
Local reasoning, separation and aliasing

Richard Bornat
School of Computing Science

Middlesex University.

R.Bornat@mdx.ac.uk

Cristiano Calcagno
Department of Computing

Imperial College
University of London

ccris@doc.ic.ac.uk

Peter O’Hearn
Department of Computer Science

Queen Mary College
University of London

ohearn@dcs.qmul.ac.uk

Abstract

Structures built by pointer aliasing, such as DAGs and graphs, are
notoriously tricky to deal with. The mechanisms of separation logic
can deal with these structures, but so far this has been done by the
maintenance of a global invariant. Specifications and proofs which
use local reasoning, and which may point the way to a structured
programming for pointers, are discussed. An idiom for inclusion
sharing, where one structure is included in another, is presented. A
notion of ‘partial graphs’ – graphs with dangling pointers – is used
to facilitate proof.

1 Introduction

The purpose of a formal logic is to codify reasoning, to enable
simple mechanical steps that correspond to reliable but intricate
reasoning in a semantic domain. It’s reasonable to demonstrate that
a novel logic helps us to solve old problems in new ways. A sound
logic, however, will prove nothing that is not already a semantic
consequence so in a sense it adds nothing to knowledge: all that
you can prove with it you could already prove without it. In that
sense it’s futile to demonstrate its utility, but it’s still important to
try, because ease of reasoning matters.

The notion of structured programming is inextricably intertwined
with the properties of formal logics for reasoning about programs.
Proofs of structured programs come apart at the same seams as the
programs themselves, and compose likewise. Build your programs
from these components in this way, the message goes, and it will be
easier to build a correct program. It is so effective that nowadays it’s
hard to find programmers who don’t write structured programs. De-
signers of novel logics can quite reasonably be asked if their work
will lead to similarly powerful reasoning and similarly effective ad-
vice.

Separation logic [9, 4, 5, 8], which derives from Bunched Implic-
ation (BI) logic [6, 7], aims to simplify reasoning about programs
that mutate data structures in a heap – pointer programs, for short.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Pointers have been thought of as the gotos of data structuring, and
so they can be, but if we can organise things so that our data struc-
tures and our programs come apart neatly in similar ways – struc-
tured reasoning for the heap – we shall perhaps be able to use point-
ers reliably. Separation logic facilitateslocal reasoningabout parts
of data structures: if an assignment or a procedure call alters only
one corner of one data structure, then we can easily express and
exploit the fact that it doesn’t alter any other part of it nor any
part of any separate data structure. The advantages can be seen
most clearly in Yang’s proof of the Schorr-Waite algorithm [12, 13],
which elegantly avoids the struggles of [1] to show the same result
using Hoare logic and array assignment. Apart from that work and
Torp-Smith’s proof of the Cheney algorithm [11], most work using
separation logic has focussed on lists and trees, where separation is
easily described.

In this paper we discuss three formal proofs (alas, not yet mechan-
ically checked) of algorithms which deal with internal sharing of
structure; two of the proofs deal with aliasing as well. Our aim
has been to make the reasoning as local as possible. Although we
can see considerable possibilities for further improvement, we can
already claim significant success in extending the range of separa-
tion logic to new and difficult areas.

2 A brief introduction to separation logic

Assignment to a variable affects just that variable. Hoare’s variable
assignment rule

{Rx
E}x := E{R}

elegantly captures that property in a substitution that affects only
one variable. The rule supports local reasoning because substitution
has no effect on any other variable. Assignment to an array element
affects just that element, but Hoare’s array element assignment rule

{Ra
a⊕(I :E)}a[I] := E{R}

isn’t correspondingly local. Instead, the assignment affects every
formula that mentions the array, not merely those which mention
the assigned element. As a consequence, the difficulty of reasoning
in Hoare logic about programs that use arrays revolves around the
arithmetic of array indexing. A program heap is a giant array, and
is usually sparse. Reasoning about heaps in Hoare logic is just too
hard; if we are to do the job, we must find an easier way.

A program’s heap contains cells addressed by integers (not neces-
sarily a contiguous range of addresses, nor necessarily starting at 0).
Heap cells contain values. In particular, they may contain integers
which should be read as pointers, and thus we can have recursive
and cyclic data structures.

Heap space can be acquired and, once acquired, released. The heap
a program is allowed to use is limited to what was provided when
execution starts plus what was acquired during execution and not
yet released. It follows that only some integers point into the heap,
while others are ‘dangling pointers’. Dereferencing a dangling
pointer is always a mistake and can be a disaster; for simplicity we
suppose that it always crashes the program. Avoiding such crashes
is one of the practical difficulties of programming with pointers.
Dangling pointers are not a difficulty for separation logic, how-
ever: there’s a real sense in which they are the point, the engine
that makes the reasoning tick.

A program has a ‘stack’ of named variables (think: collection of re-
gisters) outside the heap. There are no address operations, implicit
or explicit, on the stack, so aliasing within it is impossible. Vari-
ables may contain integers and thus point into the heap (or dangle).

Our programming language is ‘while ’ programs with recursive pro-
cedures, using a restricted range of assignment instructions, inten-
ded to correspond closely to the operation of a conventional von
Neumann machine. We use Hoare triples{Q}C{R} to specify par-
tial correctness: programC, started in a state (heap + stack) which
satisfiesQ, is guaranteed (i) not to crash by referencing a heap cell
outside its footprint and (ii) if it terminates, to arrive at a state sat-
isfying R. The novelty of the separation logic approach is the inter-
pretation of formulas describing the heap inQ andR.

The simplest heap isemp, which contains no cells and allows no
dereferencing at all. A single-cell heap, for examplex 7→V, allows
dereferencing and update of just one location. In this heap[x] (read
‘contents ofx’) gives the value in the heap cell indexed byx, and
deliversV; the instruction[x] := E (see below) updates that same
cell, and after it the heap isx 7→ E. The constructionx 7→ is a use-
ful shorthand for∃v · x 7→ v. The intuitionistic operator↪→ doesn’t
define a heap but allows searching:x ↪→ E means the current heap
has a sub-heap which satisfiesx 7→ E. In examples we writex 6↪→
as shorthand for¬(∃v · x ↪→ v) – i.e. x doesn’t point anywhere in
the current heap.

The (?) connective deals withdisjoint heaps (heaps with disjoint
address domains).A?B holds of a heap just when it can be divided
into two disjoint heaps, where simultaneouslyA holds in one andB
in the other.(?) is associative and commutative; in BI it’s a multi-
plicative version of conjunction. As you would expect,A?emp=
emp? A = A. You can deduce disjointness of address domains
when heaps are combined: for example(x 7→ ? y 7→) ` x 6= y,
and x 7→ V ? x 7→ W must be false whatever the values ofV and
W, since the integerx can’t point to two separate cells at the same
time. Note that disjoint heaps may contain dangling pointers across
the divide, sox 7→ y?y 7→ x is acceptable.

Address arithmetic is allowed, since pointers are really just integers.
In particular the constructionx 7→V1,V2, ...,Vn is shorthand forx 7→
V1?x+1 7→V2?...?x+n−1 7→Vn. In our programs we are content
to use field-access formulaex.fieldas shorthand for[x+K] for some
agreed fixed integerK.

The (∧) connective deals withidentical heaps.A∧B, normal ad-
ditive conjunction, holds of a heap ifA holds of the whole, and
similarly B. In proofs below we make use of the construction
(A? True)∧B: True holds of any heap, so this says thatA holds
in part of the heap, andB holds in the whole, making a kind of
subheap relation. We can also useA∧B if either A or B is ‘pure’,
saying nothing about the heap at all. In examples we give(∧) a
lower syntactic priority than(?), so thatA? B∧C∧D is read as

(A?B)∧C∧D.

(−?) is the ‘magic wand’ connective.A−? B is true of a heap if,
whenever it is joined to a disjoint heap which makesA true,B holds
in the result. In the particular case that there is only one heap which
satisfiesA, A−?B describes aB-heap with anA-shaped hole. It is a
multiplicative form of implication, andA? (A−?B) ` B.

