IT University

of Copenhagen

SPACE 2001

Preliminary Proceedings of Workshop on Semantics,
Program Analysis and Computing Environments for
Memory Management (SPACE 2001)

Organizing and editorial committee:

Fritz Henglein, DOI, The IT University of Copenhagen
John Hughes, Chalmers University of Technology
Henning Makholm, DIKU, University of Copenhagen
Henning Niss, DIKU, University of Copenhagen

Copyright(© 2001,

by contributing authors.
All rights reserved.

Reproduction of all or part of this work is permitted for ed-
ucational or research use on condition that the copyright of
the respective authorsis acknowledged and respectedePlea
note that ITU only acts as a conduit for the enclosed mate-
rial submitted by the respective authors. ITU expects the au
thors to have sufficient rights to their work for reproduntio

in these proceedings and to grant ITU the right to do so.

IT University of Copenhagen (ITU)

Glentevej 67

DK-2400 Copenhagen NV

Denmark

Telephone: +45 38 16 88 88
Telefax: +45 38 16 88 99

World-Wide Web: http://ww.it.edu

Foreword

These pages contain informal proceedings documentinglikeedresented at the work-
shop on Semantics, Program Analysis and Computing Envieosrior Memory Man-
agement$PACE2001), held Januar 15-16, 2001, in London, UK.

Since the inception of programming languages, increagipmverful runtime sup-
port has been devised for memory management, starting taitic snemory manage-
ment, via runtime stacks with explicitly managed heaps amake recently, garbage
collection. Correspondingly, (static) reasoning about barnessing dynamic memory
management for predictability, performance, real-timpliaptions, security, mobility
and distribution has become increasingly more challenging

Highlighted by the advent of region inference in the earlg,afbmpile-time tech-
nigues have been proposed for reasoning about and imprdymgmic memory man-
agement. Such techniques bear the promise of reducing ngdamiprints, guarantee-
ing real-time constraints, meeting resource constraoterhbedded devices, etc., and
may in the end provide a foundation for the next generatian@hory management.

This workshop was organized to bring together researclueheasing static con-
trol of dynamic memory management issues at different $epkhbstraction and with
somewhat differing, but related aims. This was motivatead bl sense that progress
on reasoning about memory management and arriving at itimevienplementation
technology benefits from an exchange of research — a “valamth you will — on
semantics and program logics via type systems and efficiegram analysis to lan-
guage design and exploitation of static (compile-timedinfation in efficient memory
management systems. It is also motivated by our — admittedire diffuse — sense
that progress on memory management is likely to be bound te g@neral progress
on reasoning about programs and, vice versa, to aid the attproviding a fruitful
concrete application area.

Early-on we made a decision to emphasize and foster a wopkatmoosphere by
avoiding a peer review of paper submissions, minimizing iagstration (for every-
body) by eliminating a registration fee, and setting flexidkeadlines for registration
and for submission of abstracts and papers. There was naiteguirement to submit
full papers on the one hand, nor any page limits on the masarianitted on the other
hand.

The workshop consisted of 4 invited talks and 12 presemtstaf 25 minutes’
duration each, 6 presentations of 10 minutes’ duration, antlleast, numerous op-
portunities for interaction (lunches, breaks, dinner,Ifplanary discussion). Close to
50 people registered for participation before we, reghgtfbad to close registration
for space reasons (“space” in lower-case). The invitedstal&re given by (in the or-
der given): Mads Tofte and Niels Hallenberg (The IT Univisref Copenhagen); John
Reynolds (Carnegie-Mellon University) and Peter O’He&ynéen Mary and Westfield
College); Colin Runciman (York University); and Greg Maett (Cornell University).

