
Short Presentation: Formally Specifying Dynamic Data
Structures for Embedded Software Design: an Initial

Approach

[Abstract]

Edgar G. Daylight
∗

DESICS Division, IMEC,
Kapeldreef 75, B-3001

Heverlee, Belgium

voudheus@imec.be

Bart Demoen
Dept. of Comp. Sc.

K.U.Leuven,
Celestijnenlaan 200 A, B-3001

Heverlee, Belgium

bmd@cs.kuleuven.ac.be

Francky Catthoor
†

DESICS Division, IMEC,
Kapeldreef 75, B-3001

Heverlee, Belgium

catthoor@imec.be

ABSTRACT
In the embedded, multimedia community, designers deal
with data management at different levels of abstraction rang-
ing from abstract data types and dynamic memory manage-
ment to physical data organisations. In order to achieve
large reductions in power consumption, memory footprint,
and/or execution time, data structure related optimizations
are a must [1, 6, 7]. However, the complexity of describing
and implementing such optimized implementations is im-
mense. Hence, a strong, practical need is present to unam-
biguously (i.e. mathematically) describe these complicated
dynamic data organisations.

The objective of our work (in progress) is to formally de-
scribe data structures and access operations –or dynamic
data structures for short– that we have implemented in prior,
application-related work [2]. We do this by (a) extending the
syntax and semantics of Separation Logic [3, 4, 5] –a logic
developed recently in the program verification community–
and (b) using it as a specification language for our applica-
tions.

In this paper we specify a singly linked list (SLL) in terms
of structure and access operations. To do the latter, we
extend Separation Logic’s syntax and semantics in order to
model access operations as heap changes.

1. SPECIFY A SINGLY LINKED LIST (SLL)
AS A HEAP

We reuse the initial spec of an SLL from Reynolds [5]:

∗Also at Dept. of Comp. Sc. K.U.Leuven, Belgium.
†Also at K.U.Leuven, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPACE ’04 Venice, Italy
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

list ε(i) , emp ∧ (i = nil)

list (a � α) (i) , ∃j.(i 7→ a, j) ? list α(j)

The spec –which is graphically represented in Figure 1–
uses Separation Logic’s syntax. The first line of the spec
refers to the base case of the inductive definition: the list is
empty (denoted by emp) and the head pointer i is nil. The
second line corresponds to the inductive case: the element a

and the pointer j are stored in the first record of the list and
j points to the rest of the list (which is itself a list). The
empty list is denoted by ε. A list containing the elements
a, b, c, . . . is denoted as a � α in which a denotes the first
element of the list and α denotes the rest of the list; i.e. the
elements b, c, . . . The notation i 7→ a, j is an abbreviation for
(i 7→ a) ? (i + 1 7→ j): the heap cell with address i contains
the element a and the adjacent heap cell with address i + 1
contains the pointer j.

...
i

i = nil

BASE CASE

INDUCTIVE CASE

nilj

ba c

Figure 1: Singly Linked List (SLL).

As an example, we specify the calculate operation of an
SLL as follows.

calculate i f res , (emp ∧ (i = nil) ∧ (res = 0))
∨

(∃v.∃j. (i 7→ v, j) ? (calculate j f (res − (f v))))

If calculatei f res holds true, then the result res = f(a)+
f(b)+f(c)+. . . where the list contains the elements a, b, c, . . .

The beginning of the list is characterized by the head pointer
i.

2. SPECIFY SLL AS HEAP CHANGE
How can we specify the appending of an element to an

SLL? Is Separation Logic’s original syntax appropriate for
this? The answer is no: we need to distinguish between an
input heap hi and an output heap ho in order to model a
heap change as opposed to just modelling one heap.

The following spec (see also Figure 2) uses additional syn-
tax and semantics which is formalized in Section 4. In order
to append an element a to an SLL, we distinguish between
two cases. The first line in the spec corresponds to the first
case and the other lines correspond to the second case of
Figure 2.

append i a j , ((empi ∧ (i = nil)) ∧ (j 7→o a, nil))
∨

∃m.∃m
′

.∃b ((i = j)∧
(

(i 7→i b, m) ∧
(

j 7→o b, m
′

))

?
(

append m a m
′

))

In the first case, the initial (or input) list is empty (de-
noted by empi where i stands for input), the head pointer
i of the list is nil, and the output list contains a record
< a, nil >. In other words, the change described here cor-
responds to appending an element a to an empty list.

input heap

ho

output heap

hi
i=nil

a

nil

aj

CASE 1

input heap

ho

output heap

hi

abj

CASE 2

a

m

bi

nil

m’ nil

a

c d

c d

Figure 2: appendiaj: Appending a record to an SLL.