In {Q}C{R}, C starts in a state satisfyingQ and generates a state
satisfyingR. Q describes the whole heap used byC, unless it gets
some more from a resource-generator like ‘new’. There are also
resource-destructors like ‘dispose’, and thus it follows thatR may
describe a larger or a smaller heap thanQ does. Because of this re-
source interpretation, and in contrast to our conventional treatment
of assignment to stack variables, we can readQ as circumscribing
C’s initial footprint in the heap.

The most important inference rule is the Frame Rule, which allows
us to localise reasoning about resources (it requires a proviso thatC
doesn’t assign stack variables free inP because of our conventional
treatment of stack-variable assignment).

{Q}C{R}
{P?Q}C{P?R}

(modifies C∩vars P= /0)

If C doesn’t go outside the heap described byQ, and ifP describes
a disjoint heap, then clearlyC leaves the heap described byP un-
changed. In effect we can pullQ out of the precondition, convert it
to Rwith C, and plugRback in to the postcondition.

We recognise three forms of assignment. It may seem irksome to
have a limited collection, but it’s easy to see that more complicated
constructions can be compiled down into the permitted forms by
using extra assignments to stack variables. Assignment to stack
variables is treated as in ordinary Hoare logic. In these rulesE
is a ‘pure’ expression which doesn’t refer to the heap. Because
of the frame rule, assignments that affect the heap can be defined
by giving a minimum resource context. (The naming restrictions
on variable assignment can be overcome with∃ bindings of initial
values.)

{Rx
E} x:=E {R}

{x 7→ } [x]:=E {x 7→ E}
{E′ 7→ E} x:=[E′] {E′ 7→ E∧x = E′} (x not free inE, E′)

We can treat directly the kind of primitive storage allocation which
underlies more sophisticated forms.

{emp} x := new(E) {x 7→ E}
{E 7→ } disposeE {emp}

These pre- and post-conditions give minimum resource contexts.
Together with the frame rule they tell us that new delivers a pointer
which is distinct from any in use in any other context (but not ne-
cessarily distinct from any other which may have been disposed in
the past, nor from any integer values which may be lying around
in stack or heap) and that dispose denies us future access to a
currently-accessible cell. In algorithms we write disposeE N as
a shorthand for disposeE;dispose(E +1); ...;dispose(E +N−1).

In reasoning about procedures we follow [5]. Our procedures don’t
alter any of their arguments, and they have no free variables, though
of course they may have side-effects on the heap. As a notational
convenience our procedures can return a result which can be as-
signed, but in every case our code could be transcribed into a more
conventional version which uses a result parameter. Where we have

written an assignment to a variable that isn’t in the procedure’s para-
meter list –l := ... in (9), for example – the cautious reader should
insert a local variable definition. In dealing with recursive steps,
we have appealed to a instance of the specification as an inductive
hypothesis. We haven’t given a proof of termination of any of the
examples, but structural induction arguments based on the formula
that is represented in the heap (see section 4 below) would seem to
be straightforward.

3 Separation and aliasing

The major practical difficulty of reasoning in a conventional Hoare
logic about programs that mutate arrays is array-index aliasing. Dif-
ferent index formulae denote the same array element, and formulae
change their reference as the values of variables change. Program
proofs must therefore focus on index formula arithmetic, which is
difficult to deal with logically.

The message of separation logic is that in dealing with programs
that mutate data structures interconnected by pointers, separation
trumps aliasing. The list, tree and graph algorithms investigated
in [1], for example, depend on separation between structures. To
verify those algorithms with array-index reasoning, it’s necessary to
describe that separation in predicate logic and to laboriously prove
after each algorithmic step that despite changes to stack variables
and the heap, the separation is preserved. The(?) connective of
separation logic, by contrast, allows explicit description of structure
separation and the frame rule effortlessly exploits that separation.

When we are dealing with a single list or tree, aliasing doesn’t mat-
ter, because it simply can’t occur. Even in cases where there is
substructure sharing – when two trees point to the same list, for
example – changes to the substructure don’t affect the structures
that point to it. When we are dealing with a DAG or a graph via a
global invariant, aliasing is straightforward to deal with once separ-
ation has been described. Following pointers and changing point-
ers, which is the name of the game in very many algorithms, is
perfect separation logic territory. That’s why we say that reasoning
in separation logic embraces the dangling pointer: it doesn’t mat-
ter what is attached to the end of a dangling pointer, because some
other part of the program will separately preserve an invariant of
that separate data structure.

A program that manipulates a cyclic graph, or even a directed acyc-
lic graph, has to deal explicitly with the possibility that there can
be multiple pointers to a substructure. In a cyclic graph it’s obvi-
ously necessary to avoid infinite recursions or endless repetitions
through the same sequence of vertices. Even in an acyclic graph
it’s normally a good idea to avoid considering the same subgraph
many times. In effect, pointers are being used as surrogates for the
structures they index, and the existence of other identical pointers
– aliases – matters a great deal. Programs which deal with struc-
tures that can have internal sharing must keep some kind of record
of substructures encountered, either by marking them as they are
encountered, or by recording them in a list or a spanning tree (or
whatever).

Our canonical problem is a recursive algorithm which copies a
rooted, directed, ordered, possibly cyclic graph. In such a graph
there can be several pointers to the same subgraph. In the copy
there must be just the same number of pointers, in similar posi-
tions, to a similar substructure: that is, the aliasing relationships of
the original have to be reproduced in the copy. Our specifications
therefore have to describe aliasing. Because we want to specify the

algorithm in terms of its effect on a subgraph which may include
aliased pointers, we need to specify some of the properties of the
graph outside the footprint, but we want to keep that part of the spe-
cification to a minimum, to make the reasoning as local as possible.

Previous successful uses of separation logic in this area, notably
Yang’s treatment [13] of the Schorr-Waite graph-marking algorithm
[10] and Torp-Smith’s proof [11] of the Cheney two-space garbage-
collection algorithm [3], have used global invariants to describe the
total heap being manipulated by a program. A particular micro-
action of the program, such as marking a heap cell or assigning a
pointer, uses the frame rule to pick out and modify those parts of
the invariant that are affected. Aliasing structures are described by
describing sets of locations. In these problems a global invariant
is appropriate: there is no recursion, the whole heap is available
at every point of the program, arithmetic is sometimes necessary
to distinguish one sort of pointer from another, and the program
always needs to able to access marks or pointers assigned at an
earlier stage.

When dealing with recursive algorithms that deal with DAGs and
graphs, it is clear that it isn’t satisfactory to deal with global in-
variants. The algorithms are compact, they obviously operate on
substructures, and it surely should be possible to reason locally in
the same sort of way that we deal with list and tree algorithms. It’s
likely that the specifications will be significantly more complicated
than with lists and trees, just because we have to describe aliasing.
It’s in that spirit that the work described below was undertaken. It’s
important to stress that if our reasoning is more ‘local’ than [13]
and [11], it’s because our problem algorithms are chosen to make it
possible.

4 Specification style

In specifying programs, following Reynolds [8], we describe data
structures by using a predicate which holds when a heap contains
a representation of a data structure described by a formula. For
example the tree

1 2 3
4

is described by the formula

Node (Node (Tip 1) (Tip 2))
(Node (Tip 3) (Node Empty (Tip 4))) (1)

The grammar of such descriptions, of possibly-empty trees with
integers at their tips, is

T ::= Node T T | Tip int | Empty

A heap can represent a Node by a triple of 1 with two tree pointers,
a Tip by a pair of 0 with the tip value, and Empty by nil. These
decisions can be set out in a heap predicate

tree nilEmpty =̂ emp
treet (Tip α) =̂ t 7→ 0,α

treet (Node λ ρ) =̂ ∃l , r · (t 7→ 1, l , r ? treel λ? treer ρ)
(2)

This predicate describes only the shape of a heap which represents
a tree and not in general its domain (i.e. its position). There are usu-
ally many heaps which make a predicate formula true. For example,

the heap

2 7→ 0,2?6 7→ 1,nil,80?10 7→ 1,266,19?19 7→ 1,105,6 ?
48 7→ 0,1?80 7→ 0,4?105 7→ 0,3?266 7→ 1,48,2

satisfies tree 10E whereE is the tree formula of (1). The same
formula is also satisfied by

4 7→ 0,1?7 7→ 1,4,13?10 7→ 1,7,100?13 7→ 0,2?15 7→ 0,3 ?
52 7→ 0,4?66 7→ 1,nil,52?100 7→ 1,15,66

It’s then possible to specify simple recursive algorithms like
copytree, which is given a pointer to a tree in the heap and pro-
duces a similarly shaped copy:

{treet τ} t ′ := copytree t{treet τ? treet ′ τ}

Because the pre- and post-conditions specify the shape but not the
domain of the heap, this specification doesn’t require that the input
heap is part of the output. A perversecopytreewould be permitted
to throw away part or all of its input and even assign tot, provided
only that it leaves two separateτ-shaped heaps on exit. For the rest
of this paper we ignore that kind of problem, which can be circum-
vented in ways that would add no illumination to our discussion.

