
Short Presentation: A Functional Scenario
for Bytecode Verification of Space Bounds

Roberto Amadio, Solange Coupet-Grimal, Silvano Dal Zilio and Line Jakubiec
LIF, Laboratoire d’Informatique Fondamentale de Marseille

CNRS and Université de Provence ∗

Abstract
We define a simple stack machine for a first-order functional lan-
guage and show how to perform type, size, and termination ver-
ifications at the level of the bytecode of the machine. In par-
ticular, we show that a combination of size verification based on
quasi-interpretations and of termination verification based on lexi-
cographic path orders leads to an explicit polynomial bound on the
space required for the execution.

1 Introduction
Research on mobile code has been a hot topic since the late 90’s
with many proposals building, for instance, on the JAVA platforms.
Security issues are one of the fundamental problems that still have
to be solved before mobile code can become a well-established and
well-accepted technology. Application scenarios may include, for
instance, programmable switches, network games, and applications
for smart cards.

Initial proposals have focused on the integrity of the execution en-
vironment, like the absence of memory faults. In this paper, we
consider an additional property of interest to guarantee the safety
of a mobile code, that is, ensuring bounds on the (computational)
resources needed for the execution of the code. We most particu-
larly study the space needed for the execution of a program.

We define a simple stack machine for a first-order functional
language and show how to perform type, size, and termination
verifications at the level of the bytecode of the machine. These
verifications rely on certifiable annotations of the bytecode—we
follow here the classical viewpoint that a program may originate
from a malicious party and does not necessarily result from
the compilation of a well-formed program. Finally, we show
that we can extract from a combination of size and termination
verifications a polynomials expression that, given the size of the
initial parameters, bounds the space required for the execution of a
program.

∗This work was partially supported by the ACI CRISS.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SPACE’04, January 12, 2004, Venice, Italy.

The problem of bounding the usage made by programs of their
resources has already attracted considerable attention. Automatic
extraction of resource bounds has mainly focused on (first-order)
functional languages starting from Cobham’s characterization of
polynomial time functions by bounded recursion on notation. Here
we explore various inference techniques that allow for efficient
analyses while capturing a sufficiently large range of practical al-
gorithms.

We consider a rather standard first-order functional programming
language with inductive types, pattern matching, and call-by value,
that can be regarded as a fragment of various ML dialects. The
language is also quite close to term rewriting systems (TRS) with
constructor symbols. The language comes with three main vari-
eties of static analyses: (i) a standard type analysis, (ii) an analysis
of the size of the computed values based on the notion of quasi-
interpretation, and (iii) an analysis that ensures termination; among
the many available techniques we select here recursive path order-
ings.

The last two analyses, and in particular their combination, are in-
strumental to the prediction of the space and time required for the
execution of a program as a function of the size of the input data.
For instance, it is known [2] that a program admitting a polyno-
mially bound quasi-interpretation and terminating by lexicographic
path-ordering runs in polynomial space. This and other results [6, 7]
can be regarded as generalizations and variations over Cobham’s
characterization of polynomial time by bounded recursion on nota-
tion [4].

The synthesis of termination orderings is a classical topic in
term rewriting (see for instance [3]). The synthesis of quasi-
interpretations—a concept introduced by Marion et al. [8]—is
connected to the synthesis of polynomial interpretations for termi-
nation but it is generally easier because inequalities do not need to
be strict and small degree polynomials are often enough [1]. We
will not address synthesis issues in this paper. We suppose that the
bytecode comes with annotations such as types and polynomial
interpretations of function symbols and orders on function symbols.

Our main goal is to determine how these annotations have to be for-
mulated and verified in order to entail size bounds and termination
at bytecode level, i.e., at the level of an assembler-like code pro-
duced by a compiler and executable on a simple stack machine. We
carry on this program up to the point where it is possible to verify
that a given bytecode will run in polynomial space thus providing a
translation of the result mentioned above at byte code level. Beyond
proving that the program “implements a PSPACE function,” we ex-
tract a polynomials that bounds the size needed to run a program:
assume f is a function (identifier) of arity n in a verified program,
then we obtain a polynomial q(x1, . . . ,xn) such that for all values

v1, . . . ,vn of the appropriate types, the size needed for the evalua-
tion of the call f (v1, . . . ,vn) is bounded by q(|v1|, . . . , |vn|), where
|v| stands for the size of the value v.

