
Short Presentation: A Calculus for Resource Relationships

Robert Atkey
LFCS, Divison of Informatics

University of Edinburgh
Mayfield Road

Edinburgh EH9 3JZ, UK

bob.atkey@ed.ac.uk

1. INTRODUCTION
We describe an extension of Bunched Typing, or the αλ-

calculus, as described by O’Hearn [2], intended to increase
the flexibility of the system and to suggest further possible
routes for investigation of bunched type systems.

The system, called λsep extends the two binary context
formers of the αλ-calculus to n-place context formers with
arbitrary separation relations between their members. These
relations express pairwise separation constraints on the re-
sources used by the members of the context. The system
then allows a slight distinction between the combination
of resources and the expression of constraints between re-
sources. This system can express certain constraints that
the αλ-calculus cannot, and can express other constraints
in a clearer way. This system is described more fully, with
categorical and functor category semantics, in [1].

This research was supported by the MRG project (IST-
2001-33149) which is funded by the EC under the FET
proactive initiative on Global Computing.

2. SEPARATION TYPING
The logic of Bunched Implications [3] has generated much

interest recently, mainly due to its spatial interpretation.
One can read the new A∗B connective of the logic as making
an assertion that the resources used by the formulas A and
B are separate. BI also has the related implication A —∗ B,
which intuitively means that the proof of any A we apply to
this implication must use separate resources from the proof
of the implication itself. The Curry-Howard analogue of
BI is the αλ-calculus [2], a typed λ-calculus which uses the
connectives of BI to make assertions about the resources
uses by its objects. The normal product type A×B allows
its components to share resources, while the product A ∗B
does not.

The system presented here, λsep, is based on the observa-
tion that we often consider the two operations of combining
resources and distinguishing separate resources as distinct.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

For example, if we regard our resources as sets of memory
of locations then we have the two operations of taking the
union of two sets and the predicate of disjointness to check
for separation.

Another example is where we can consider resources to
be sets of security tokens. We combine two sets of security
tokens by taking the union; and relate two security levels
with an “information flow” predicate, allowing information
to flow from one object to another if the first object has a
subset of the security tokens of the second.

We incorporate this notion in the type system by con-
texts which have an attached relation between their mem-
bers. Thus a context of the form:

[1#2](a : A, b : B, c : C)

would describe a situation where we have access to three
variables a, b and c where a and b are guaranteed to be us-
ing separate resources. The juxtaposition of the members
models the combination and the relation models the rela-
tionships between the resources used by the terms.

In general contexts may have arbitrary relations of the
appropriate size attached to them. These may be forced to
be symmetric in the case of modeling the separation of re-
sources or some other symmetric property of resources. For
the purposes of the formal rules given here we will only be
considering the case of modeling the separation of resources.

We may nest contexts, similar to the bunches of the αλ-
calculus:

[1#2]([1#2](a : A, b : B), c : C)

This context describes a situation where we have access to
a and b which are separate from each other, and are also
separate from c. This same situation may also be described
by the following context:

[1#2, 1#3, 2#3](a : A, b : B, c : C)

Here we have substituted the inner context into the outer
one, and updated the outer separation relation accordingly.
In the type system we regard such pairs of contexts as equal
via the equivalence relation ≡. This formalizes the obser-
vation that an object which is separate from a collection of
things is also separate from them individually. We also re-
gard two contexts which are permutations of one another as
equal.

Note that we can recover the bunches of the αλ-calculus
by restricting to binary contexts. Then ‘≡’ becomes a com-
plicated way to state the associativity and exchange rules.

Structural rules

x : A ` x : A
(Id)

Γ([](∆, ∆′)) ` e : A ∆ ∼= ∆′

Γ(∆) ` e[id(∆)/id(∆′)] : A
(Contraction)

Γ ` e : A Γ ≡ Γ′

Γ′ ` e : A
(Equiv)

S(
−→
Γ) ` e : A S ⊆ S′

S′(
−→
Γ) ` e : A

(S-Weaken)
Γ([]0()) ` e : A

Γ(∆) ` e : A
(Weaken)

Connective rules

Γ1 ` e1 : A1 . . . Γn ` en : An

S(Γ1, . . . , Γn) ` S(e1, . . . , en) : S(A1, . . . , An)
(S-I)