5 Inclusion sharing

Our first example of internal structure sharing is the inclusion of
one structure within another: a list within a tree. The idiom of the
solution is widely useful, and we exploit it in our treatment of cyclic
graphs with forwarding pointers below.

Consider a binary tree with values at its tips and no null subtrees.
The grammar of formulae describing such trees is

B ::= Node B B | Tip val

The fringe of such a tree is a sequence of the values at its tips, which
can be computed from a tree formula (++ is sequence append):

fringe(Tip v) =̂ 〈v〉
fringe(Node λ ρ) =̂ fringeλ++ fringeρ (3)

Richard Bird posed us the problem of deriving ‘without fuss’ a pro-
gram which links together the fringe of this kind of tree. He ob-
served that if nodes and tips are both represented in the heap by a
triple (l ,v, r), tips would naturally have two nil subtree pointersl
and r, either of which would be enough to distinguish them from
nodes, and the other pointer slot could then be exploited to link
together the tips. Nodes would have an unused value slot. That
corresponds to the heap predicate

btreet (Tip v) =̂ t 7→ nil,v,
btreet (Node λ ρ) =̂ ∃l , r · (t 7→ l , , r ?btreel λ?btreer ρ) (4)

A list is conventionally represented by a linked sequence of (value,
pointer) records, the last of which contains a nil pointer. In the heap
representation of aTip , the second two slots can be viewed as a
component of a list. Rather than defining a nil-terminated list, we
need to define a list segment – a sequence of records the last of
which contains a continuation pointery, the whole representing a
sequencevs.

lsegy y〈〉 =̂ emp
lsegx y(〈v〉++vs) =̂ ∃x′ · (x 7→ v,x′ ? lsegx′ y vs) (5)

Note that a segment is a sequence of separated records, but the con-
tinuation pointery is unconstrained. In our examplesy will always
point to another segment or be nil, but we don’t have to rely on that
when checking whether a heap is an lseg .

5.1 Algorithm and specification

Since our business, at this stage of our understanding of separation
logic, is post-hoc verification rather than derivation, we focussed on
what seemed to us to be the obvious algorithm:

fringelink t c=̂ if [t] = nil then
[t +2] := c; t +1

else
fringelink [t] (fringelink [t +2] c)

fi

(6)

The continuation pointer argumentc links the fringes of adjacent
subtrees together, and overallfringelink t nil returns a pointer to
the nil-terminated fringe list of treet. The input footprint of
fringelink t c is clearly the tree pointed to byt, and the result points
to a list taking up part of the tree space:

flink t c

t t

c
res

A heap which was both fringeF and treeT would beF ∧T. The
fringe is normally smaller than the tree, so the output is can be
described as(F ? True)∧T. The specification of the algorithm is
then

{btreet τ}
res:= fringelink t c

{(lsegres c(fringeτ)?True)∧btreet τ}
(7)

5.2 Proof

To clarify the proof it’s helpful to compile the nested function call
of the else arm into a sequence of assignments. The proof of the
modified algorithm must then show

{btreet τ}
if [t] = nil then
{btreet (Tip v)}
[t +2] := c; t +1
{(lseg(t +1) c 〈v〉?True)∧btreet (Tip v)}

else
{btreet (Node λ ρ)}
res1:= fringelink [t +2] c;
res2:= fringelink [t] res1;
res2{

(lsegres2 c(fringeλ++ fringeρ)?True) ∧
btreet (Node λ ρ)

}
fi
{(lsegres c(fringeτ)?True)∧btreet τ}

The frame rule is used several times in the proof itself, and we’ve
introduced a notational device to clarify those steps. The deduction

{Q}C{R}
{P?Q}C{P?R}

else
{btreet τ∧ [t] 6= nil} ∴ {btreet (Node λ ρ)} ∴ {t 7→ l , , r ?btreel λ?btreer ρ}
Framed:

〈
{btreer ρ} res1:= fringelink [t +2] c; {(lsegres1 c(fringeρ)?True)∧btreer ρ}

〉
{t 7→ l , , r ?btreel λ? ((lsegres1 c(fringeρ)?True)∧btreer ρ)}
Framed:

〈
{btreel λ} res2:= fringelink [t] res1; {(lsegres2 res1(fringeλ)?True)∧btreel λ}

〉{
t 7→ l , , r ? ((lsegres2 res1(fringeλ)?True)∧btreel λ)? ((lsegres1 c(fringeρ)?True)∧btreer ρ)

}
∴{

(lsegres2 res1(fringeλ)? lsegres1 c(fringeρ)?True)∧ (t 7→ l , , r ?btreel λ?btreer ρ)
}

∴
{(lsegres2 c(fringeλ++ fringeρ)?True)∧btreet (Node λ ρ)}
res2
{(lsegres c(fringeλ++ fringeρ)?True)∧btreet (Node λ ρ)}

Figure 1. fringelink proof, Node case

pdag nilEmpty U U =̂ emp
pdagd (Ptr x) U U =̂ U x = d∧emp

pdagd (x : Tip α) U V =̂ x /∈ domU ∧V = U ⊕ (x : d)∧d 7→ 0,α
pdagd (x : Node λ ρ) U V =̂ ∃l , r,U ′,V ′ · (x /∈ domU ∧x /∈ domV ′∧V = V ′⊕ (x : d)∧d 7→ 1, l , r ?pdagl λ U U ′ ?pdagr ρ U ′ V ′)

Figure 2. Heap predicate for partial DAGs

{pdagd δ U V ∧ ranU = dom f ∧nil /∈ ranU ∧d 6= nil∧d /∈ dom f}
elsfd.tag= 0 then
{pdagd (x : Tip α) U (U ⊕ (x : d))∧ ranU = dom f ∧nil /∈ ranU} ∴
{d 7→ 0,α∧x /∈ domU ∧ ranU = dom f ∧nil /∈ ranU}
d′ := new(0,d.val);{

d 7→ 0,α?d′ 7→ 0,α∧x /∈ domU ∧x /∈ dom(f •U)∧ ranU = dom f ∧nil /∈ ranU
}

∴{
pdagd (x : Tip α) U (U ⊕ (x : d))?pdagd′ (x : Tip α) (f •U) ((f •U)⊕ (x : d′))∧ ranU = dom f ∧nil /∈ ranU

}
d′, f ⊕ (d : d′){

(pdagd (x : Tip α) U (U ⊕ (x : d))∧ (d 7→ ?True))?pdagd (x : Tip α) (f •U) ((f ⊕ (d : d′))• (U ⊕ (x : d))) ∧
ran(U ⊕ (x : d)) = dom(f ⊕ (d : d′))∧nil /∈ ran(U ⊕ (x : d))

}
Figure 3. Slowcopydag, Tip case

else
{pdagd δ U V ∧ ranU = dom f ∧nil /∈ ranU ∧ (∀x∈ ranU ·x 6↪→)∧d 6= nil∧d /∈ dom f ∧d.tag 6= 0} ∴
{pdagd (x : Node λ ρ) U V ∧ ranU = dom f ∧nil /∈ ranU ∧ (∀x∈ ranU ·x 6↪→)} ∴{

d 7→ 1,L,R?pdagL λ U U ′ ?pdagRρ U ′ V ′∧ ranU = dom f ∧nil /∈ ranU ∧ (∀x∈ ranU ·x 6↪→)∧x /∈ domU ∧x /∈ domV ′}
Framed:

〈{pdagL λ U U ′∧ ranU = dom f ∧nil /∈ ranU ∧ (∀x∈ ranU ·x 6↪→)}
l , f ′ := copydag d.left f{

pdagL λ U U ′ ?pdagl λ (f •U) (f ′ •U ′)∧ ranU ′ = dom f ′∧nil /∈ ranU ′}
〉

;{
(d 7→ 1,L,R? (pdagL λ U U ′∧ ((∀?y∈ ran(U ′−U) ·y 7→)?True))?pdagRρ U ′ V ′∧ (∀x∈ ranU ·x 6↪→)) ?
pdagl λ (f •U) (f ′ •U ′)∧ ranU ′ = dom f ′∧nil /∈ ranU ′∧x /∈ domU ∧x /∈ domV ′

}
Framed:

〈{(pdagRρ U ′ V ′∧ ranU ′ = dom f ′∧nil /∈ ranU ′∧ (∀x∈ ranU ′ ·x 6↪→)}
r, f ′′ := copydag d.right f ′{

pdagRρ U ′ V ′ ?pdagr ρ (f ′ •U ′) (f ′′ •V ′)∧ ranV ′ = dom f ′′∧nil /∈ ranV ′}
〉

;{
d 7→ 1,L,R?pdagL λ U U ′ ?pdagRρ U ′ V ′ ?pdagl λ (f •U) (f ′ •U ′)?pdagr ρ (f ′ •U ′) (f ′′ •V ′) ∧
ranV ′ = dom f ′′∧nil /∈ ranV ′∧x /∈ domU ∧x /∈ domV ′

}
d′ := new(1, l , r);{

d 7→ 1,L,R?pdagL λ U U ′ ?pdagRρ U ′ V ′ ?d′ 7→ 1, l , r ?pdagl λ (f •U) (f ′ •U ′)?pdagr ρ (f ′ •U ′) (f ′′ •V ′) ∧
ranV ′ = dom f ′′∧nil /∈ ranV ′∧x /∈ domU ∧x /∈ domV ′

}
d′, f ′′⊕ (d,d′){

pdagd (x : Node λ ρ) U (V ′⊕ (x : d))?pdagd′ (x : Node λ ρ) (f •U) ((f ′′⊕ (d,d′))• (V ′⊕ (x : d))) ∧
ran(V ′⊕ (x : d)) = dom(f ′′⊕ (d : d′))∧nil /∈ ran(V ′⊕ (x : d))

}
Figure 4. Slowcopydag, Node case

graph nilEmpty U U =̂ emp
graphg (Ptr x) U U =̂ U x = g∧emp

graphg (x : GNode α λ ρ) U V =̂ ∃l , r,U ′ ·
(
x /∈ domU ∧g 7→ α, l , r ?graphl λ (U ⊕ (x : g)) U ′ ?graphr ρ U ′ V

)
Figure 5. Heap predicate for partial graphs{

(fwdgraphg γ U V ∧ ((∀?x∈ ran(V−U) ·x 7→ nil)?True))? (∀?y∈ ranU ·y 7→ f y)∧dom f = ranU ∧nil /∈ ran f
}

g′ := copyfwdgraph g{
∃ f ′ ·

(
(fwdgraphg γ U V ∧ ((∀?x∈ ran(V−U) ·x 7→ f ′ x)?True))? fwdgraphg′ γ (f •U) ((f ⊕ f ′)•V) ?
(∀?y∈ ranU ·y 7→ f y)∧dom(f ⊕ f ′) = ranV ∧nil /∈ ran(f ⊕ f ′)

)}
Figure 6. Specification of fast copygraph

is shown linearly as

{P?Q}
Framed:

〈
{Q}C {R}

〉
{P?R}

We have taken some shortcuts in the presentation of the framed
commandC in this and other examples where arguments to recurs-
ive calls are not pure expressions.fringelink [t] res1, for example,
mentions the cell pointed to byt but we don’t include that in the
frame in figure 1. De-sugaring of procedure calls would make the
commandz := [t]; fringelink z res1, and it’s clear that the framed
procedure call doesn’t need access to the cell.

TheTip case constructs a singleton list. The only remarkable steps
are the introduction of∧ and the replacement oft 7→ nil by True:

if [t] = nil then
{btreet τ∧ [t] = nil} ∴ {btreet (Tip v)} ∴
{t 7→ nil,v, }
Framed:

〈
{t +2 7→ }[t +2] := c;{t +2 7→ c}

〉
{t 7→ nil,v,c} ∴
{t 7→ nil,v,c∧ t 7→ nil,v,c} ∴
{(t +1 7→ v,c? t 7→ nil)∧ t 7→ nil,v,c} ∴
{(lseg(t +1) c 〈v〉?True)∧btreet (Tip v)}
t +1
{(lsegres c〈v〉?True)∧btreet (Tip v)}

(8)

The Node case (figure 1) is not quite so straightforward. After
the second framed step, the postcondition is of the formA? ((B?
True)∧C)?((D?True)∧E). This can be rearranged, using the rules
of BI plus the fact that True?True= True, into(B?D?True)∧ (A?
C? E). It’s possible to show by induction onα that lsegx x′ α ?
lsegx′ y β ` lsegx y(α++β), which justifies the final conclusion.

6 DAGs and graphs

Cyclic graphs are a major challenge to separation logic. The heap
representation of a graph involves, in principle, a tangle of pointers
between interpenetrating structures. Records aren’t labelled to say
that they are shared. Cycles of edges aren’t marked.

Despite that, graph algorithms are remarkably simple. A few basic
tricks – e.g. marking, forwarding pointers – appear to cover most
eventualities. It surely ought to be possible to deal with the problem
as simply as the algorithms do.

DAGs – directed acyclic graphs – are halfway between trees and
graphs: substructures are shared but there are no cycles. The es-
sential difference between a DAG and a graph is that the root of a
DAG is separate from its children. In search of simple solutions,
we begin by considering the problem of copying a DAG, producing
a copy which has exactly the same aliasing relationships as the ori-
ginal. As with thecopytreeexample above, we ignore the necessity
to state that the input DAG is undisturbed.

Although it would be possible to justify an algorithm by rational
reconstruction from a specification, in truth we started with a pro-
gram. One way – the slow way – to copy a DAG is to scan the
structure, building up an association list of (original pointer, copy
pointer) pairs as you go. Each time you come across a substruc-
ture, you check to see if it’s recorded in the list: if it is, you use
the already-recorded copy pointer; if it’s not, you copy it and re-
cord a new pair in the list. Abstracting from an association list to a
forwarding function, we have the following procedure, which takes

as argument a pointerd to a binary DAG,1 represented in the heap
very like the binary trees of (2), and a forwarding functionf rep-
resenting copies made so far. It returns a pointer to a copy of the
DAG, plus an updated forwarding function.

copydag d f =̂ if d = nil then nil, f
elsfd ∈ dom f then f d, f
elsfd.tag= 0 then

d′ := new(0,d.val); d′, f ⊕ (d : d′)
else

l , f ′ := copydag d.left f ;
r, f ′′ := copydag d.right f ′;
d′ := new(1, l , r);
d′, f ′′⊕ (d : d′)

fi

(9)

We describe this below as an aliasing-discovery copying algorithm.
Line 2 deals with aliasing; the rest of the algorithm is just tree copy-
ing except that in the else case the recursive calls augment the for-
warding function f – the aliasing description – as they go. Sub-
structures in a DAG can’t share with the root, and to emphasise the
point we copy the root after dealing with its children.

The ideal specification of this algorithm would be that given a
pointer to a closed DAG – one with no dangling pointers – and a
null forwarding function, it produces a heap which contains the ori-
ginal DAG and a separate identically-aliased copy, with a forward-
ing function which describes an isomorphism between original and
copy. We approach that ideal in stages.