A secondary goal is of a pedagogical nature: present a minimal but
still relevant scenario in which problems connected to bytecode
verification can be effectively discussed. For example, our
functional virtual machine is based on a set of 6 instructions, a
number that has to be compared with the almost 200 opcodes used
in the JAVA virtual machine.

The interest of carrying on such analyses at bytecode level are now
well understood [10, 11]. First, mobile code is shipped around
in pre-compiled form (i.e., bytecode) and needs to be analyzed as
such. Second, compilation is an error prone process and therefore
it seems safer to perform static analyses at the level of the bytecode
rather than at source level. In particular it allows to reduce the size
of the trusted code: we only have to trust the analyzer, not the whole
compilation chain.

Most work in the literature on bytecode verification tends to guar-
antee the integrity of the execution environment. Related work is
carried on in the MRG project [12]. The main technical differences
appear to be as follows: (i) they rely on a general proof carrying
code approach while we are closer to a typed assembly language
approach and (ii) their analyses focus on the size of the heap while
we also consider the size of the stack and the termination of the ex-
ecution. Another related work is due to Marion and Moyen [9] who
perform a resource analysis of counter machines by reduction to a
certain type of termination in Petri Nets. Their virtual machine is
much more restricted than the one we study here as natural numbers
is the only data type and the stack can only contain return addresses.

The paper is organized as follows. Section 2 sketches a first-order
functional language with simple types and call-by-value evaluation
and recalls some basic facts about quasi-interpretations and termi-
nation. Section 3 describes a simple virtual machine comprising a
minimal set of 6 instructions that suffice to compile the language
described in the previous section. We also define a type verifica-
tion analysis that guarantees that all values on the stack will be
well typed. This verification assumes that constructors and function
symbols in the bytecode are annotated with their type. In the fol-
lowing sections, we also assume that they are annotated with suit-
able functions to bound the size of the values on the stack (section 5)
and with an order to guarantee termination (section 6). The size
and termination verification depend on a path verification which is
described in section 4. We provide an example of type, size and
termination analyses in Section ??.

We conclude with a combination of the size and termination verifi-
cations that guarantees that the bytecode runs in polynomial space.
The presentation of each verification follows a common pattern:
(i) definition of constraints on the bytecode and (ii) definition of a
predicate which is invariant under machine reduction. The essential
technical difficulty is in the structuring of the constraints and the in-
variants, the proofs are then routine inductive arguments which we
delay to the appendix.

2 A Functional Language
We consider a very simple typed first-order functional language,
with recursive abstract data-types and pattern-matching.

A program, prog, is composed of a list of mutually recursive type
definitions followed by a list of mutually recursive first-order func-
tion definitions relying on pattern matching. Expressions and val-
ues are built from a finite number of constructors, ranged over
by c,c1, We use f , f ′, . . . to range over function identifiers

and x,x′, . . . for (first-order) variables and distinguish the follow-
ing three syntactic categories:

v ::= c(v, . . . ,v) (values)
p ::= x || c(p, . . . , p) (patterns)
e ::= x || c(e, . . . ,e) || f (e, . . . ,e) (expressions).

A function is defined by a sequence of pattern-matching rules of
the form f (p1, . . . , pn) = e, where e is an expression. We follow the
usual hypothesis that the patterns p1, . . . , pn are linear (a variable
appears at most once) and do not superpose.

We use t,t1, . . . to range over type identifiers. A type definition has
the shape

t = c1 of t1
1 ∗ · · · ∗ t1

n1
|| · · · || ck of tk

1 ∗ · · · ∗ tk
nk

For instance, we can define the type nat of natural numbers in unary
format: nat = z || s o f nat.

In the following, we consider that constructors are declared with
their functional type (t i

1, . . . ,t
i
ni
) → t. Similar types can be either

assigned or inferred for the function symbols. (The typing rules are
standard and are omitted.)

The following table define the standard call-by-value evaluation re-
lation, where σ is a substitution from variables to values.

Evaluation: e ⇓ v

e j ⇓ v j for all j ∈ 1..n

c(e1, . . . ,en) ⇓ c(v1 . . . ,vn)

e j ⇓ v j σp j = v j for all j ∈ 1..n
f (p1, . . . , pn) = e ∈ prog σ(e) ⇓ v

f (e1, . . . ,en) ⇓ v

If e is an expression then Var(e) is the set of variables occurring in
it. The size of an expression |e| is defined as 0 if e is a constant
or a variable and 1 + Σi∈1..n|ei| if e is of the form c(e1, . . . ,en) or
f (e1, . . . ,en).

