpret delete immediately after the con-
structor, it has no side e�ects. If we interpret it after one
execution of insert (i.e., with zero or one elements in the
set), it either leaves the state unchanged or deletes the sin-
gle element. In either case, the result state is covered by the
tentative invariant. The same is true after two invocations
of insert, until we reach the generalized invariant that is a
�xed point of the analysis.

5. OTHER EXAMPLES
In this section I will sketch some other situations in which

this technique might apply.
As mentioned previously, a closed hash table is simply sev-

eral instances of this data structure (\bucket lists") pointed
to from an array. The invariant inference would require an
extra level of abstraction over the indices of the array, but
would essentially be the same. A binary tree implementation
of a set or mapping is also very similar to the SetViaList

example. There is (conventionally) an internal node type.
Instances of this node type are private to the tree (i.e,, we
may infer that they are owned by the tree), and have refer-
ence count one, as a class invariant.
We do not intend this technique to be con�ned to data

structures whose elements all have reference count one. We
could imagine elaborating the tree example by having every
non-root node contain a reference to its parent. The invari-
ant to be inferred would become more complicated, essen-
tially saying that all tree nodes are owned by the top-level
set or mapping object, that all non-root, non-leaf nodes n

(those with non-null child pointers) have rc[n] = 3, and that
leaf nodes l (those with null child pointers) have rc[l] = 1.
But the inference mechanism should (I hope) be essentially
the same. A similar example is a circular doubly linked list,
pointed to by some outer owner object. Here the desired
invariant is more complicated. Reference counts of owned
nodes are either 3, for the list node pointed to by the owner
object, or else 2 for all other nodes. List pointer �elds in
both directions point to other nodes owned by the same
owner. It will be interesting to see whether these techniques
can infer the desired invariants for these more complicated
examples.

6. OBJECT COMPOSITION
Suppose that class type X has a �eld f of type Set. But X

accesses this sub-object only through its interface; X doesn't
know that (say) the underlying implementation of the Set

is SetViaList. Using techniques like the ones we describe
above to analyze X, it may be possible to identify points at
which �eld x.f (for x of type X) becomes unreachable. In
this case, we would like to delete not only the outermost
SetViaList object, but also all of the Node objects it owns.
(Note, of course, that we cannot safely delete the set ele-
ments referenced by those nodes.)
We can achieve this by giving every object an implicit de-

structor. The purpose of this is only to deallocate private
state; this is accessible only to the language implementation,
and is separate from any language-level �nalization mecha-
nism. (I should mention that classes with GC-initiated �nal-
izers should not be explicitly deallocated { the �nalization
mechanism usually creates an implicit reference to the object
that should be counted in the object's reference count when
it is �rst allocated.) The default destructor implementation
is to do nothing. For classes such as SetViaList for which
we've been able to infer an interesting invariant, however, we
may be able to use this invariant to synthesize the desired
destructor. The idea would be to recognize conditions on
objects reachable from owner objects as starting points for
loops, and ownership invariants as loop generators. That
is, it's not hard to imagine going from our inferred class
invariant to

class SetViaList implements Set {
...
private void destroy() {
Node t = s.head;
while (t != null) {
// loop invariant: rc[t] = 1 && owner[t] = s
Node next = t.next;
free(t);
t = next;

}
}

Note that the precondition for free is established by the
loop invariant.

7. CAVEATS
This paper tries to work out the techniques in enough

detail to convince the reader that it could be mechanized;
however, I should be clear that this is a paper design and
we have implemented very little of this yet. Reviewers had
a number of questions about the technique, some of which I
answered in the revised text, others of which I address here.
I have steered clear of multi-threading issues: many of the

assumptions made are valid only if there is no concurrency
between methods of a class. This could be enforced in a
multithreaded setting by requiring all public methods of the
owning object to be synchronized.
Obviously, we cannot support public data �elds that par-

ticipate in an invariant, since such �elds may be modi�ed
arbitrarily. Actually, this caveat applies to class-local anal-
yses; a whole-program analysis might be able to treat each
modi�cation of a public �eld as a \mini-method," and show
that such modi�cations preserve an invariant. The motivat-
ing example in this paper has been simple enough to avoid
calls to methods outside the analyzed class (or its private
classes, such as Node), and thus has appeared as a class-local
analysis. In more complicated examples with such calls, the
analysis would become more like a whole-program analysis.
However, calls to methods outside the analyzed class could
be treated with much less precision. Essentially we are only
interested in whether the call can modify state relevant to
the invariant we are inferring. If so, then it should be \in-
lined" into the analysis. If not, it can be ignored (as a call
with arbitrary side-e�ects on variables outside the scope of
the analysis).