It is important to note that these proceedings are informdl@re not to be con-
strued as a (peer-reviewed) publication — which they ar@lsimot. We are sure that
many of the contributions will find proper publication eldesve. Only the future, how-
ever, can be the judge as to whether the workshop accomglishbroader goals of
contributing to progress on static support for memory managnt and, more gener-
ally, reasoning about programs and putting it to effectise.u

Fritz Henglein
SPACE2001 workshop chairman

Acknowledgements

We would like to thank Lotte Mgller, Henrik Reif Andersen,ilEvan der Meer and
Michael Florentin Nielsen at ITU for their practical helppe&ial thanks go to Chris
Hankin and Steffen van Bakel for their invaluable, exteasiglp with arrangingPACE
2001 in London and adopting it as a colocated evertatL 2001; to Imperial College
for providing room, facilities and services for the workph@nd to DIKU, Univer-
sity of Copenhagen, for hosting ttePACE 2001 web site and supporting Henning
Makholm’s and Henning Niss’ work as workshop organizers.

Last, but not least, we would like to thank the sponsorsrce2001. The Dan-
ish Research Council provided for substantial funding ke workshop under grant
no. 9502816 (“DART — Design and Reasoning About Tools”), #trelDepartment of
Innovation at ITU provided legal sponsorship and admiatste support for the work-
shop. In the same vein, we would like to acknowledge EAPLS AGW/SIGPLAN
for grantingsPACE2001 in-cooperation status and colocation vethPL 2001.

Fritz Henglein, DOI, The IT University of Copenhagen
John Hughes, Chalmers University of Technology
Henning Makholm, DIKU, University of Copenhagen
Henning Niss, DIKU, University of Copenhagen

Contents

Foreword i

Program v

Session 1: 9:00-12:0@chaired by Fritz Henglein)

Region-based memory management in perspective 1
(Mads Tofte and Niels Hallenberg)

Syntactic type soundness for the imperative region casculu 2
(Simon Helsen)

Sized region types 3
(Lars Pareto)

Practical structure reuse for Mercury 4
(Nancy Mazur)

Statically allocated systems 5
(Alan Mycroft)

A stack machine for region based programs 6

(Martin Elsman)

Session 2: 14:00-17:0@haired by Henning Makholm)

Reasoning about shared mutable data structure 7
(John Reynolds and Peter O’Hearn)

Verification of data type implementations using graph typesl monadic 8
second-order logic
(Anders Mgiller)

An example of local reasoning in Bl pointer logic: the Schéfaite graph 9
marking algorithm
(Hongseok Yang)

A type system for controlling heap space and its translatiofavaCard 10
(Martin Hofmann)

Program logics in the presence of garbage collection 11
(Cristiano Calcagno)

On deleting aggregate objects 12
(David Clarke)

Session 3: 9:00-12:0@haired by Henning Niss)

Heap profiling for theoreticians 13
(Colin Runciman)

Principled scavenging 14
(Stefan Monnier)

Memory management = Partitioning + Alpha-renaming 15
(Alex Garthwaite)

Conflict graph based allocation of static objects to memamyks 16
(Peter Keyngnaert)

Looking for leaks 17
(Adam Bakewell)

Spikes and ballast: The algebra of space 18
(David Sands)

Session 4: 14:00-17:0@&haired by John Hughes)

Next generation low-level languages 19
(Greg Morrisett)

Towards a more flexible region type system 20
(Henning Makholm and Henning Niss)

A type system for reference-counted regions 21
(David Gay)

On linear types and regions 22
(David Walker)

Contributed material 23

Region-based memory managementin perspective 23

(Mads Tofte and Niels Hallenberg)

Verification of data type implementations using graph typad monadic 31
second-order logic
(Anders Mgiller)

An example of local reasoning in Bl pointer logic: the Schéfaite graph 41
marking algorithm

(Hongseok Yang)

On deleting aggregate objects 69
(David Clarke)

Looking for leaks 81
(Adam Bakewell)

Spikes and ballast: The algebra of space 89
(David Sands)

On linear types and regions 101

(David Walker)

