
of

SPACE 2001
Preliminary Proceedings of Workshop on Semantics,
Program Analysis and Computing Environments for
Memory Management (SPACE 2001)

Organizing and editorial committee:

Fritz Henglein, DOI, The IT University of Copenhagen
John Hughes, Chalmers University of Technology
Henning Makholm, DIKU, University of Copenhagen
Henning Niss, DIKU, University of Copenhagen



Copyright c
 2001, by contributing authors.
All rights reserved.

Reproduction of all or part of this work is permitted for ed-
ucational or research use on condition that the copyright of
the respective authors is acknowledged and respected. Please
note that ITU only acts as a conduit for the enclosed mate-
rial submitted by the respective authors. ITU expects the au-
thors to have sufficient rights to their work for reproduction
in these proceedings and to grant ITU the right to do so.

IT University of Copenhagen (ITU)
Glentevej 67
DK-2400 Copenhagen NV
Denmark

Telephone: +45 38 16 88 88
Telefax: +45 38 16 88 99
World-Wide Web: http://www.it.edu



i

Foreword

These pages contain informal proceedings documenting the talks presented at the work-
shop on Semantics, Program Analysis and Computing Environments for Memory Man-
agement (SPACE2001), held Januar 15–16, 2001, in London, UK.

Since the inception of programming languages, increasingly powerful runtime sup-
port has been devised for memory management, starting with static memory manage-
ment, via runtime stacks with explicitly managed heaps and,more recently, garbage
collection. Correspondingly, (static) reasoning about and harnessing dynamic memory
management for predictability, performance, real-time applications, security, mobility
and distribution has become increasingly more challenging.

Highlighted by the advent of region inference in the early 90s, compile-time tech-
niques have been proposed for reasoning about and improvingdynamic memory man-
agement. Such techniques bear the promise of reducing memory footprints, guarantee-
ing real-time constraints, meeting resource constraints for embedded devices, etc., and
may in the end provide a foundation for the next generation ofmemory management.

This workshop was organized to bring together researchers addressing static con-
trol of dynamic memory management issues at different levels of abstraction and with
somewhat differing, but related aims. This was motivated byour sense that progress
on reasoning about memory management and arriving at innovative implementation
technology benefits from an exchange of research — a “value chain” if you will — on
semantics and program logics via type systems and efficient program analysis to lan-
guage design and exploitation of static (compile-time) information in efficient memory
management systems. It is also motivated by our — admittedlymore diffuse — sense
that progress on memory management is likely to be bound to more general progress
on reasoning about programs and, vice versa, to aid the latter by providing a fruitful
concrete application area.

Early-on we made a decision to emphasize and foster a workshop atmosphere by
avoiding a peer review of paper submissions, minimizing administration (for every-
body) by eliminating a registration fee, and setting flexible deadlines for registration
and for submission of abstracts and papers. There was neither a requirement to submit
full papers on the one hand, nor any page limits on the material submitted on the other
hand.

The workshop consisted of 4 invited talks and 12 presentations of 25 minutes’
duration each, 6 presentations of 10 minutes’ duration, and, not least, numerous op-
portunities for interaction (lunches, breaks, dinner, final plenary discussion). Close to
50 people registered for participation before we, regretfully, had to close registration
for space reasons (“space” in lower-case). The invited talks were given by (in the or-
der given): Mads Tofte and Niels Hallenberg (The IT University of Copenhagen); John
Reynolds (Carnegie-Mellon University) and Peter O’Hearn (Queen Mary and Westfield
College); Colin Runciman (York University); and Greg Morrisett (Cornell University).

It is important to note that these proceedings are informal and are not to be con-
strued as a (peer-reviewed) publication – which they are simply not. We are sure that
many of the contributions will find proper publication elsewhere. Only the future, how-
ever, can be the judge as to whether the workshop accomplished its broader goals of
contributing to progress on static support for memory management and, more gener-
ally, reasoning about programs and putting it to effective use.

Fritz Henglein
SPACE2001 workshop chairman



ii

Acknowledgements

We would like to thank Lotte Møller, Henrik Reif Andersen, Erik van der Meer and
Michael Florentin Nielsen at ITU for their practical help. Special thanks go to Chris
Hankin and Steffen van Bakel for their invaluable, extensive help with arrangingSPACE

2001 in London and adopting it as a colocated event atPOPL2001; to Imperial College
for providing room, facilities and services for the workshop; and to DIKU, Univer-
sity of Copenhagen, for hosting theSPACE 2001 web site and supporting Henning
Makholm’s and Henning Niss’ work as workshop organizers.