EXAMPLE 1. The function add : (nat, nat) → nat, defined by the
following two rules, computes the sum of two values of type nat.

add z y = y
add s(x) y = add x s(y)

For instance, we have: add s(s(z)) s(z) ⇓ s(s(s(z))).

2.1 Quasi-interpretations
To bound the size of the values computed by a function, the idea
is to associate to every expression e with variables x1, . . . ,xn, a ra-
tional function, qe, such that qe(|v1|, . . . , |vn|) bounds the size of
e[v1, . . . ,vn/x1, . . . ,xn].

A quasi-interpretation assigns to constructors and function symbols
functions over the non-negative rationals Q+ such that:

• if c is a constant then qc = 0,

• if c is a constructor with arity n then qc = d +Σi∈1..nxi, where
d > 1,

• q f : (Q+)n → Q+ is monotonic and for all i ∈ 1..n we have
q f (x1, . . . ,xn) > xi.

The assignment may be straightforwardly extended to all ex-
pressions as follows: qx = x; qc(e1,...,en) = qc(qe1 , . . . ,qen); and
q f (e1,...,en) = q f (qe1 , . . . ,qen).

Moreover, it is required that for all the rules f (p1, . . . , pn) = e in
the program, the inequality q f (p1 ,...,pn) > qe holds.

In general, a quasi-interpretation provides a bound on the size of
the computed values as a function of the size of the input data. If
f (v1, . . . ,vn) ⇓ v then |v| 6 qv 6 q f (|v1|, . . . , |vn|).

An interesting space for the synthesis of quasi-interpretations is the
collection of max-plus polynomials [1], that is, functions equivalent
to an expression of the form maxi∈I(Σ j∈1..nai, jx j + ai), with ai, j ∈

N and ai ∈ Q+.

EXAMPLE 2. Assume we choose qs = 1 + x for the quasi-
interpretation of the constructor in nat (by definition, we have
that qz = 0). The polynomial qadd(x,y) = x + y is a valid quasi-
interpretation for the function add defined in Example 1: we have
qadd(0,y) > y and qadd(1+ x,y) > qadd(x,1+ y).

2.2 Termination
Programs can be regarded as a set of term rewriting rules, just
associate to every rule f (p1, . . . , pn) = e the term rewriting rule
f (p1, . . . , pn) → e. Hence termination methods developed for term
rewriting systems apply. In particular, under the hypothesis that the
rules are orthogonal, termination of the TRS is equivalent to the
termination of the call-by-value evaluation strategy.

3 Virtual Machine
We define a simple set of byte-code instructions, and a related stack
machine, for the compilation and the evaluation of programs. For
the sake of simplicity, we suppose that the code and type informa-
tion of every function handled by the virtual machine is fixed and
known in advance. Hence, we consider a fixed set of constructor
and disjoint function names.

We use the notation f : (t1, . . . ,tn) → t to refer to the signature of
the function associated to the identifier f and ar(f) for the arity
of f . We use similar notations for constructors. For the sake of
simplicity, we equate a function identifier, f , with the sequence of
instructions of its body code, We also use the notation f [i] for the
ith instruction in the (compiled) code of f and | f | for the size of f
(number of instructions). We adopt the usual notation on words: ε
is the empty sequence, h ·h′ is the concatenation of two sequences
h,h′, and |h| is the length of a sequence h.

The virtual machine is built around three components: (1) a mem-
ory, M, which is a stack of call frames; (2) an association list be-
tween function identifier and code; (3) a bytecode interpreter, mod-
eled as a reduction relation M → M′. The state of the interpreter,
the configuration M, is either a value or a sequence of frames. A
frame is a triple (f ,pc,h) made of a function identifier, the value of
the program counter (a natural number in 1..| f |) and an evaluation
stack. A stack is a list of values that serves both to store the param-
eters and the values computed during the execution of (a function
call in) the code.

We work with a minimal set of instructions whose effect on the
configuration is described below and write M → M′ if the configu-
ration M reduces to M′ by applying exactly one of the transforma-
tions. We start with an informal explanation of the semantics of the
virtual machine instructions.

The instruction load (i : int) takes as parameter a valid indices in
the current stack. Upon execution, the stack, is updated by pushing
a copy of the ith value in h to the top. New values may also be
created using the instruction build (ident : string) (n : int), which
takes an identifier that corresponds to a constructor with arity n.
When executed, the current stack, h, is updated as follows: the n
values, v1, . . . ,vn, on top of h are discarded and replaced by the
single value ident(v1, . . . ,vn).