Program

Monday

Tuesday

9:00

M. Tofte and N. Hallenberg
Invited talk: Region-based memo
management in perspective

C. Runciman
y Invited talk: Heap profiling for
theoreticians

[

9:45 Coffee
10:05 S. Helsen S. Monnier
Syntactic type soundness for the Principled scavenging
imperative region calculus
10:30 L. Pareto A. Garthwaite
Sized region types Memory management =
Partitioning + Alpha-renaming
10:55 Coffee
11:15 N. Mazur P. Keyngnaert
Practical structure reuse for Conflict graph based allocation o
Mercury static objects to memory banks
11:40 A. Mycroft A. Bakewell
Statically allocated systems Looking for leaks
11:50 M. Elsman D. Sands
A stack machine for region based Spikes and ballast: The algebra ¢
programs space
12:00
Lunch
14:00 J. Reynolds and P. O'Hearn G. Morrisett
Invited talk: Reasoning about Invited talk: Next generation
shared mutable data structure low-level languages
14:45 Coffee
14:05 A. Mgller H. Makholm and H. Niss
Verification of data type Towards a more flexible region
implementations using graph types type system
and monadic second-order logic|
14:30 H. Yang D. Gay
An example of local reasoning in A type system for
BI pointer logic: the Schorr-Waite reference-counted regions
graph marking algorithm
15:55 Coffee D. Walker
16:15 M. Hofmann On linear types and regions
A type system for controlling heap
space and its translation to
JavaCard
16:40 C. Calcagno Discussion
Program logics in the presence of
garbage collection
16:50 D. Clarke

On deleting aggregate objects

—h

Region-based memory management in
perspective

Mads Tofte Niels Hallenberg
The IT University of Copenhagen
DENMARK

Abstract

Originally, Region-based Memory Management was conceaged purely theoreti-
cal idea intended to solve a practical problem in the cordé@tandard ML, namely
inventing a dynamic memory management discipline whicless Ispace demanding
and more predictable than generic garbage collection teaks, such as generational
garbage collection.

Over the subsequent eight years, considerable effort wastetbto refining the
idea, proving it correct and finding out whether it worked nagtice. The practical
experiments revealed weaknesses, which led to new progralysas, new theory and
yet more experimentation. In short, we have sought to worknemory management
as an experimental science: the work should be scientifteaisénse that it should rest
on a solid mathematical foundation and it should be expeariaién the sense that it
should be tested against competing state-of-the-art immgeation technology.

The purpose of this talk is to step back and consider the psogg a whole. What
does it take to develop a new implementation technology afid foundations to go
with it? What might one hope to gain? What were the risks m@d? What successes
have been achieved? What failures have there been? Whatrngxhlogical step?

Embedded in the talk will be an overview of the main idea ofisrgnference
and their implementation in the ML Kit with Regions, intewid®r those not already
familiar with region inference.

The ML Kit with Regions web-siteht t p: / / ww. i t . edu/ research/ m ki t/

Syntactic type soundness for the imperative
region calculus

Simon Helsen
Institute for Computer Science
University of Freiburg
GERMANY

Abstract

In previous work, we defined a structural operational serosufdr the region calculus
of Tofte and Talpin. This lead to simple syntactic soundipessfs for region inference
based on a general technique of Wright, Felleisen, and HaRaet of the simplicity
of that framework is due to its storeless formulation. Irsttalk, we fill in some
missing links: first, we show that the original big-step satits of Tofte and Talpin is
semantically equivalent to our small-step semantics. S&oe extend our semantics
to include an explicit store. And third, we include expli(ML-style) references in
our framework. The proofs become slightly more involved; jpose no conceptual
difficulties.

(This is joint work with Cristiano Calcagno and Peter Thiema

Sized region types

Lars Pareto
Computing Science Dept.
Chalmers University of Technology
SWEDEN

Practical structure reuse for Mercury

Nancy Mazur
Dept. of Computer Science
K.U. Leuven
BELGIUM

Abstract

In previous work we developed a module based analysis tarodttacture reuse for the
logic programming language Mercury. It also gave prelimyasults of a prototype
implementation of the analysis. The results being realympsing, we are developing
a full implementation of the analysis system within the Meltme Mercury compiler.
In this work we present this implementation as a five stepyasishnd discuss different
practical issues that have an effect on the precision ofdhee analysis, on the speed
of the analysis, and finally on the obtained speedup and mensage of the optimised
programs.

(Joint work with Peter Ross, Gerda Janssens and MauricenBogihe.)