Γ ` e1 : S(A1, . . . , An) ∆(S(x1 : A1, . . . , xn : An)) ` e2 : B

∆(Γ) ` let S(x1, . . . , xn) = e1 in e2 : B
(S-E)

S(Γ, x1 : A1, . . . , xn : An) ` e : B

Γ ` λS(x1, . . . , xn).e : A1, . . . , An
S−→ B

(→-I) Γ ` f : A1, . . . , An
S−→ B for 1 ≤ i ≤ n. ∆i ` ai : Ai

S(Γ, ∆1, . . . , ∆n) ` f@S(a1, . . . , an) : B
(→-E)

Figure 1: The rules of λsep

2.1 The Typing Rules
The typing rules are shown in figure 1. The first collection

of rules covers the structural rules of the system. It is here
that we model the properties of resource separation and its
interaction with resource combination.

The rule Contraction allows the treatment of two nested
contexts as one only if the construction of e does not rely
on them referring to separate resources, hence the empty
relation [] between ∆ and ∆′. The relation ∆ ∼= ∆′ ensures
that ∆ and ∆′ are identical up to renaming of identifiers.

The Equiv rule replaces contexts with equivalent ones, as
described above. The S-Weaken rule allows the addition of
constraints on the context, and the Weaken rule allows the
addition of extra variables to the context.

The connective rules essentially mirror the structure of
the contexts to the right hand side of the turnstile. The
S-I and S-E rules introduce and eliminate tuple types, one
for each possible separation relation. Note that the tuple
type (and context) []0() acts as a unit type and the type
[]1(A) acts the same as A. The →-I and →-E rules intro-
duce and eliminate multi argument functions. The multiple
arguments are necessary to retain the correct relationships
between the abstracted variables and the remaining context.

2.2 Example
Consider a set of primitives for constructing jobs for pro-

cessing. Each of these jobs consists of two items of data,
which are operated on in parallel; they must occupy sep-
arate regions of memory (to allow for temporary in-place
mutation, for example). This constraint can be captured by
a job construction operation:

consJob : [1#2](D, D) → J

This construction is also possible in the αλ-calculus.
Now consider a collection of such jobs to be run in se-

quence. Since they are to be run in sequence it does not
matter if any of the jobs overlap in memory. A collection of
three such jobs, over four items of data, can be represented
as:

(consJob(a, b), consJob(b, c), consJob(c, d)) : [](J, J, J)

Now a context for this term should represent the constraints
here as accurately as possible; it should prohibit sharing

where required, but allow sharing as often as possible. In
λsep the context can be given as:

[a#b, b#c, c#d](a : D, b : D, c : D, d : D)

Here the only constraints are between members of the con-
text whose separation is forced by the construction of the
term. The affine αλ-calculus cannot express this configura-
tion. The restriction to binary combinations for expressing
separation forces a context where there is extraneous sepa-
ration enforced. One can get close using a context such as
(where ’;’ represents possible sharing, and ’,’ no sharing):

((a : D; d : D), b : D, c : D)

However, this requires that a and c be separate, whereas
λsep does not require this. We also claim that the scheme of
separating the separation constraints from the body of the
context allows for a clearer and more intuitive expression of
constraints.

3. CONCLUSIONS
While the gains in expressivity over the αλ-calculus may

not be particularly impressive, we believe that the calculus
described here acts as an interesting base for further inves-
tigation of λ-calculi with bunched structure in their typing
contexts.

In particular, variations of the system with non-symmetric
relations, or with more restricted structural rules – for ex-
ample removing Weaken – may offer opportunities for larger
distinctions between λsep and the αλ-calculus. Also, it al-
lows, in our opinion, a cleaner, more intuitive expression of
resource constraints.

4. REFERENCES
[1] R. Atkey. A λ-Calculus For Resource Separation.

WWW: http://www.dcs.ed.ac.uk/home/roba, 2003.

[2] P. W. O’Hearn. On bunched typing. Journal of
Functional Programming, 13(4):747–796, 2003.

[3] D. J. Pym. The Semantics and Proof Theory of the
Logic of Bunched Implications, volume 26 of Applied
Logic Series. Kluwer Academic Publishers, 2002.