A function call is implemented by the instruction call (ident :
string) (n : int), with first parameter an identifier corresponding to

a function with arity n. Upon execution, a fresh call frame is cre-
ated, which is initialized with a copy of the n values on top of the
caller’s stack. The lifetime of the current frame is controlled by
two instructions, return and stop. The first instruction discard
the current frame and returns the value at the head of the stack to
the caller (i.e., the previous frame in the memory). The second in-
struction stops the virtual machine and returns with an error status.

The last instruction, branch (ident : string) (block : int), imple-
ments a conditional jump on the shape of the value, v, found on top
of the current stack. If v is of the form ident(v1, . . . ,vn), then the
top of the current execution stack is discarded and replaced by the n
sub-values v1, . . . ,vn. Otherwise, the stack is left unchanged and the
execution jump to position block in the code (with block ∈ 1..| f |).

Bytecode Interpreter

(Load)
f [pc] = load i pc < | f | h[i] = v

M · (f ,pc,h) → M · (f ,pc +1,h · v)

(Build)
f [pc] = build c n pc < | f |

c : (t1, . . . ,tn) → t0 h = h′ · (v1, . . . ,vn)

M · (f ,pc,h) → M · (f ,pc +1,h′ · c(v1, . . . ,vn))

(Call)
f [pc] = call g n pc < | f |

g : (t1, . . . ,tn) → t0 h = h′ · (v1, . . . ,vn)

M · (f ,pc,h) → M · (f ,pc,h) · (g,1,(v1 , . . . ,vn))

(Return)
f [pc] = return f : (t1, . . . ,tn) → t0

top(h) = v0 h′ = h′′ · (v1, . . . ,vn)

M · (g,pc′,h′) · (f ,pc,h) → M · (g,pc′ +1,h′′ · v0)

(Stop)
f [pc] = stop

M · (f ,pc,h) → error

(BranchThen)
f [pc] = branch c j pc < | f | h = h′ · c(v1, . . . ,vn)

M · (f ,pc,h) → M · (f ,pc +1,h′ · (v1, . . . ,vn))

(BranchElse)
f [pc] = branch c j 1 6 j 6 | f | h = h′ · c′(. . .) c 6= c′

M · (f ,pc,h) → M · (f , j,h)

The reduction M → M′ is deterministic. There is a special state
of the memory, denoted error, corresponding to an empty config-
uration of frames. This state cannot be accessed during a com-
putation that do not raise an error (execute the instruction stop).
A “good” execution starts with a memory containing one frame,
(f ,1,(v1, . . . ,vn)), corresponding to the evaluation of the expres-
sion f (v1, . . . ,vn), and ends with a memory of the form (f ,pc,h ·v0)
where 1 6 pc 6 | f | and f [pc] = return. In this case the result of
the evaluation is v0.

3.1 Compilation
The language described in section 2 admits a direct compilation
in the bytecode described above. Every function is compiled into a
segment of instructions and linear pattern matching is compiled into
a nesting of branch instructions. Finally, variables are replaced by
offsets from the base of the stack frame.

Clearly, a realistic implementation of the virtual machine should

at least include: (i) a mechanism to execute efficiently tail recur-
sive calls (when a call instruction is immediately followed by
return), and (ii) a mechanism to share common sub-values in a
configuration. For instance, one could keep a stack of pointers to
values which are allocated on a heap. Various policies could then
be considered to garbage collect the heap.

EXAMPLE 3. We give the result of the compilation of the function
add, see Definition 1.

1 : load 1
2 : branch s 7
3 : load 2
4 : build s

5 : call add 2
6 : return

7 : load 2
8 : return

3.2 Bytecode Verification
We define a simple analysis used to ensure the well-formedness
and well-typedness of the machine configuration during execution.
This analysis is the equivalent of bytecode verification in the JAVA
machine for our “functional” virtual machine, and may be directly
used as the basis of an algorithm for validating the bytecode before
its execution by the interpreter.

The idea is to associate to every instruction (every step in the eval-
uation of a function code) an abstraction of the stack before it is
executed. In our case, an abstract state is a list of types, or type
stack, T = (t1, . . . ,tn), that should exactly match the types of the
values present in the stack at the time of the execution. Accord-
ingly, we define an abstract execution for a function f , denoted F ,
as a list of length | f | of type stacks.