Statically allocated systems

Alan Mycroft
Cambridge University Computer Laboratory
UK

Abstract

Static allocation of variables, processes and the like iglalyrdesirable property for
languages which compile to hardware. We consider some pgiep&vhich guarantee
static allocatability.

See http://ww. cl.cam ac. uk/ users/ am resear ch/ sa for more
details.

A stack machine for region based programs

Martin Elsman
Dept. of Mathematics and Physics
The Royal Veterinary and Agricultural University
DENMARK

Abstract

In this talk we present a stack based abstract machinegddhleKit Abstract Machine,
as a target for compiling Standard ML programs with the ML With Regions. Al-
though similar to the abstract machines used as targetgier ML compilers, such
as OCaml and Moscow ML, the Kit Abstract Machine is differ@nthat it has no
garbage collector. Instead, the Kit Abstract Machine hagrurctions for allocating
regions, deallocating regions, and allocating memory giores.

Region based programming is promising in the area of emizksigs#tems with real
time requirements to the software running and where mensoegylimited resource.
Region based programming is also promising in situationsre/programs run shortly
and are executed often; in such situations region infereac@rovide very good cache
behavior and thus high efficiency. This latter situatios@sioften in server based web
applications where clients requests the execution of progron a single server.

To get practical experience with the above scenarios, we si@rted two projects.
The Palm ML project (PaML) focuses on using the ML Kit for die@ng Palm Pilot
applications with extensive event-based computing. Thé&Wer project focuses
on developing a framework for running web-server applarsibuilt with the ML Kit.
Both projects make use of the Kit Abstract Machine.

(Joint work with Niels Hallenberg and Ken Friis Larsen.)

The ML Kit with Regions web-siteht t p: / / www. i t . edu/ resear ch/ m ki t/

Reasoning about shared mutable data
structure

John Reynolds Peter O'Hearn
School of Computer Science Dept. of Computer Science
Carnegie Mellon University Queen Mary & Westfield College
USA UK

Abstract

We describe an extension of Hoare logic to permit reasorbingishared mutable data
structure.

The simple imperative language is extended with commanatssfipressions) for
accessing and modifying shared mutable structures, afdneitdetermininstic allo-
cation, explicit deallocation, and unrestricted addresgiraetic. Semantically, this ex-
tension involves separating the state of the computatiraiistore that maps variables
into integers, and a heap that maps location (a subset afithgers) into integers.

Assertions are extended by introducing an independenunotipn operation that
asserts that its subformulas hold for disjoint parts of thagh Coupled with the in-
ductive definition of predicates on abstract data strustutes extension permits the
concise and flexible description of data structures withirodied sharing.

Although address arithmetic is unrestricted, the nonddteacy of storage allo-
cation insures that valid specifications never describgnaras that violate record or
array boundaries.

Verification of data type implementations
using graph types and monadic second-order
logic

Anders Mgller
BRICS
University of Aarhus
DENMARK

Abstract

We present a new framework for verifying partial specificas of programs in order
to catch type and memory errors and check data structureiamis. Our technique
can verify a large class of data structures, namely all thioaecan be expressed as
graph types Earlier versions were restricted to simple special caseh as lists or
trees. Even so, our current implementation is as fast asréwvéopis specialized tools.

Programs are annotated with partial specifications expdessPointer Assertion
Logic, a new notation for expressing properties of the progstore. We work in the
logical tradition by encoding the programs and partial fftions as formulas in
monadic second-order logic. Validity of these formulasieaked by the MONA tool,
which also can provide explicit counterexamples to invidignulas.

Other work with similar goals is based on more traditionalgyam analyses, such
as shape analysis. That approach requires explicit inttaztuof an appropriate op-
erational semantics along with a proof of correctness wimrenew data structure is
being considered. In comparison, our approach only regjtiive data structure to be
abstractly described in Pointer Assertion Logic.

(Joint work with Michael I. Schwartzbach.)