Last, but not least, we would like to thank the sponsors ofSPACE2001. The Dan-
ish Research Council provided for substantial funding for the workshop under grant
no. 9502816 (“DART — Design and Reasoning About Tools”), andthe Department of
Innovation at ITU provided legal sponsorship and administrative support for the work-
shop. In the same vein, we would like to acknowledge EAPLS andACM/SIGPLAN
for grantingSPACE2001 in-cooperation status and colocation withPOPL2001.

Fritz Henglein, DOI, The IT University of Copenhagen
John Hughes, Chalmers University of Technology
Henning Makholm, DIKU, University of Copenhagen
Henning Niss, DIKU, University of Copenhagen



iii

Contents

Foreword i

Program v

Session 1: 9:00–12:00(chaired by Fritz Henglein)

Region-based memory management in perspective 1
(Mads Tofte and Niels Hallenberg)

Syntactic type soundness for the imperative region calculus 2
(Simon Helsen)

Sized region types 3
(Lars Pareto)

Practical structure reuse for Mercury 4
(Nancy Mazur)

Statically allocated systems 5
(Alan Mycroft)

A stack machine for region based programs 6
(Martin Elsman)

Session 2: 14:00–17:00(chaired by Henning Makholm)

Reasoning about shared mutable data structure 7
(John Reynolds and Peter O’Hearn)

Verification of data type implementations using graph typesand monadic
second-order logic

8

(Anders Møller)

An example of local reasoning in BI pointer logic: the Schorr-Waite graph
marking algorithm

9

(Hongseok Yang)

A type system for controlling heap space and its translationto JavaCard 10
(Martin Hofmann)

Program logics in the presence of garbage collection 11
(Cristiano Calcagno)

On deleting aggregate objects 12
(David Clarke)



iv

Session 3: 9:00–12:00(chaired by Henning Niss)

Heap profiling for theoreticians 13
(Colin Runciman)

Principled scavenging 14
(Stefan Monnier)

Memory management = Partitioning + Alpha-renaming 15
(Alex Garthwaite)

Conflict graph based allocation of static objects to memory banks 16
(Peter Keyngnaert)

Looking for leaks 17
(Adam Bakewell)

Spikes and ballast: The algebra of space 18
(David Sands)

Session 4: 14:00–17:00(chaired by John Hughes)

Next generation low-level languages 19
(Greg Morrisett)

Towards a more flexible region type system 20
(Henning Makholm and Henning Niss)

A type system for reference-counted regions 21
(David Gay)

On linear types and regions 22
(David Walker)

Contributed material 23

Region-based memory management in perspective 23
(Mads Tofte and Niels Hallenberg)

Verification of data type implementations using graph typesand monadic
second-order logic

31

(Anders Møller)

An example of local reasoning in BI pointer logic: the Schorr-Waite graph
marking algorithm

41

(Hongseok Yang)

On deleting aggregate objects 69
(David Clarke)

Looking for leaks 81
(Adam Bakewell)

Spikes and ballast: The algebra of space 89
(David Sands)

On linear types and regions 101
(David Walker)



v

Program

Monday Tuesday9:00 M. Tofte and N. Hallenberg C. Runciman
Invited talk: Region-based memory

management in perspective
Invited talk: Heap profiling for

theoreticians9:45 Coffee10:05 S. Helsen S. Monnier
Syntactic type soundness for the

imperative region calculus
Principled scavenging10:30 L. Pareto A. Garthwaite

Sized region types Memory management =
Partitioning + Alpha-renaming10:55 Coffee11:15 N. Mazur P. Keyngnaert

Practical structure reuse for
Mercury

Conflict graph based allocation of
static objects to memory banks11:40 A. Mycroft A. Bakewell

Statically allocated systems Looking for leaks11:50 M. Elsman D. Sands
A stack machine for region based

programs
Spikes and ballast: The algebra of

space12:00
Lunch14:00 J. Reynolds and P. O’Hearn G. Morrisett

Invited talk: Reasoning about
shared mutable data structure

Invited talk: Next generation
low-level languages14:45 Coffee14:05 A. Møller H. Makholm and H. Niss