We are interested by abstract states that are coherent with respect to
the evaluation of the instructions in f . To express that an abstract
execution F is coherent with f , we define the notion of valid data-
flow analysis based on the auxiliary relation, dfai(f ,F). Informally,
we have dfai(f ,F) if F[i] = [t ′1, . . . ,t

′
p] and during every valid eval-

uation of f , the stack at the time of the evaluation of f [i] is of the
form [v1, . . . ,vp] where vi is a value of type t ′i for every i ∈ 1..p.

As a side result of the bytecode verification we obtain, for every in-
struction, the size of the stack at the time of its execution. Coupled
with a bound on the size of every value appearing in a stack (from
the value size verification) and a bound on the maximal number of
call frame (from the termination verification) this result is instru-
mental in the computation of a bound on the total space needed by
an execution of the machine.

The definition of the relation dfai(f ,F) is by case analysis on the
instruction f [i]. We have dfai(f ,F) if and only if we have i 6 | f |
and i 6 |F| and:
f [i] = load j implies i < |F|, F[i] = T , T [j] = t j and F[i + 1] =

T · t j ,

f [i] = build c n implies c : (t1, . . . ,tn) → t0, i < |F|, F[i] = T ·
(t1, . . . ,tn) and F[i+1] = T · t0,

f [i] = call g n implies g : (t1, . . . ,tn) → t0, i < |F|, F[i] = T ·
(t1, . . . ,tn) and F[i+1] = T · t0,

f [i] = return implies f : (t1, . . . ,tn) → t0 and F[i] = T · t0,

f [i] = stop is always true,

f [i] = branch c j implies c : (t1, . . . ,tn) → t0, i < |F|, j ∈ 1..|F|,
F[i] = T · t0, F[i+1] = T · (t1, . . . ,tn) and F[j] = T · t0.

It is now possible to define when an abstract execution is a valid
data-flow analysis for a function. We say that a sequence F is a

valid data-flow analysis for the function f : (t1, . . . ,tn) → t0, de-
noted dfa(f ,F), if and only if F[1] = (t1, . . . ,tn) and for every
i ∈ 1..| f | we have dfai(f ,F).

It is easy to define an algorithm computing the result of a valid data-
flow analysis, if it exists. To verify a whole program, we simply
need to verify every function one at a time.

Define a directed access graph ({1, . . . ,n},E) as the least one such
that (i, j) and (i, i + 1) is in E if f [i] is the instruction branch c j
and such that (i, i+1) is in E otherwise. (It is the flow graph of the
function f .) If every node of the access graph is reachable from the
initial node, 1, then the set of constraints has at most one solution:
we can assign to every instruction the size of the stack, and for each
element in this stack a unique type. In the following we assume that
every node in the access graph is accessible.

Next, we define an invariant on programs that passes the byte-
code verification (for types) that ensures the well-formedness of
the machine during the execution and thus the absence of run-
time errors. we define, arg(M, j) the vector of arguments with
which (under suitable hypothesis) the jth frame in M has been
called. By convention, arg(M,1) is the sequence of values used
to initialize the execution of the machine. In the other cases, if
M ≡ (f1, i1,h1) · · · · · (fm, im,hm), we have

arg(M, j) =

{

(v1, . . . ,vk) if j > 1,ar(f j) = k,h j−1 = h · (v1 · · ·vk)
undefined otherwise

We say that a function is well-formed if every sequence of code ter-
minates either with the stop or with the return instruction. More-
over, for every indices i ∈ 1..| f | we ask that: if f [i] = load k then
k > 1 and if f [i] = branch c j then 1 6 j 6 | f |.

A configuration M ≡ (f1, i1,h1) · . . . · (fm, im,hm) is well-formed if
for all j ∈ 1..m we have (1) 1 6 i j 6 | f j| and (2) f j[i j] = call f j+1
and arg(M, j) is defined for all j ∈ 1..m−1.
PROPOSITION 4. Assume we have a valid data-flow analysis
for every function and that M0 is an initial well-formed frame
(f ,1,(v1, . . . ,vn)). If M0 →∗ M the configuration M is also well-
formed.

EXAMPLE 5. We continue with our running example and display
the type of each instructions in the code of add. We also show the
directed access graph associated to the function, which is a tree
corresponding to the two possible “execution paths” in the code of
add.

add : (nat,nat) → nat Eadd

1 : (nat,nat) : load 1 1•
2 : (nat,nat,nat) : branch s 7 2•
3 : (nat,nat,nat) : load 2 3•
4 : (nat,nat,nat,nat) : build s

4•
5 : (nat,nat,nat,nat) : call add 2 5•
6 : (nat,nat,nat) : return 6•
7 : (nat,nat,nat) : load 2 7•
8 : (nat,nat,nat,nat) : return 8•

4 Path Verification
This section define the first “non-standard” analysis on the byte-
code. Instead of simply computing the type of the values in the
stack, we prove that we can also (sometimes) obtain informations
on the shape of the values, like for instance the identity of the top-
most constructor. We give an example of analysis in Appendix ??.