6.1 Describing a DAG

To specify and verify (9) we must first be able to give a syntactic
description of a DAG. Our binary DAGs, like binary trees, can con-
tain nodes and tips. We allow null subDAGs. Binding formulae
‘let x = D in D’, with Ptr x references to defined names, are an ob-
vious way to describe sharing of structures. For example, the DAG

17c:

is described by the formula

let c = Tip 17 inNode (Node Empty (Ptr c))
(Node (Ptr c) Empty) (10)

The grammar of this kind of DAG formula is

D ::= Empty | Tip int | Node D D | Ptr var | let var= D in D
(11)

The corresponding heap predicate takes a pointerd and a formulaδ
as arguments, just as (2) and (4) do. The third argumentU is a map-
ping from bound names to dangling pointers which index shared
structures in the heap – in effect, continuation pointers for each of
the undefined names inδ. Unreferenced definitions would make
disconnected structures in the heap, so we impose a relevance con-

1It wouldn’t be difficult to generalise ton-ary DAGs, but it
wouldn’t add anything to the discussion.

dition on binding formulae.

lidag nil Empty U =̂ emp
lidagd (Tip α) U =̂ d 7→ 0,α

lidagd (Node λ ρ) U =̂ ∃l , r ·
(

d 7→ 1, l , r ? lidag l λ U?
lidag r ρ U

)
lidagd (Ptr x) U =̂ U x = d∧emp

lidagd (let x = δ′ in δ) U =̂ ∃d′ ·
(

x free inδ∧ lidagd′ δ′ U?
lidagd δ (U ⊕ (x : d′))

)
(12)

7 Partial graphs

Unfortunately the lidag predicate doesn’t suit our purposes. In the
heap there is no advance signalling of internal sharing, nothing to
correspond to a let-in construction. The algorithm of (9) discovers
internal sharing by noting substructures as it comes across them
and recognising when the same substructure is referenced again. It
would be possible to construct a two-stage copy process, with a first
pass which discovered the aliasing structure and a second, based on
the lidag predicate, which did the copying. But then the first pass
would have to be based on a heap predicate which doesn’t assume
knowledge of aliasing, which is just the problem that we started
with. It’s obvious that it’s no harder to verify an aliasing-discovery
copying algorithm like (9), which discovers aliasing as it goes, than
to take the two-stage approach.

It’s clear that any adequate DAG copying algorithm must in ef-
fect discover a spanning tree of its argument, and that (9) finds
a spanning tree by treating the first occurrence of a subDAG en-
countered in a left-to-right scan as the defining instance, cutting
links to the same structure which are encountered later. It’s pos-
sible to transform a let-in formula like (10) into one which suits that
particular biased search. Take the innermost let-in formula: push it
inwards, preserving the relevance condition (D in let x = D′ in D
must containPtr x), and pushing into the left subDAG of aNode
if there is a choice. The let binding will necessarily come to rest
against the leftmost occurrence of a reference to its name. Replace
let x= D in Ptr x with x : D. Repeat with other let bindings until all
are removed. The formula of (10), for example, is transformed into

Node (Node Empty (c : Tip 17)) (Node (Ptr c) Empty)

We can easily read this formula left-to-right:x : D labels a structure
on first occurrence, andPtr x later refers to it.

Then observe that when a program scans the heap, it can’t tell
whether or not a substructure it has come across for the first time
will be referenced later, so labeleveryelement, giving

a : Node (b : Node Empty (c : Tip 17))
(d : Node (Ptr c) Empty)

This formula describes the fully-labelled DAG

17

a:

b:

c:

:d

The grammar of these formulae is

D ::= Empty | Ptr lab | lab :Tip int | lab :Node D D (13)

These formulae describepartial graphs: graphs consisting of
named vertices in which not every name maps to a successor set, be-
cause there is no requirement thatx : D must occur to definePtr x.
They are extremely similar to the structures described by Cardelli,
Gardner and Ghelli in [2] though the motivation is different: their
trees are given and the pointers defined as secondary; ours must be
discovered, and the direction of a scan determines which pointers
are part of the tree and which are aliases.

We stumbled across partial graphs as a means of describing the heap
footprint of (9), plucking them out of the air as a transformation of
the let-in formulae of (11), but they do appear to be semantically
interesting in their own right. They suit graphs even better than they
do DAGs, as we shall see. We haven’t yet had time to investigate
their properties. They may be awkward to work with – it’s not
quite so easy to say that a partial graph is closed, for example, as
it is with a let-in formula, and it’s necessary to impose a unique-
labelling restriction – but they do suit our purposes rather well.

8 Describing partial DAGs

The heap predicate for DAGs based on the partial graph formulae
of (13) is shown in figure 2. The algorithm (9) accumulates a for-
warding function; the predicate describes a left-to-right evaluation
that similarly accumulates an environment. By contrast, the enviro-
ment of (12) is built up recursively.U is the environment mapping
names which are not defined in the partial DAG (providing a col-
lection of continuation pointers);V is the output environment which
extendsU to include also the names that are defined in the partial
DAG. In the x : Node ... case, since we are dealing with a DAG,
there mustn’t be occurrences ofPtr x within the node. It would be
sufficient to say either thatx isn’t mapped by environmentU or that
it isn’t mapped byV ′, but we explicitly exclude it from both as a
proof convenience. The unique labelling condition is imposed by
the same restriction.

This predicate is specifically designed to support a left to right scan,
as are the formulae on which it is based. It seems difficult to avoid
this complication.

There is a more subtle complication, however. In the pdag predic-
ate of figure 2 the domain of the input environmentU (names of al-
located subDAGs) is constrained, but the range (pointers to corres-
ponding heaps) is not.U must point somewhere, and in practice –
in ‘normal’ elaboration starting with a closed formula and an empty
environment – it points to already-allocated structures elsewhere in
the heap. But we don’t yet know how to say that in separation lo-
gic without dragging a global environment into our specifications.
Like the continuation argumentc in the fringelink algorithm (6), if
we constrain ranU too much our proofs become too complicated.

The consequence is that pdag (like lidag, which doesn’t constrain
ranU either) doesn’t describe exclusively DAG-like heaps. Ifδ is a
closed DAG formula andnull is the empty environment, then cer-
tainly pdagd δ null V describes a DAG-like heap no matter what
the values ofd andδ. But it is easy to construct an environment and
a formula which describe a cyclic heap structure: for example

δ = a : (Node (Ptr b)Empty)
d = 10
U = (b : 10)
V = (b : 10;a : 10)

heap: 107→ 1,10,nil

(14)

is distinctly unDAG-like.2

Even if ranU were defined to point outside the heap of pdagd δU V
it wouldn’t be enough to ensure genuinely DAG-like heaps, because
dangling pointers can by accident coincide with a pointer returned
by new. We can’t be sure thatx := new(1,d,d) will give us a non-
cyclic structure, for example, ifx happens to receive a value which
is in ranU . Of course in ‘normal’ elaboration that can’t happen:
ranU will always point to allocated structures, and new will never
return a pointer to an already-allocated structure. It seems in prac-
tice that with our current understanding if we can’t say the right
thing it is better to say nothing. The potentially spurious heap pre-
dicate of figure 2 will suit us very well.

Although ranU is unconstrained, ran(V−U), the part of the output
environmentV that points to structures contained in pdagd δ U V,
is not.(V−U) necessarily contains non-dangling pointers. It’s easy
to see that no matter what the value ofU , we have

pdagd δ U V →
(pdagd δ U V ∧ ((∀?y∈ ran(V−U) ·y 7→)?True)) (15)

(∀? is the iterated conjunction introduced in [11].)

8.1 Copying a partial DAG slowly

If we disingenuously imagine that the representation of a forward-
ing function takes no heap space,3 the function of (9) takes a DAG-
like heap and produces a similarly-shaped copy, leaving the ori-
ginal unchanged. The resulting specification, wheref •g is func-
tion composition – i.e.(f •g) x = f (g x), is{

pdagd δ U V ∧ (∀x∈ ranU ·x 6↪→) ∧
ranU = dom f ∧nil /∈ ranU

}
d′, f ′ := copydag d f{
pdagd δ U V ?pdagd′ δ (f •U) (f ′ •V) ∧
ranV = dom f ′∧nil /∈ ranV

} (16)

The specification requires that the input environmentU contains
only dangling pointers, because the algorithm uses the testd ∈
dom f to distinguish them from others which point into the heap.
But in the postcondition we can’t easily require that ran(f •U) is
similarly dangling: once again, in ‘normal’ elaboration it must be
so, but without incorporating a global invariant we don’t know how
to specify it. The laxity of the pdag predicate allows us to say noth-
ing about ran(f •U) and to allow the constraints of composition
of substructures to provide the necessary information, just like the
treatment of thec argument in figure 1. That property off •U is in
any case irrelevant overall, since (16), if established, implies

{pdagd δ null V}
d′, f ′ := copydag d null

{pdagd δ null V ?pdagd′ δ null (f ′ •V)}
(17)

We show a proof in stages. TheEmpty case exploits the fact that

2We are grateful to the anonymous reviewer who pointed out
this counter-example to us.