An example of local reasoning in Bl pointer
logic: the Schorr-Waite graph marking
algorithm

Hongseok Yang
Dept. of Computer Science
University of lllinois at Urbana-Champaign
USA

Abstract

Reasoning about programs manipulating pointers has bewidesed as difficult not
because of the lack of formalisms for verifying pointer mangs, but because of the
significant increase in the complexity of proofs in each falism over an informal
argument. Recently, there has been significant developmbandling the complexity
by exploiting locality of memory access within a code fragimé&eynolds introduced a
pointer logic based on a "spatial” interpretation, whefféedént parts of a formula refer
to different area of memory; this holds the promise of manggomplexity of aliasing
information. O’Hearn proposed a "tight” interpretationtébare triples which reflects
locality of memory access: in addition to the usual requiatrof Hoare triples, a
command is required to access only those memory cells "oeed” in a precondition.
These two ideas are combined in the Frame Introduction pudgyosed by Ishtiaq and
O’Hearn in BI pointer logic, to exploit locality of memory eess in verification of
pointer programs. Frame Introduction supports two stageaeing for a piece of code:
first reasoning about a local fact for the piece of code, aed tteriving a global fact
from the local one by incorporating all other unaccessels$ osl the heap. O’Hearn
calls this style of reasoning local reasoning. In this talle show the promise of
local reasoning in BI pointer logic by an example: the SciWaite graph marking
algorithm. Our verification gives an evidence that even imr@mm with no clear
separations of data structures, the locality of memorysgcan still be exploited in
a formal proof with Frame Introduction and Bl multiplicagiconnectives and that the
resulting verification becomes significantly simpler.

10

A type system for controlling heap space and
its translation to JavaCard

Martin Hofmann
Laboratory for Foundations of Computer Science
University of Edinburgh
UK

Abstract

JavaCard is a subset of Java intended for programming sarai$.cThe most striking
difference to Java proper is the absence of garbage colte¢td reduce overhead)
and of explicit deallocation (for the sake of safety). Aaliogly, every object created
remains in memory throughout the lifetime of the programue@ithe limited amount
of memory on a smart card it therefore appears to be sensibéite existing objects
whenever possible rather than creating new ones.

To that end we have adapted an existing type system for a fimeetional language
(M.H. ESOP’00) with inductive datatypes to admit a traristato JavaCard. The main
result is that the heap usage of translated programs isatatbounded and that their
behaviour agrees with an obvious functional semantics.

The main technical novelties beyond our previous work (VESOP’00) are the
inclusion of general (first-order) recursive datatypesys, string literals, as well as
a tentative version of "read-only types” which relax thecstlinearity regime in the
case of non-modifying access and provide a controlled atafuaiasing for recursive
datastructures (eg representation of certain binary aseksgs).

Our approach to read-only types extends and unifies partgistirey work by
Wadler-Odersky (observer types), Kobayashi (quasi-titgaes), and O’'Hearn-Pym
(logic of bunched implication).

(Joint work with David Aspinall.)

11

Program logics in the presence of garbage
collection

Cristiano Calcagno
Queen Mary
University of London
UK

Abstract

Garbage collection relieves the programmer of the burdemariaging dynamically
allocated memory, by providing an automatic way to reclaimeeded storage. This
eliminates or lessens program errors that arise from ateta@ccess disposed mem-
ory, and generally leads to simpler programs. One mightefoee expect that rea-
soning about programs in garbage collected languages vibeutduch easier than in
languages where the programmer has more explicit conteslmemory. But existing
program logics are based on a low level view of storage trssnsitive to the presence
or absence of unreachable cells, a view that is not invatiadér garbage collection,
and Reynolds has pointed out that the Hoare triples desvakthese logics are even
incompatible with garbage collection. We present a serosuofi program logic asser-
tions based on a view of the heap as finite, but extensiblkejgHor a logical language
with primitives for dereferencing pointer expressions.e®ssential property of the
semantics is that all propositions are invariant underatens of adding or removing
garbage cells; in short, they are garbage insensitive.