The path verification associates to every reachable instruction a sub-
stitution and to every position of the related stack a term over the
signature of constructors and function symbols. This analysis is

used in the following size and termination verifications (Sections 5
and 6).

We suppose that the code passes the bytecode verification and use
(overload) the symbol hi for the height of the stack for instruction i.
As stated previously, this information is known statically. For every
instruction index i and position k such that 1 6 k 6 hi we assume a
fresh variable xi,k ranging over terms and we uniquely determine a
substitution σi and an expression ei,k according to the rules in the
following table. This computation will never fail if (i) the directed
access graph defined in Section 3.2 is a tree rooted at instruction 1,
(ii) on every path from the root along the tree the last instruction
is either a return or a stop, and (iii) every branch instruction is
preceded only by load or branch instructions1. These conditions
are not too restrictive and are satisfied by bytecode obtained from
the compilation of functional programs (in the absence of optimiza-
tions).

f [i] Substitutions and expressions
σ1 =def id,
e1,l =def x1,l for l ∈ 1..ar(f)

load k σi+1 =def σi,
ei+1,l =def if l = hi +1 then ei,k else ei,l

branch c j If ei,hi
is a variable x,

let σ′ = [c(xi+1,hi
, . . . ,xi+1,hi+ar(c)−1)/x] in:

σi+1 =def σ′ ◦σi
ei+1,l =def if l 6 hi −1 then σ′(ei,l) else xi+1,l

If ei,hi
= c(ehi

, . . . ,ehi+ar(c)−1) :
σi+1 =def σi
ei+1,l =def if l 6 hi −1 then ei,l else el

Otherwise:
σ j =def σi
e j,l =def ei,l for l ∈ 1..hi

build c σi+1 =def σi
ei+1,l =def if l = hi −ar(c)+1

then c(ei,hi−ar(c)+1, . . . ,ei,hi
) else ei,l

call g σi+1 =def σi
ei+1,l =def if l = hi −ar(f)+1

then g(ei,hi−ar(f)+1, . . . ,ei,hi
) else ei,l

Note that applying a branch c j instruction to a stack whose head
value is of the shape d(. . .) with d 6= c produces no effect which is
fine since then the following instruction is not reachable (since the
access graph is a tree, we have j 6= i+1).
PROPOSITION 6. If σi is defined then: (1) the vector
(σix1,1, . . . ,σix1,ar(f)) is a linear pattern; and (2) if x ∈ Var(ei, j)
then x occurs in the linear pattern in (1).
EXAMPLE 7. The shape constraints computed for the function
add are as follows:

Expression Instruction Substitution
1 : (x1,1 x1,2) : load 1 : id
2 : (x1,1 x1,2 x1,1) : branch s 7 : id
3 : (s(x3,3) x1,2 x3,3) : load 2 : [s(x3.3)/x1,1]
4 : (s(x3,3) x1,2 x3,3 x1,1) : build s : [s(x3.3)/x1,1]
5 : (s(x3,3) x1,2 x3,3 s(x1,1)) : call add 2 : [s(x3.3)/x1,1]
6 : (s(x3,3) x1,2 add(x1,1,s(x1,1))) : return : [s(x3.3)/x1,1]

7 : (x1,1 x1,2 x1,1) : load 2 : id
8 : (x1,1 x1,2 x1,1 x1,2) : return : id

1In every path from the root we cross a sequence of branch

and load instructions, then a sequence of load, build, and call

instructions, and finally either a stop or return instruction.

The soundness of path verification is obtained through the defini-
tion of a new predicate on configuration, WP (for well-path), that
improves on the “well-type” predicate introduced in the previous
section.

• If v is a value then WP(v)

• If there exists ρ such that u j = ρ(σi(x1, j)) for all j ∈
1..k and v j = ρ(ei, j) whenever ei, j is a pattern then
WP(f ,(u1, . . . ,uk), i,v1 · · ·vhi

)

• Assume M is the configuration (f1, i1,h1) · · · · · (fm, im,hm)
and h′j = arg(M, j) for all j ∈ 1..m. If WP(f j,h′j, i j,h j) for
all j ∈ 1..m then WP(M).