3This is merely a simplifying assumption. Being realistic about
association lists would add nothing to the discussion, since the val-
ues in the list are only compared and copied, never dereferenced.

nil /∈ ranU but is otherwise trivial:

{pdagd δ U V ∧ ranU = dom f ∧nil /∈ ranU}
if d = nil then
{pdag nilδ U V ∧ ranU = dom f ∧nil /∈ ranU} ∴
{pdag nilEmpty U U ∧ ranU = dom f ∧nil /∈ ranU} ∴
{emp∧ ranU = dom f ∧nil /∈ ranU} ∴
{emp?emp∧ ranU = dom f ∧nil /∈ ranU}
nil, f{

pdag nilEmpty U U ?pdag nilEmpty (f •U) (f •U) ∧
ranU = dom f ∧nil /∈ ranU

}
(18)

In thePtr case we need to argue

d ∈ dom f ∧dom f = ranU →∃x ·U x = d

and then because ranU doesn’t point at anything, we know we are
dealing withPtr x.

{
pdagd δ U V ∧ ranU = dom f ∧nil /∈ ranU ∧
(∀x∈ ranU ·x 6↪→)∧d 6= nil

}
elsfd ∈ dom f then{

pdagd δ U V ∧ ranU = dom f ∧ (∀x∈ ranU ·x 6↪→) ∧
nil /∈ ranU ∧d 6= nil∧d ∈ ranU

}
∴{

pdagd δ U V ∧ ranU = dom f ∧d 6↪→ ∧
nil /∈ ranU ∧d 6= nil∧U x = d

}
∴

{pdagd (Ptr x) U U ∧ ranU = dom f ∧nil /∈ ranU ∧U x = d} ∴
{emp∧ ranU = dom f ∧nil /∈ ranU ∧U x = d} ∴
{emp?emp∧ ranU = dom f ∧nil /∈ ranU ∧U x = d}
f d, f{

pdagd (Ptr x) U U ?pdag(f d) (Ptr x) (f •U) (f •U) ∧
ranU = dom f ∧nil /∈ ranU

}
(19)

TheTip case (figure 3) is straightforward. TheNode case (figure
4) uses the input property(∀x∈ ranU ·x 6↪→) in the first recursive
call. Before the second call we note that ran(U ′−U) points into
pdagL λ U U ′, which is separated by a (*) from pdagR ρ U ′ V ′.
It follows that ran(U ′−U) dangles outside pdagR ρ U ′ V ′; since
ranU dangles outside as well, we know that the whole of ranU ′

dangles outside, which gives the necessary precondition for the
second recursive call.

8.2 Disposing of a partial DAG slowly

Trees can be disposed recursively: subtree, subtree, ..., root. DAGs
need more care, because we mustn’t follow a pointer to a shared
but already-disposed structure. The development so far is enough to
support an algorithm for disposing DAGs. Rather than a forwarding
function we keep a single listdsof disposed nodes.

disposedag d dŝ= if d = nil∨∨ d ∈ dsthends
elsfd.tag= 0 then

disposed 2; d :: ds
else

ds′ := disposedag d.left ds;
ds′′ := disposedag d.right ds′;
disposed 3;
d :: ds′′

fi

(20)

The specification must once again require that the input DAG is
properly DAG-shaped. This time we don’t pretend to ignore the
space taken up by the list, so to get rid of a DAG you need
disposelist(disposedag dnil).

{(pdagd δ U V ∧ (∀x∈ ranU ·x 6↪→)? lsegds c(ranU)}
ds′ := disposedag d ds

{lsegds′ c (ranV)}
(21)

The proof is extremely similar to the proof ofcopydagand is omit-
ted.

8.3 Copying and disposing a partial graph,
slowly

It’s as easy to copy a cyclic graph as it is to copy a DAG. In a graph
we put values at nodes and there is no need for tips

G ::= Empty | Ptr var | var :GNode int G G (22)

and use a representation predicate (figure 5) which allows for the
fact that we can have cycles. The graph-copying algorithm is then a
minor modification ofcopydag, extending the forwarding function
before copying subgraphs in order to deal with cycles.

copygraph g f =̂ if g = nil then nil, f
elsfg∈ dom f then f g, f
else

g′ := new(g.val,nil,nil);
g′.left, f ′ := copygraph g.left (f ⊕ (g : g′));
g′.right, f ′′ := copygraph g.right f ′;
g′, f ′′

fi
(23)

The specification is very similar tocopydag’s.

{graphg γ U V ∧ ranU = dom f}
g′, f ′ := copygraph g f

{graphg γ U V ?graphg′ γ (f •U) (f ′ •V)∧ ranV = dom f ′}
(24)

The proof is extremely similar too, so it’s omitted.

This problem was relatively easy to solve, once we had partial
graphs. It would have been very difficult to solve had we not
first analysed DAGs: instead of single let bindings we would have
needed recursive letr, and we would have had to deal with parallel
bindings so as to describe mutually interpenetrating subgraphs.

8.4 Too subtle?

We have striven to make our specification and our proof local, con-
cerned only with the heap that is necessarily accessed by the pro-
cedure. In order to do that we have had to use a heap predicate that
doesn’t constrain all that it might, we’ve added part of the necessary
constraint in one place rather than another, and the proof ofNode
copying in figure 4 is perhaps dauntingly subtle.

That would be a disappointing result if this was the end of the road,
but we don’t think that it is. We’ve achieved locality, which is a
significant step forward. We can glimpse ways in which other tech-
niques – program refinement, perhaps – might make the subtlety
transparent. Our proofs are more subtle than we would wish, but
we are by no means disappointed.

9 Graphs with forwarding pointers

It’s clear from the development so far that graphs are no harder to
deal with than DAGs. In some ways they are easier: the heap pre-
dicates are simpler and have fewer cases, for example. Algorithms

that deal with cyclic graphs will certainly deal with DAGs, and now
that we have the partial graph notion, we need not consider DAGs
any further.

9.1 Graph copying with forwarding pointers

The algorithm of (23) searches an association list as it encounters
each subgraph. That takes time, and the association list takes space
– at least three pointers per entry, or four if you aren’t careful or you
do it in ML. It’s much faster, and more efficient in space if graphs
are ever to be copied or disposed, to store a forwarding pointer in
each node as it is copied. Once again, we started with an algorithm:

copyfwdgraph ĝ= if g = nil then nil
elsfg.fwd 6= nil theng.fwd
else

g.fwd := new(nil ,g.val,nil ,nil);
g.fwd.left := copyfwdgraph g.left;
g.fwd.right := copyfwdgraph g.right;
g.fwd

fi

(25)

Nodes in the heap now have an extra slot for a forwarding pointer.
Uncopied subgraphs must have nil forwarding pointers; copied sub-
graphs point to their copy. To cut cycles we must copy the root of
a new subgraph before copying its children (first line of the else
case); necessarily the copy must initially have dummy subgraphs,
replaced by copies as they are made.

Given a ‘clean’ graph – one with nil forwarding pointers – this al-
gorithm will produce a clean copy and a separate ‘dirty’ original
– one whose forwarding pointers define an isomorphism between
the two graphs. (If you want the clean original back you have to
traverse the input graph again with a cleanup procedure which we
don’t discuss here.) As before, we approach this ideal specification
slowly, but this time armed with the partial graph notation.

The heap representation predicate of our graphs (fwdgraph) is
identical to that of figure 5 except that nodes are nowg 7→ ,α, l , r,
leaving a slot for a forwarding pointer or (as we shall see) a disposal
link.