12

On deleting aggregate objects

David Clarke
School of Computer Science and Engineering
University of New South Wales
AUSTRALIA

Abstract

We describe the intuitions underlying a typed object caisuvhich makes explicit the
nesting between objects. The calculus is based on Abadi ardk(l’'s object calculus
extended with regions. Regions have properties descrih&ignesting and the bounds
on their access. Regions are used not only in a stack-basedgemdut also to store
an object’s private implementation. This creates oppdtiesto improve memory
management. In particular, the calculus allows the entirgafe implementation of
an aggregate object to be deleted when the interface to tregate becomes garbage.
The calculus also allows entire aggregate object to beathaion a stack-based manner.

13

Heap profiling for theoreticians

Colin Runciman
Dept. of Computer Science
University of York
UK

Abstract

Heap profiling began as an improvised solution to an urgesdtimal problem: if a
program demands too much memory, which program componkotddsbe modified
to save the most space? A basic heap profiler takes a compleseis of live heap
memory at intervals throughout a computation, and summsitisis data graphically
using various classifications of memory — most of them linfcggrogram components.
(Fancier two-pass methods involving the examination obgge are needed for the
fullest classification of heap cross-sections.) The pnognar gazes alternately at pro-
file and program until inspiration strikes and a modified pamg runs in the available
space.

Such pragmatism seems a long way from abstract theoriestasadalyse and
govern the rules of memory management. What exactly is a pezfpe? Does it
have a semantics? How are different kinds of profile relat®dRat is the relative
power of the methods used to extract them? Is there a thedrgay profiling? Has
it any connection with other theories to do with memory spathese are the sorts of
guestions to be addressed in this talk.

14

Principled scavenging

Stefan Monnier
Dept. of Computer Science
Yale University
USA

Abstract

Proof-carrying code and typed assembly languages aim tomizia the trusted com-
puting base by directly certifying the actual machine codefortunately, these sys-
tems cannot get rid of the dependency on a trusted garbatpetonl Indeed, con-
structing a provably type-safe garbage collector is ondefrbajor open problems in
the area of certifying compilation.

Building on an idea by Wang and Appel, we present a serieswtaehniques for
writing type-safe stop-and-copy garbage collectors. Wanshow to use intensional
type analysis to capture the contract between the mutatbtrencollector, and how
the same method can be applied to support forwarding psiated generations. Un-
like Wang and Appel (which requires whole-program ana)ysisir new framework
directly supports higher-order functions and is compatibith separate compilation;
our collectors are written in provably type-safe languagigs rigorous semantics and
fully formalized soundness proofs.

(This is joint work with Zhong Shao and Bratin Saha.)

15

Memory management = Partitioning +
Alpha-renaming

Alex Garthwaite
Sun Microsystems Labs
USA

Abstract

Safe languages like Java and ML are an important advance icahistruction of cor-
rect, robust, and scalable applications. By providing @rgjrtype system and runtime
services like automatic memory management, these langu@igenate whole classes
of programming errors. However, programs written in thede fanguages must rely
on the correctness of their underlying runtime services.

This reliance on the correctness of these underlying sesvitakes formal frame-
works for modelling their correctness important. Recentknmy Greg Morrisett, for
example, on operational semantics that model the interacti memory management
with the supported language has shown the correctness lettioh techniques for
partitioning the heap based on reachability. While reprtisg an important advance,
however, his lambda-gc framework ignores several impbeapects of memory man-
agement:

¢ the correctness of allocation policies.

¢ the fact that collection is more than a partitioning problésnexample, copying
collection tecniques also must correctly perform alph@naing on the values
of the heap as these values are moved during collection.

¢ the way in which the language and services interact throagth and write bar-
riers.

Because of these omissions, the lambda-gc framework isofmt@distinguish among
different tracing collection techniques, and has a limaedity to model the behavior
of generational, incremental, and concurrent collectammbiques.

Our work extends the lambda-gc framework to model thesectésphn particular,
we extend the operational semantics to include:

¢ the making of the tracing of references in heap values akplic

¢ the introduction of mapping functions that are built up dgrthe course of col-
lection.

¢ the use of these mapping functions in both the collectionis the supported
language’s operational semantics.

Using these extensions, we show that specific tracing tqaesimay be specified in-
cluding copying, mark-sweep, mark-compact, and Bakdestycremental copying

collection. Finally, we extend the set of properties we caove about these tech-
nigues to include the fact that they correctly rename aéinaices for objects moved
during collection.