PROPOSITION 8. If WP(M) and M → M′ then WP(M′).

5 Value Size Verification
We assume that we have synthesized suitable quasi-interpretations
at the language level (before compilation) and that these informa-
tions are added to the bytecode. Hence, for every constructor c

and function symbol f , the functions qc : (Q+)ar(c) → Q+ and
q f : (Q+)ar(f) → Q+ are given.

We prove that we may check the validity of the quasi-interpretations
at the bytecode level (and then prevent malicious code containing
deceitful size annotations) and that we may infer a bound on the
size needed for the computation of the bytecode. The bound is a
polynomials in the size of the argument.

We assume the byte code passes the path verification. Thus for
every instruction index i in the segment of the function f the ex-
pressions ei,l for 1 6 l 6 hi and the substitution σi are determined.

We require that the following condition holds for k = ar(f), i =
1, . . . ,n, l = 1, . . . ,hi:

q f (σix1,1,...,σix1,k) > qei,l (1)

Of course, the complexity of verifying condition (1) depends on
the space of quasi-interpretations selected. We also notice that
the condition is quite redundant. First, by the definition of quasi-
interpretation the requirement is automatically verified for all in-
structions which are not preceded by a build or call instruction.
Second, for the remaining instructions we could just perform one
verification for every path that terminates with a return instruc-
tion provided that: (i) on a path terminating with a stop instruction,
no build or call instructions occur and (ii) on a path terminating
with a return instruction, the expressions built with build and
call actually appear as subexpressions of the returned expression.
These two conditions are needed because otherwise, a malicious
bytecode could allocate on the frame large values which are not
actually used.

Our result directly follows from the definition of an invariant on
well-sized programs. We introduce a predicate WS (well-sized) on
stacks M such that WP(M) as follows:

• If v is a value then WS(v)

• If there exists ρ such that u j = ρ(σi(x1, j)) for all j ∈ 1..k and
qρ(ei, j) > qv j for j ∈ 1..hi then WS(f ,(u1, . . . ,uk), i,v1 · · ·vhi

)

• Assume M is the configuration (f1, i1,h1) · · · · · (fm, im,hm)
and h′j = arg(M, j) for all j ∈ 1..m. If WP(f j,h′j, i j,h j) and
q f j(h′j)

> q f j+1(h′j+1)
for all j ∈ 1..m then WP(M).

PROPOSITION 9. If WS(M) and M → M′ then WS(M′).

As a corollary we show that if a program passes the size verifica-
tion then the size of every value appearing in the computation of a
function call, f (v1, . . . ,vn), is bounded by the quasi-interpretation
of f (v1, . . . ,vn).

COROLLARY 10. Assume we have a valid data-flow analysis for
every function and that M0 is an initial well-formed configuration
(f ,1,(v1, . . . ,vn)). If M0 →

∗ M · (g, i,h) and v is a value appearing
in h then |v| 6 q f (v1,...,vk).

6 Termination Verification
We suppose that the code passes the stack height and path verifi-
cation. We assume given a pre-order >Σ on the function symbols
so that f =Σ g implies ar(f) = ar(g). The pre-order is extended to
the constructor symbols by assuming that a constructor is always
smaller than a function symbol and that two distinct constructors
are incomparable. We suppose the status of every function sym-
bol is lexicographic (and compatible with >Σ) and that the status
of every constructor symbol is the product. We denote with >l the
induced path order. Note that on values v >l v′ iff v embeds homo-
morphically v′ and v >l v′ implies |v| > |v′|. We require that the
following conditions hold for i = 1, . . . ,n and l = 1, . . . ,hi:

f (σix1,1, . . . ,σix1,ar(f)) >l ei,l (2)

This invariant resembles the one for value size. We introduce a
predicate TER (terminating) on configurations M such that WP(M)
as follows:

• If v is a value then TER(v)

• If there exists ρ such that u j = ρ(σi(x1, j)) for all j ∈ 1..k and
ρ(ei, j) >l v j for j ∈ 1..hi then TER(f ,(u1, . . . ,uk), i,v1 · · ·vhi

)

• Assume M is the configuration (f1, i1,h1) · · · · · (fm, im,hm)
and h′j = arg(M, j) for all j ∈ 1..m. If TER(f j,h′j, i j,h j) and
f j(~u j) >l f j+1(~u j+1) for all j ∈ 1..m then TER(M).