The specification of (25) needs care if we are to observe separa-
tion between the different regions of the heap. There is no longer
a forwarding function argument, but the same forwarding informa-
tion is present, distributed on input across those parts of the graph
that have already been copied – ranU in the heap predicate – and
on output distributed across ranV. Those nodes of the input graph
which have not yet been copied – (ran(V−U)) – must have nil for-
warding pointers, and are part of the input graph in the same way
that the fringe list was part of the output tree in section 5.1. The
specification (figure 6) is intricate, but not unreasonably so. Be-
cause forwarding pointers outside the partial-graph heap are expli-
citly mentioned and must be accessible to the procedure, we don’t
need to say that ranU dangles outside that heap: it obviously does.

The proof is straightforward. TheEmpty case (figure 7) is imme-
diate. In thePtr case (figure 8) we know thatg ∈ ranV, and that
U ⊆ V – both from the heap predicate – and sog.fwd 6= nil, to-
gether with the precondition, tells us thatg∈ ranU . In presenting
the GNode case (figure 9) we have compiled multi-step instruc-
tions into sequences of assignment, run together some compound
assignments and omitted to indicate obvious uses of the frame rule.

The specification does support our ideal specification. A clean

{
(fwdgraphg γ U V ∧ ((∀?x∈ ran(V−U) ·x 7→ nil)?True))? (∀?y∈ ranU ·y 7→ f y)∧dom f = ranU ∧nil /∈ ran f

}
if g = nil then{

(fwdgraph nilEmpty U U ∧ ((∀?x∈ ran(U −U) ·x 7→ nil)?True))? (∀?y∈ ranU ·y 7→ f y)∧dom f = ranU ∧nil /∈ ran f
}

nil{
(fwdgraph nilEmpty U U ∧ ((∀?x∈ ran(U −U) ·x 7→ f x)?True))? fwdgraph nilEmpty (f •U) (f •U) ?
(∀?y∈ ranU ·y 7→ f y)∧dom f = ranU ∧nil /∈ ran f

}
Figure 7. Fast copy graph,Empty case{

(fwdgraphg γ U V ∧ ((∀?x∈ ran(V−U) ·x 7→ nil)?True))? (∀?y∈ ranU ·y 7→ f y)∧dom f = ranU ∧nil /∈ ran f ∧g 6= nil
}

elsfg.fwd 6= nil then{
(fwdgraphg γ U V ∧ ((∀?x∈ ran(V−U) ·x 7→ nil)?True))? (∀?y∈ ranU ·y 7→ f y) ∧
dom f = ranU ∧nil /∈ ran f ∧g∈ ranU

}
∴{

(fwdgraphg (Ptr x) U U ∧ ((∀?x∈ ran(U −U) ·x 7→ nil)?True))? (∀?y∈ ranU ·y 7→ f y) ∧
dom f = ranU ∧nil /∈ ran f ∧g∈ ranU

}
{

(fwdgraphg (Ptr x) U U ∧ ((∀?x∈ ran(U −U) ·x 7→ f x)?True))? fwdgraph(f g) (Ptr x) (f •U) (f •U) ?
(∀?y∈ ranU ·y 7→ f y)∧dom f = ranU ∧nil /∈ ran f

}
g.fwd{

(fwdgraphg (Ptr x) U U ∧ ((∀?x∈ ran(U −U) ·x 7→ f x)?True))? fwdgraphres(Ptr x) (f •U) (f •U) ?
(∀?y∈ ranU ·y 7→ f y)∧dom f = ranU ∧nil /∈ ran f

}
Figure 8. Fast copy graph,Ptr case{

(fwdgraphg (x : GNode α λ ρ) U V ∧ ((∀?x∈ ran(V−U) ·x 7→ nil)?True))? (∀?y∈ ranU ·y 7→ f y) ∧
dom f = ranU ∧nil /∈ ran f ∧g 6= nil

}
∴{(

(g 7→ nil,α, l , r ? fwdgraphl λ (U ⊕ (x : g)) U ′ ? fwdgraphr ρ U ′ V)∧ ((∀?x∈ ran(V−U) ·x 7→ nil)?True)
)

?
(∀?y∈ ranU ·y 7→ f y)∧dom f = ranU ∧nil /∈ ran f

}
g′ := new(nil ,g.val,nil ,nil);{(

(g 7→ nil,α, l , r ? fwdgraphl λ (U ⊕ (x : g)) U ′ ? fwdgraphr ρ U ′ V)∧ ((∀?x∈ ran(V−U) ·x 7→ nil)?True)
)

?
g′ 7→ nil,α,nil,nil ? (∀?y∈ ranU ·y 7→ f y)∧dom f = ranU ∧nil /∈ ran f

}
g.fwd := g′;{(

(g 7→ g′,α, l , r ? fwdgraphl λ (U ⊕ (x : g)) U ′ ? fwdgraphr ρ U ′ V)∧ (g 7→ g′ ? (∀?x∈ (ran(V−U)−{g}) ·x 7→ nil)?True)
)

?
(∀?y∈ ranU ·y 7→ f y)?g′ 7→ nil,α,nil,nil∧dom f = ranU ∧nil /∈ ran f

}
l ′ := copyfwdgraph g.left;

(
(g 7→ g′,α, l , r ? fwdgraphl λ (U ⊕ (x : g)) U ′ ? fwdgraphr ρ U ′ V) ∧
((∀?x∈ ran(U ′−U) ·x 7→ f ′ x)? (∀?x∈ ran(V−U ′) ·x 7→ nil)?True)

)
? (∀?y∈ ranU ·y 7→ f y)?g′ 7→ nil,α,nil,nil ?

(fwdgraphl ′ λ ((f ⊕ (g : g′))• (U ⊕ (x : g))) ((f ⊕ f ′)•U ′))∧dom f = ranU ∧nil /∈ ran f ∧dom f ′ = ranU ′∧nil /∈ ran f ′

g.fwd.left := l ′;

(
(g 7→ g′,α, l , r ? fwdgraphl λ (U ⊕ (x : g)) U ′ ? fwdgraphr ρ U ′ V) ∧
((∀?x∈ ran(U ′−U) ·x 7→ f ′ x)? (∀?x∈ ran(V−U ′) ·x 7→ nil)?True)

)
? (∀?y∈ ranU ·y 7→ f y)?g′ 7→ nil,α, l ′,nil ?

(fwdgraphl ′ λ ((f ⊕ (g : g′))• (U ⊕ (x : g))) ((f ⊕ f ′)•U ′))∧dom(f ⊕ f ′) = ranU ′∧nil /∈ ran(f ⊕ f ′)

r ′ := copyfwdgraph g.right;

(
(g 7→ g′,α, l , r ? fwdgraphl λ (U ⊕ (x : g)) U ′ ? fwdgraphr ρ U ′ V) ∧
((∀?x∈ ran(U ′−U) ·x 7→ f ′ x)? (∀?x∈ ran(V−U ′) ·x 7→ f ′′ x)?True)

)
? (∀?y∈ ranU ·y 7→ f y)?g′ 7→ nil,α, l ′,nil ?

(fwdgraphl ′ λ ((f ⊕ (g : g′))•U ⊕ (x : g)) ((f ⊕ f ′)•U ′))? (fwdgraphr ′ ρ ((f ⊕ f ′)•U ′) ((f ⊕ f ′⊕ f ′′)•V)) ∧
dom(f ⊕ f ′⊕ f ′′) = ranV ∧nil /∈ ran(f ⊕ f ′⊕ f ′′)

g.fwd.right := r ′;

(
(g 7→ g′,α, l , r ? fwdgraphl λ (U ⊕ (x : g)) U ′ ? fwdgraphr ρ U ′ V) ∧
((∀?x∈ ran(V−U) ·x 7→ (f ⊕ f ′′) x)?True)

)
? (∀?y∈ ranU ·y 7→ f y)?g′ 7→ nil,α, l ′, r ′ ?