8. RELATED WORK
In this section I survey various categories of related work.
After a fairly long period of neglect by the memory man-

agement community, there has been a recent resurgence of
interest in reference counting techniques. Large commercial
applications often have large amounts of long-lived, infre-
quently updated heap data. For such applications (at least
for their long-lived data), reference counting is attractive
because its cost is proportional to pointer mutation rates,
rather than to total heap size. This work includes work by
Bacon et al. [1], Levanoni and Petrank [16], and Blackburn
and McKinley [2].
There are other forms of compile-time garbage collection.

Escape analysis [3, 18, 8, 22] identi�es when objects reach-
able only from a single thread's stack become free. Region
inference [20, 14] (essentially) identi�es points at which all
objects allocated within a given stack frame become free,
and deallocates them en masse. The analysis we propose
addresses orthogonal issues.
Shape analysis [19] is clearly related to this work, though

it uses di�erent methods. These methods have more in com-
mon with traditional compiler analyses than the kind of
abstract interpretation/program veri�cation techniques we

have advocated here. The tradeo� is more well-understood
worst-case analysis times for shape analysis, but perhaps at
the cost of less generality in the kinds of invariants that can
be inferred; this remains to be tested. The Role Analysis
work of Kuncak et al. [15] is also related. Here the pro-
gramming language is extended to allow the programmer to
embed certain invariants as part of types, which are veri-
�ed as part of type-checking. This system probably enables
expression of the invariants necessary to enable the explicit
deallocation optimization, but requires them to be explic-
itly expressed in a new language rather than inferred in an
existing language.
The other side of this spectrum are automatic program

veri�cation systems, such as ESC [10, 13] and Pre�x [7].
These sorts of tools have not usually been used to verify,
much less infer, invariants as complicated as the ones we
discuss. (Though the Houdini assistant of ESC [12] makes
some e�orts in the inference direction.) Our introduction
of owner and rc as automatically updated state variables
is a contribution that might be useful in the veri�cation
framework, as well. Bourdoncle [4] also used abstract in-
terpretation techniques to infer program invariants, though
again invariants considerably less elaborate than the ones
we're contemplating here.
Linear types [21] are essentially a method for enforcing

rc[x] = 1 properties via the type system. The Vault sys-
tem [11] allows a mixing of linear and nonlinear types, with
a controlled dynamic \focus" operation allowing an object
of nonlinear type to be considered temporarily linear, with
associated type guarantees ensuring that no possible aliases
can be used to modify the object in the region of focus.
When linear type restrictions do not make the program-
ming of a data structure unnatural, it is probably simpler
to express such properties in a type system, rather than via
the relatively complicated invariants we have shown in this
work. However, the invariants are also clearly more general:
they need not apply only to rc[x] = 1 properties, as the
doubly-linked list example suggests. Also, invariant annota-
tions largely allow existing languages to be used unchanged
except for the annotations.
The owner state variable concept obviously owes much to

the concept of ownership types [6, 5]. As discussed previ-
ously, having the ownership map as an updatable state com-
ponent may simplify veri�cation of some programs: trans-
ferring ownership of a node from one object to another seems
to become simpler, since it does not require a change in the
type of the object. Another di�erence in our contribution
is noting the interaction of ownership and program veri�-
cation. Invariants phrased as quanti�cation over all objects
reachable from a given object are notoriously diÆcult to
reason about mechanically (see [17]). I have some hope that
invariants phrased as quanti�cation over all objects owned
by a given object may be considerably more tractable.

9. CONCLUSION
Programs are coming to have more and more live data

in the heaps. Usually, much of this data is long-lived and
rarely-modi�ed. There exist many good techniques for eÆ-

ciently collecting short-lived data, but collecting long-lived
data that becomes garbage in a timely manner, without re-
quiring full tracing traversals of very large live data sets,
remains a challenge. As discussed above, techniques such as
reference counting, whose cost is proportional to mutation
rates, have undergone a resurgence of interest. This paper
suggests that static analysis techniques may make it possi-
ble to get some of the bene�ts of reference counting without
the runtime overhead.

10. TRADEMARKS
Java is a trademark or registered trademark of Sun Mi-

crosystems, Inc., in the United States and other countries.

11. ACKNOWLEDGMENTS
I would like to thank the anonymous reviewers for their

helpful comments. This paper is in some measure a plea to
�nd out what else I need to read to contribute in this area,
and the reviewers helped greatly in that regard.

12. REFERENCES
[1] David F. Bacon, Clement R. Attanasio, Han B. Lee,

V. T. Rajan, and Stephen Smith. Java without the
co�ee breaks: A non-intrusive multiprocessor garbage
collector. Submitted for publication; available at
http://www.research.ibm.com/people/d/dfb/papers.html,
2000.

[2] Stephen M. Blackburn and Kathryn S. McKinley.
Ulterior referene counting: Fast garbage collection
without a long wait. In OOPSLA'03 ACM Conference
on Object-Oriented Systems, Languages and
Applications, ACM SIGPLAN Notices, Anaheim, CA,
November 2003. ACM Press.

[3] Bruno Blanchet. Escape analysis for object oriented
languages. application to Java. In Proceedings of the
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 20{34,
1999.