PROPOSITION 11. If TER(M) and M → M′ then TER(M′).
COROLLARY 12. Every execution starting with a frame
(f ,1,(v1, . . . ,vk)), terminates.
PROOF. We define a well-ordering on the configurations that is
compatible with the evaluation of the machine.
As observed in [2], termination by lexicographic order combined
with a polynomial bound on the size of the values leads to poly-
nomial space. We derive a similar result with a similar proof at
bytecode level.
COROLLARY 13. Suppose that the quasi-interpretations are
bound by polynomials and that the bytecode passes the value size
and termination verifications. Then every execution starting from
a frame (f ,1,v1, . . . ,vk) (terminates and) runs in space polynomial
in the size of the arguments |v1|, . . . , |vk|.
PROOF. Note that if f (~v) >l g(~u) then either f >Σ g or f =Σ g and
~v >l ~u. In a sequence f1(~v1) >l · · · fm(~vm), the first case can oc-
cur a constant number of times (the number of equivalence classes
of function symbols with respect to >Σ) thus it is enough to ana-
lyze the length of strictly decreasing sequences of tuples of values
(v1, . . . ,vk) lexicographically ordered where k is the largest arity
of a function symbol. If b is a bound on the size of the values then
since on values v >l v′ implies |v|> |v′| we derive that the sequence
has length at most bk . Since b is polynomial in the size of the argu-
ments and the number of values on a frame is bound by a constant
(via the stack height verification), a polynomial bound is easily de-
rived.

7 Conclusion
The problem of bounding the size of the memory needed for ex-
ecuting a program has already attracted considerable attention.
Nonetheless, automatic extraction of resource bounds has mainly
focused on first-order functional languages and very few works ad-
dress this problem at the level of the bytecode (or of the compiled
program).

In this paper, we study the resource bounds problem in a simple
stack machine and show how to perform type, size, and termination
verifications at the level of the bytecode. In particular, we show that
a combination of size verification based on quasi-interpretations
and of termination verification based on lexicographic path orders
leads to an explicit polynomial bound on the space required for the
execution. More than simplifying our presentation, the choice of a
simple set of bytecode instructions is of a pedagogical nature: we
can present a minimal but still relevant scenario in which problems
connected to bytecode verification can be effectively discussed.

We are in the process of formalizing our virtual machine and the
related security properties in the COQ proof assistant. As a second
step, we plan to experiment with the automatic derivation of proofs
(certificates) for the object code of the virtual machine starting from
the static analyses performed on the source code. Plans for future
works also include extending our analysis to a richer language with,
for instance, unconditional jumps (the “infamous” Goto statement)
or subroutines.

8 References
[1] R. Amadio. Max-plus quasi-interpretations. In Proc. Typed

Lambda Calculi and Applications (TLCA ’03), LNCS, to ap-
pear. Springer, 2003.

[2] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. On termination
methods with space bound certifications. In Andrei Ershov
Fourth International Conference ”Perspectives of System In-
formatics”, LNCS. Springer, 2001.

[3] F. Baader and T. Nipkow. Term rewriting and all that. Cam-
bridge University Press, 1998.

[4] A. Cobham. The intrinsic computational difficulty of func-
tions. In Proc. Logic, Methodology, and Philosophy of Sci-
ence II, North Holland, 1965.

[5] B. Gramlich. On proving termination by innermost termi-
nation. In Proc. 7th Int. Conf. on Rewriting Techniques and
Applications (RTA ’96), volume 1103 of LNCS, pp. 93–107.
Springer, 1996.

[6] M. Hofmann. The strength of non size-increasing computa-
tion. In Proc. POPL. ACM Press, 2002.

[7] N. Jones. Computability and complexity, from a programming
perspective. MIT-Press, 1997.

[8] J.-Y. Marion. Complexité implicite des calculs, de la théorie
à la pratique. PhD thesis, Université de Nancy, 2000. Habili-
tation à diriger des recherches.

[9] J.-Y. Marion, J.-Y. Moyen. Termination and resource anal-
ysis of assembly programs by Petri Nets. Technical Report,
Université de Nancy, 2003.

[10] G. Morriset, D. Walker, K. Crary and N. Glew. From System
F to Typed Assembly Language. In ACM Transactions on
Programming Languages and Systems, 21(3):528-569, 1999.

[11] G. Necula. Proof carrying code. In Proc. POPL. ACM Press,
1997.

[12] D. Sannella. Mobile resource guarantee. Ist-global computing
research proposal, U. Edinburgh, 2001. http://www.dcs.
ed.ac.uk/home/mrg/.