In the second case, the input list is not empty: the head
pointer i points to the first record < b, m > in the input
list. Since (in this example) the element a is appended to
the end of the list, the head pointer j of the output list also

points to b. This is denoted by j 7→o b, m
′

(where o stands

for output). The pointer m
′

is the new pointer that serves
as the head pointer of the newly obtained rest of the list
(i.e. after the element a has been appended to the rest of
the input list). This is expressed by the recursive call to

append m a m
′

.
Similarly, removing an element b from the (singly linked)

list is specified as follows.

remove i b j , ((i 7→i b, j) ∧ empo) ? Same

∨
(

∃m.∃m
′

.∃a. (a 6= b) ∧ (i = j) ∧
(

(i 7→i a, m) ∧
(

i 7→o a, m
′

))

?
(

remove m b m
′

))

To be complete, we also respecify the structure of the SLL
(cfr. Figure 1) in the context of heap changes:

list ε(i) , Same (emp) ∧ (i = nil)

list (a � α) (i) , ∃j. Same(i 7→ a, j) ? list α(j)

We use Same(emp) to express that both the input heap
and the output heap are empty. Similarly, Same(i 7→ a, j)
is equivalent to (i 7→i a, j) ∧ (i 7→o a, j).

3. REINTRO TO SEPARATION LOGIC
We briefly reintroduce Separation Logic. All fundamental

concepts are borrowed from [3, 4, 5]. In the next section we
extend the logic in order to model heap changes.

Stack vs. Heap
To describe a data organisation, we use a stack s ∈ S and a
heap h ∈ H.

V al = Int ∪ Atoms ∪ Loc

S = V ar ⇀fin V al

H = Loc ⇀fin V al

Loc= {l, . . .} is a set of locations and ∀l ∈ Loc. l + 1 ∈ Loc

and (l + 1) − 1 = l. Var = {x, y, . . .} is a set of variables.
Atoms = {nil, a, . . .} is the set of atoms. We use the
notation ⇀fin for finite partial functions.

Expressions
Expressions are:

E ::= x (variable) | 42 (integer) | nil (nil) | a (atom) |
l (location) | E1+E2 (addition) | E1−E2 (subtraction) | . . .

where E1and E2 are either both integers or locations. In
the latter case, addition and subtraction on locations still
needs to be defined.

Syntax
Separation Logic is an extension of classical (predicate) logic.
The empty heap, spatial conjunction, and spatial implica-
tion1 constitute this extension.

The non-atomic formulae β are:

β ::= α Atomic Formulae
| false Falsity
| P ⇒ Q Classical Implication
| emp Empty Heap
| P ? Q Spatial Conjunction
| P →?Q Spatial Implication
| ∃x.P Existential Quantification

where P and Q are non-atomic formulae.
The atomic formulae α are:

α ::= E1 = E2 Equality
| E1 < E2 Smaller than
| E1 ≤ E2 Smaller than or equal to
| E1 7→ E2 Points to
| · · ·

where E1 and E2 are expressions. We use E1 ≤ E2 as an
abbreviation for (E1 = E2) ∨ (E1 < E2).

The other connectives (such as ¬, ∨, ∧) are defined in
terms of those presented above. For instance: ¬P = P ⇒
false. We define the set free(P) of free variables of a for-
mula as usual.

1We do not use spatial implication in this paper and there-
fore omit it when discussing the semantics.

Notation
We use h ⊥ h

′

to denote that heaps h and h
′

are disjoint:

dom(h) ∩ dom(h
′

) = ∅. Also, h � h
′

denotes the union of
disjoint heaps (i.e. the union of functions with disjoint do-
mains).

Semantics
The relation of the form s, h |= P asserts that P is true of
stack s ∈ S and heap h ∈ H. It is required that free(P) ⊆
dom(s). An expression E is interpreted as a heap-independent
value [[E]] s ∈ V al where the dom(s) includes the free vari-
ables of E. We present two semantic clauses below; the rest
can be found in [3].

s, h |= E1 7→ E2 iff {[[E1]] s} = dom(h) and
h([[E1]] s) = [[E2]] s

s, h |= P ? Q iff ∃h0, h1. h0 � h1 = h,

s, h0 |= P and s, h1 |= Q

4. HEAP CHANGES
We extend the original syntax and semantics of Section 3

to model change. We do this by changing the relation s, h |=
P to s, hi, ho |= P . We use hi to denote the input heap (i.e.
the heap before the change has occurred) and ho to denote
the output heap (i.e. the heap after the change). We do not
split the stack s into an input stack si and an output stack
so. We present extended syntax, additional notation, and
corresponding semantics.