(fwdgraphl ′ λ ((f ⊕ (g : g′))•U ⊕ (x : g)) ((f ⊕ f ′)•U ′))? (fwdgraphr ′ ρ ((f ⊕ f ′)•U ′) ((f ⊕ f ′⊕ f ′′)•V)) ∧
dom(f ⊕ f ′⊕ f ′′) = ranV ∧nil /∈ ran(f ⊕ f ′⊕ f ′′)

 ∴

{
(fwdgraphg (GNode α λ ρ) U V ∧ ((∀?x∈ ran(V−U) ·x 7→ (f ′⊕ f ′′) x)?True)) ?
(∀?y∈ ranU ·y 7→ f y)? fwdgraph(f ′′ g) (GNode α λ ρ) (f •U) (f ′′ •V)∧dom(f ⊕ f ′⊕ f ′′) = ranV ∧nil /∈ ran(f ⊕ f ′⊕ f ′′)

}
g.fwd{
∃ f ′′′ ·

(
(fwdgraphg (GNode α λ ρ) U V ∧ ((∀?x∈ ran(V−U) ·x 7→ f ′′′ x)?True))? (∀?y∈ ranU ·y 7→ f y) ?
fwdgraphres(GNode α λ ρ) (f •U) (f ′′′ •V)∧dom(f ⊕ f ′′′) = ranV ∧nil /∈ ran(f ⊕ f ′′′)

)}
Figure 9. Fast copy graph,GNode case{

(fwdgraphg γ U V ∧ ((∀?x∈ ran(V−U) ·x 7→ nil)?True))? (∀?y∈ ranU · ∃z· (y 7→ z∧z 6= nil))∧g 6= nil → c 6= nil
}

c′ := linknodes g c{
(((c′ = c∧emp)∨ (nsegc′ g ?nsegg c〈g〉))∧ ((∀?x∈ ran(V−U) · ∃z′ · (x 7→ z′∧z′ 6= nil))?True)) ?
(∀?y∈ ranU · ∃z· (y 7→ z∧z 6= nil))

}
Figure 10. Specification oflinknodes

graph is

fwdgraphg γ null V ∧ ((∀?x∈ ranV ·x 7→ nil)?True)

and a dirty graph is

fwdgraphg γ null V ∧ ((∀?x∈ ranV · ∃y· (x 7→ y∧y 6= nil))?True)

The overall specification is

{cleang γ} g′ := copyfwdgraph g{dirty g γ?cleang′ γ} (26)

9.2 Graph disposal with forwarding pointers

Graph disposal using forwarding pointers takes more ingenuity than
graph copying, because a program can’t access already-disposed
structures: that is, we can’t dispose of the graph in a recursive
scan without using an auxiliary list as indisposegraphabove. The
trick is to link together the nodes of the graph using the forwarding
pointer slots.

linknodes g c=̂ if g = nil∨∨ g.fwd 6= nil thenc
else

g.fwd := c;
c′ := linknodes g.left g;
c′′ := linknodes g.right c′;
c′′

fi

(27)

The second trick is to make a list that doesn’t end in nil, because nil
is used to distinguish unvisited nodes. Rejecting the temptation to
invent another kind of nil – no true programmer would succumb! –
we construct a sequence in which the last element points to itself.
Thendisposenodes(linknodes g g) does both tricks.

disposenodes ĝ= if g 6= nil then
dooldg := g; g := g.fwd; disposeoldg4
until g = oldg

fi
(28)

In effect (27) ‘linearises’ the graph, converting a structure in which
there can be many pointers to a node into a list in which there is
only one. But it doesn’t really linearise it: all the subgraph pointers
are still there, but we simply ignore them; and the loop at the end
of the ‘list’ means that it isn’t a list at all. Truly, separation logic
provers embrace the dangling pointer!

The specification oflinknodes(figure 10) uses the same sort of ap-
proach as figure 6 and appeals to a heap predicate nseg which is
analogous to lseg, but which represents a list of node addresses.

nsegc c〈〉 =̂ emp
nsegg c(〈g〉++gs) =̂ ∃g′ · (g 7→ g′, , , ?nsegg′ c gs) (29)

Proof is omitted.

10 Summary

We have attempted to extend the reach of separation logic by con-
sidering difficult examples, and to a considerable extent we have
succeeded. We have found an idiomatic form,A∧ (B? True), for
inclusion sharing. We have discovered ‘partial graphs’ in the gram-
mar of (22). Our proofs have punched a hole in a significant
obstacle: until now these problems hadn’t been dealt with by local
reasoning.

This is by no means the last word, or even our last word, on the
subject. One of our aims is to find ways in which pointer-mutating
programs, their data structure and their proofs come apart and com-
pose along the same seams, so that we can begin to develop a struc-
tured programming for mutated pointer structures with sharing. In
the fringe linking example we feel that we have achieved that aim.
In the case of algorithms even as simple as those which copy and
dispose DAGs and graphs, we can see that there is more work to do.
The specifications require too much information about the environ-
mentU and its relation toV – by contrast thefringelink argument
c can be any pointer at all.

We are particularly excited about the potential of partial graphs,
both as a syntactic specification mechanism and as a semantics for
graphs. We would like to know if the idea which we developed to
solve a particular problem might have deeper more useful mathem-
atical properties.

We hope that further work will result in more than just a number of
tidier proofs. It may lead to a greater understanding of graphs and
how to reason about them in general. It surely ought to help us to
extend the reach of separation logic to larger examples.

Acknowledgements

This work springs from endless discussion within the London sep-
aration logic community between ourselves, Josh Berdine, Ivana
Mijajlovic and Noah Torp-Smith. We are particularly grateful to
Torp-Smith for inspiring us, by his proof of the Cheney algorithm,
to work again on graphs and for loan of the iterated conjunction op-
erator. We are grateful for advice from John Reynolds and Hong-
soek Yang. Christian Huyck pointed out to one of us how simple
and fast graph copying is if you use forwarding pointers. Tony
Hoare and Philippa Gardner provided useful advice on presenta-
tion of specifications and proofs. An anonymous reviewer spotted a
bug in the slowcopydaganddisposedagalgorithms shown in (14),
which forced us to confront explicitly the peculiarities of our heap
predicates.

11 References

[1] R. Bornat. Proving pointer programs in Hoare logic. In
R. C. Backhouse and J. N. Oliveira, editors,Mathematics of
Program Construction, 5th International Conference, LNCS,
pages 102–126. Springer, 2000.

[2] L. Cardelli, P. Gardner, and G. Ghelli. Querying trees with
pointers. Unpublished notes, 2003.

[3] C. J. Cheney. A nonrecursive list compacting algorithm.
Comm. ACM, 13(11):677–678, 1970.

[4] S. Ishtiaq and P. O’Hearn. BI as an assertion language for
mutable data structures. In28th POPL, pages 14–26, London,
January 2001.

[5] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In L. Fribourg, editor,CSL
2001, pages 1–19. Springer-Verlag, 2001. LNCS 2142.

[6] P. W. O’Hearn and D. J. Pym. The logic of bunched implica-
tions. Bulletin of Symbolic Logic, 5(2):215–244, June 1999.

[7] D. Pym. The Semantics and Proof Theory of the Logic of
Bunched Implications, volume 26 ofApplied Logic Series.
Kluwer Academic Publishers, 2002.

[8] J. Reynolds. Separation logic: a logic for shared mutable data
structures. Invited Paper, LICS’02, 2002.

[9] J. C. Reynolds. Intuitionistic reasoning about shared mutable
data structure. In J. Davies, B. Roscoe, and J. Woodcock,
editors,Millennial Perspectives in Computer Science, pages
303–321. Palgrave, 2000.

[10] H. Schorr and W. Waite. An efficient machine independ-
ent procedure for garbage collection in various list structures.
Comm. ACM, 10(8):501–506, 1967.

[11] N. Torp-Smith.Proving a garbage collecter using local reas-
oning. Master’s thesis, IT University of Copenhagen, 2003.

[12] H. Yang. An example of local reasoning in BI pointer logic:
the Schorr-Waite graph marking algorithm. Proceedings of
the SPACE Workshop, 2001.

[13] H. Yang. Local Reasoning for Stateful Programs. Ph.D.
thesis, University of Illinois, Urbana-Champaign, Illinois,
USA, 2001.