16

Conflict graph based allocation of static
objects to memory banks

Peter Keyngnaert
Dept. of Computer Science
K.U. Leuven
BELGIUM

Abstract

Several architectures, in particular those specificallsigieed for digital signal pro-
cessing, have a memory structure that consists of a numbeardés with different
characteristics (waitstate, size, ...). There may alsst erinstraints on the accessibil-
ity of these banks, as some bank combinations can be acdagsa@llel, while others
can not. As memory access conflicts lead to pipeline stakksassignment of the data
objects of a program to the set of memory banks is crucial veiipect to a program’s
execution speed. Programmers usually do the assignmein¢ atatic objects manu-
ally. We present a method to automate this process at/pstiine, as the linker is
the first moment at which both the entire program as well agatget architecture’s
characteristics are fully known. Based upon statisticsvdrtom an execution trace
of the program, an ordering of conflicts is derived accordinthe possible execution
time penalties they generate. By allocating the objecthade conflicts that have the
most negative impact on the program execution time first,cewfeallocation can be
derived automatically.

(Joint work with Bart Demoen, Bjorn De Sutter, Bruno De Bud &oen De Boss-
chere, still in a rather early stage.)

17

Looking for leaks

Adam Bakewell
Dept. of Computer Science
University of York
UK

Abstract

Implementations of programming languages that assist rthgr@mmer by providing
automatic memory management can consaiace leaksWe define a leaky implemen-
tation as one with asymptotically worse space usage thafatiggiage standard for
some program — the leak witness.

This paper is about proving that an implementation — or maitseoperational
semantics, expressed as a term-graph rewriting system s $gace leak. We do this
by conducting an automated search for candidate leak veisesThese are programs
that do not terminate and keep on allocating more memoryoutthimit.

To make the problem decidable we restrict ourselves to fqdiitnesses from a
class of looping programs which are evaluated by repeatguiyying the same se-
guence of rules from the operational semantics. A non-stahahification procedure
is used to constructsuper-rule— the repeating rule sequence. A matching procedure
tests whether a super-rule can self feed, producing its edex and so representing a
set of non-terminating programs. An approximation is agpto test if the super-rule
will also allocate at each iteration, thus selecting caaidvitnesses.

This brute force search is slow, so we employ the idearodf planningto reduce
the search space. We also use an approximation to the exzartisle construction
procedure to avoid generating multiple solutions.

The search technique is applied to variants of a simple galidime operational
semantics for Core Haskell.

18

Spikes and ballast: The algebra of space

David Sands
Computing Science Dept.
Chalmers University of Technology

SWEDEN

Abstract

The space-usage of lazy functional programs is perhapsaiethorny problem facing
programmers using languages such as Haskell. Programmednteto predict or con-
trol the space behaviour of their lazy programs. Even the aabganced programmers,
who are able to visualise the space use of their programsplaimthat the “state-of-
the-art” compilergntroducespace-leaks into programs that they believe ought to be
space-efficient.

Apart from a few high-level operational semantics whichroléo model space be-
haviour, to the best of our knowledge there have been no fitthearetical/semantics-
based approaches to reasoning about space behaviour ocdmmgRather than tack-
ling the problem of determining the absolute space behawba program, we study
relative space efficiency. We pose the question: when idsesjsafe to replace one pro-
gram fragment by another? To this end we introduce a spapeirament relation on
terms, which guarantees that transformations can nevérteasymptotically worse
space (heap or stack) behaviour, for a particular model ofpedation and garbage
collection. Space improvement satisfies an interestingramdirivial collection of al-
gebraic laws which are expressed with the help of syntaeficasentations of stack
and heap-use phenomerspikesandballast

(Joint work with Jérgen Gustavsson.)

19

Next generation low-level languages

Greg Morrisett
Dept. of Computer Science
Cornell University
USA

Abstract

High-level languages, such as ML and Java, provide dematestsafety and software
engineering benefits. Nonetheless, today’s critical systare still coded in low-level,

unsafe, and error-prone languages such as C. A big reastnisas inertia. But there

are also technical reasons. For instance, C provides gogdgnmer control over data
representations and memory management, whereas highHalegeiages do not. This
is witnessed by the fact that the run-time system of almogthagh-level language

implementation is coded in C.