[4] F. Bourdoncle. Assertion-based debugging of
imperative programs by abstract interpretation. In Ian
Sommerville and Manfred Paul, editors, Software
Engineering|ESEC '93, volume 717 of Lecture Notes
in Computer Science, pages 501{516. Springer-Verlag,
1993.

[5] Chandrasekhar Boyapati, Robert Lee, and Martin
Rinard. Ownership types for safe programming:
preventing data races and deadlocks. ACM SIGPLAN
Notices, 37(11):211{230, November 2002.

[6] Chandrasekhar Boyapati, Barbara Liskov, and Liuba
Shrira. Ownership types for object encapsulation. In
Cindy Norris and Jr. James B. Fenwick, editors,
Proceedings of the 30th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages
(POPL-03), volume 38, 1 of ACM SIGPLAN Notices,
pages 213{223, New York, January 15{17 2003. ACM
Press.

[7] William R. Bush, Jonathan D. Pincus, and David J.
Siela�. A static analyzer for �nding dynamic
programming errors. Software Practice and
Experience, 30(7):775{802, June 2000.

[8] Jong-Deok Choi, M. Gupta, Maurice Serrano,
Vugranam C. Sreedhar, and Sam Midki�. Escape
analysis for Java. In OOPSLA'99 ACM Conference on
Object-Oriented Systems, Languages and Applications,
volume 34(10) of ACM SIGPLAN Notices, pages 1{19,
Denver, CO, October 1999. ACM Press.

[9] David L Detlefs, K. Rustan M. Leino, and Greg.
Nelson. Wrestling with rep exposure. Technical Report
SRC-RR-156, Hewlett Packard Laboratories, July 29
1998.

[10] David L. Detlefs, K. Rustan M. Leino, James B. Saxe,
and Greg Nelson. Extended static checking. Technical
Report SRC Research Report 159, Compaq Systems
Research Center, December 1998.

[11] Manuel Fahndrich and Robert DeLine. Adoption and
focus: practical linear types for imperative
programming. In Cindy Norris and Jr. James B.
Fenwick, editors, Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design
and Implementation (PLDI-02), volume 37, 5 of ACM
SIGPLAN Notices, pages 13{24, New York, June
17{19 2002. ACM Press.

[12] Cormac Flanagan and K. Rustan M. Leino. Houdini,
an annotation assistant for ESC/java. Technical
Report SRC-TN-2000-003, Hewlett Packard
Laboratories, December 20 2000.

[13] Cormac Flanagan, K. Rustan M. Leino, Mark
Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended static checking for Java. ACM
SIGPLAN Notices, 37(5):234{245, May 2002.

[14] Niels Hallenberg, Martin Elsman, and Mads Tofte.
Combining region inference and garbage collection. In
Proceedings of SIGPLAN 2002 Conference on
Programming Languages Design and Implementation,
ACM SIGPLAN Notices, pages 141{152, Berlin, June
2002. ACM Press.

[15] Viktor Kuncak, Patrick Lam, and Martin Rinard.
Role analysis. ACM SIGPLAN Notices, 37(1):17{32,
January 2002.

[16] Yossi Levanoni and Erez Petrank. An on-the-y
reference counting garbage collector for Java. In
OOPSLA'01 ACM Conference on Object-Oriented
Systems, Languages and Applications, volume 36(10)
of ACM SIGPLAN Notices, Tampa, FL, October
2001. ACM Press.

[17] Greg Nelson. Verifying reachability invariants of
linked structures. In Conference Record of the Tenth
ACM Symposium on Principles of Programming
Languages, pages 38{47. ACM, Jan 1983.

[18] Young Gil Park and Benjamin Goldberg. Reference
escape analysis: Optimizing reference counting based
on the lifetime of references. In Proceedings of the
Symposium on Partial Evaluation and

Semantics-Based Program Manipulation, volume 26, 9
of ACM SIGPLAN NOTICES, pages 178{189, New
York, June 17{19 1991. ACMPress.

[19] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm.
Solving shape-analysis problems in languages with
destructive updating. ACM Transactions on
Programming Languages and Systems, 20(1):1{50,
January 1998.

[20] Mads Tofte and Lars Birkedal. A region inference
algorithm. ACM Transactions on Programming
Languages and Systems, 20(4):724{767, July 1998.

[21] P. Wadler. Linear types can change the world! In
M. Broy and C. Jones, editors, IFIP TC 2 Working
Conference on Programming Concepts and Methods,
Sea of Galilee, Israel, pages 347{359. North Holland,
April 1990.

[22] John Whaley and Martin Rinard. Compositional
pointer and escape analysis for Java programs. In
OOPSLA'99 ACM Conference on Object-Oriented
Systems, Languages and Applications, volume 34(10)
of ACM SIGPLAN Notices, pages 187{206, Denver,
CO, October 1999. ACM Press.