Syntax
The additional, non-atomic formulae β are:

β ::= empi Empty Input Heap
| empo Empty Output Heap
| Same Identical Input & Output Heaps (IIOH)
| Same (R) IIOH and both model R
| P ;Q Sequential Composition

where P and Q are non-atomic formulae and R is a non-
atomic formula that describes only one heap. In other words,
R is a non-atomic formula of Section 3.

The additional atomic formulae α are:

α ::= E1 7→i E2 Points to Relation in Input Heap
| E1 7→o E2 Points to Relation in Output Heap

Instead of having emp to denote that the (one and only)
heap h is empty, we use empi to denote that input heap hi is
empty and empo to denote that output heap ho is empty. We
use Same to describe that hi and ho are identical. Similarly,
Same (R) is used when both hi and ho adhere to the descrip-
tion R. For instance, s, hi, ho |= Same ((5 7→ 3) ? true) is se-
mantically equivalent to s, hi, ho |= ((5 7→i 3) ∧ (5 7→o 3)) ?

Same. Note that we use two different points-to relations:
7→i for the input heap hi and 7→o for the output heap ho.

Notation

We use (hi, ho) ⊥
(

h
′

i, h
′

o

)

to denote that hi ⊥ h
′

i and ho ⊥

h
′

o. Similarly, (hi, ho) �

(

h
′

i, h
′

o

)

denotes
(

hi � h
′

i, ho � h
′

o

)

.

Semantics
The semantics of assertions are given by:

s, hi, ho |= P with free(P) ⊆ dom(s)

The basic domains of Section 3 remain unchanged. All
semantic clauses are defined below. Note that in the last
clause we use the relation s, h |= R of Section 3.

s, hi, ho |= E1 = E2 iff [[E1]] s = [[E2]] s
s, hi, ho |= E1 < E2 iff [[E1]] s < [[E2]] s
s, hi, ho |= E1 7→i E2 iff {[[E1]] s} = dom(hi) and

hi([[E1]] s) = 〈[[E2]] s〉
s, hi, ho |= E1 7→o E2 iff {[[E1]] s} = dom(ho) and

ho([[E1]] s) = 〈[[E2]] s〉
s, hi, ho |= empi iff hi = ∅

s, hi, ho |= empo iff ho = ∅

s, hi, ho |= P ? Q iff ∃hi,1, ho,1, hi,2, ho,2.

(hi, ho) = (hi,1, ho,1) � (hi,2, ho,2) ,

s, hi,1, ho,1 |= P and
s, hi,2, ho,2 |= Q

s, hi, ho |= false never
s, hi, ho |= P ⇒ Q iff if s, hi, ho |= P

then s, hi, ho |= Q

s, hi, ho |= ∃x.P iff ∃v ∈ V al. [s |x 7→ v], hi, ho |= P

s, hi, ho |= P ; Q iff ∃htmp. s, hi, htmp |= P and
s, htmp, ho |= Q

s, hi, ho |= Same iff hi = ho

s, hi, ho |= Same (R) iff s, hi |= R and s, ho |= R

and s, hi, ho |= Same

5. ACKNOWLEDGEMENTS
The first author thanks P. O’Hearn & C. Calcagno for

helping him specify access patterns.

6. REFERENCES
[1] F. Catthoor, et al., “Custom Memory Management

Methodology: Exploration of Memory Organisation for

Embedded Multimedia System Design”, Kluwer, 1998.

[2] E.G. Daylight, et al., “Memory-Access-Aware Data Structure
Transformations for Embedded Software with Dynamic Data
Accesses”, To appear in: Special Issue on Low Power

Electronics, 2003.

[3] S. Ishtiaq, P.W. O’Hearn, “BI as an Assertion Language for
Mutable Data Structures”, Proc. of the 28th ACM-SIGPLAN ,

London, Jan. 2001.

[4] P. O’Hearn, J. Reynolds, H. Yang, “Local Reasoning about
Programs that Alter Data Structures”, Proceedings of CSL’01 ,
Paris, 2001. Pages 1-19, LNCS 2142 Springer-Verlag.

[5] J.C. Reynolds, “Separation Logic: A Logic for Shared Mutable

Data Structures”, Proc. of the 17th Annual IEEE Symposium
on Logic in Computer Science, July 22-25, 2002 in Denmark.

[6] D. Singh, et al., “Power conscious CAD tools and

methodologies: a perspective”, Special Issue on Low Power
Electronics, IEEE, Vol.83, No.4, pp.570-594, April 1995.

[7] N. Vijaykrishnan, et al., “Evaluating integrated HW-SW
optimisations using a unified energy estimation framework”,

IEEE Trans on Computers, Vol.5.2, No.1, pp59-75, Jan. 2003.