The question is, can we provide a next generation low-l@areliage that provides
the programmer control of C and the safety of ML? | claim thetgeraging recent
breakthroughs in linear-, region-, and alias-based typgtesys, we can come pretty
close to achieving this goal.

20

Towards a more flexible region type system

Henning Makholm Henning Niss
Dept. of Computer Science
University of Copenhagen

DENMARK

Abstract

Region-based memory management was proposed by Tofte #id ifa1994 as an
alternative to garbage collection for call-by-value fuasal programming languages.
It consists of a compile-time analysis that augments a jragwrith explicit deallo-
cation instructions, and a run-time memory manager whighléments the "region”
abstraction used by the analysis.

Unfortunately, the original Tofte-Talpin analysis leadsihacceptably large mem-
ory use when it is used on programs that use popular progragqpdtterns like tail
recursion in the straightforward way. Several proposalsifav to deal with this prob-
lem have been proposed; most involve doing additional ctatpne analysis on the
results of the Tofte-Talpin analysis, and all require mo#ial programs to be rewritten
to fit the solution, often in ways that can only be understopgitmgrammers who are
intimately familiar with the region model.

The goal of this project is to clean up this situation by replg the Tofte-Talpin
analysis with a stronger analysis that incorporated thigeearoposals. At present we
have a theory on paper and thought experiments that indltateur solution can work
in many cases without rewriting the programs at all. An impatation of our system
is under construction.

(Joint work: Fritz Henglein, Henning Makholm, and Henning$)

21

A type system for reference-counted regions

David Gay
Computer Science Division
University of California
Berkeley
USA

Abstract

Region-based memory management systems, where objectomaged in “regions”
and memory is only reclaimed by deleting regions, have icadilly been either

o statically verified through a type system that guaranteasttie objects in a
region are not accessed after the region is deleted;

e completely unsafe, with no restrictions on where or howaegiare deleted.

Our compiler for C with regions, RC, prevents unsafe regieletibns by keeping a
count of references to each region. There are thus no tistisoon C's type system
or where regions are deleted, but there are no static safietagtees and the reference
counting imposes a certain overhead.

To make the structure of a program'’s region more explicit @neduce the over-
head of reference counting we have extended RC in two ways:

¢ We have added the concept of a “subregion”; if A is a subregioB then A's
lifetime is strictly contained within B’s lifetime.

¢ RC includes type annotations declaring properties of ponwithin the pro-
gram’s region hierarchy. Assignments to locations of aateat type are verified
either statically or dynamically.

We generalise these annotations in a region type systeriasim the type systems
of statically verified region systems, which can represédsRinnotated types. The
main novelty of this type system is the use of existentiallgmtified abstract regions to
represent pointers to objects whose region is partiallptatly unknown. An analysis

of RC programs based on the concepts from this type systawslls to eliminate

up to 99% of the checks that would be performed in a purely dyoaystem. The

extensions and analysis reduce the overhead of referenoéing from a maximum of

27% to a maximum of 18% on a collection of eight small to largadhmarks.

22

On linear types and regions

David Walker
School of Computer Science
Carnegie Mellon University
USA

Abstract

We explore how two different mechanisms for reasoning alstaie, linear typing
and the type, region and effect discipline, complement araheer in the design of
a strongly typed functional programming language. Thesbfsi our language is a
simple lambda calculus containing first-class regionschlare explicitly passed as
arguments to functions, returned as results and storecdeindedined data structures.
In order to ensure appropriate memory safety propertiesjra® upon the literature
on linear type systems to help control access to and de&ithocaf regions. In fact,
we use two different interpretations of linear types, ona/iich multiple-use values
are freely copied and discarded and one in which multiplevsues are explicitly
reference-counted, and show that both interpretatioresrige to interesting invariants
for manipulating regions. We also explore new programmiaigagdigms that arise by
mixing first-class regions and conventional linear datacttires.
(Joint work with Kevin Watkins.)