Verification of data type
implementations using graph types
and monadic second-order logic

Towards a more flexible region
type system14:30 H. Yang D. Gay

An example of local reasoning in
BI pointer logic: the Schorr-Waite

graph marking algorithm

A type system for
reference-counted regions15:55 Coffee D. Walker16:15 M. Hofmann On linear types and regions

A type system for controlling heap
space and its translation to

JavaCard16:40 C. Calcagno Discussion
Program logics in the presence of

garbage collection16:50 D. Clarke
On deleting aggregate objects



1

Region-based memory management in
perspective

Mads Tofte Niels Hallenberg
The IT University of Copenhagen

DENMARK

Abstract

Originally, Region-based Memory Management was conceivedas a purely theoreti-
cal idea intended to solve a practical problem in the contextof Standard ML, namely
inventing a dynamic memory management discipline which is less space demanding
and more predictable than generic garbage collection techniques, such as generational
garbage collection.

Over the subsequent eight years, considerable effort was devoted to refining the
idea, proving it correct and finding out whether it worked in practice. The practical
experiments revealed weaknesses, which led to new program analyses, new theory and
yet more experimentation. In short, we have sought to work onmemory management
as an experimental science: the work should be scientific in the sense that it should rest
on a solid mathematical foundation and it should be experimental in the sense that it
should be tested against competing state-of-the-art implementation technology.

The purpose of this talk is to step back and consider the process as a whole. What
does it take to develop a new implementation technology and solid foundations to go
with it? What might one hope to gain? What were the risks involved? What successes
have been achieved? What failures have there been? What is the next logical step?

Embedded in the talk will be an overview of the main idea of region inference
and their implementation in the ML Kit with Regions, intended for those not already
familiar with region inference.
The ML Kit with Regions web-site:http://www.it.edu/research/mlkit/



2

Syntactic type soundness for the imperative
region calculus

Simon Helsen
Institute for Computer Science

University of Freiburg
GERMANY

Abstract

In previous work, we defined a structural operational semantics for the region calculus
of Tofte and Talpin. This lead to simple syntactic soundnessproofs for region inference
based on a general technique of Wright, Felleisen, and Harper. Part of the simplicity
of that framework is due to its storeless formulation. In this talk, we fill in some
missing links: first, we show that the original big-step semantics of Tofte and Talpin is
semantically equivalent to our small-step semantics. Second, we extend our semantics
to include an explicit store. And third, we include explicit(ML-style) references in
our framework. The proofs become slightly more involved, but pose no conceptual
difficulties.

(This is joint work with Cristiano Calcagno and Peter Thiemann.)



3

Sized region types

Lars Pareto
Computing Science Dept.

Chalmers University of Technology
SWEDEN



4

Practical structure reuse for Mercury

Nancy Mazur
Dept. of Computer Science

K.U. Leuven
BELGIUM

Abstract

In previous work we developed a module based analysis to obtain structure reuse for the
logic programming language Mercury. It also gave preliminary results of a prototype
implementation of the analysis. The results being really promising, we are developing
a full implementation of the analysis system within the Melbourne Mercury compiler.
In this work we present this implementation as a five step analysis and discuss different
practical issues that have an effect on the precision of the reuse analysis, on the speed
of the analysis, and finally on the obtained speedup and memory usage of the optimised
programs.

(Joint work with Peter Ross, Gerda Janssens and Maurice Bruynooghe.)



5

Statically allocated systems

Alan Mycroft
Cambridge University Computer Laboratory

UK

Abstract

Static allocation of variables, processes and the like is a highly desirable property for
languages which compile to hardware. We consider some properties which guarantee
static allocatability.

See http://www.cl.cam.ac.uk/users/am/research/sa for more
details.



6

A stack machine for region based programs

Martin Elsman
Dept. of Mathematics and Physics

The Royal Veterinary and Agricultural University
DENMARK

Abstract

In this talk we present a stack based abstract machine, called the Kit Abstract Machine,
as a target for compiling Standard ML programs with the ML Kitwith Regions. Al-
though similar to the abstract machines used as targets for other ML compilers, such
as OCaml and Moscow ML, the Kit Abstract Machine is differentin that it has no
garbage collector. Instead, the Kit Abstract Machine has instructions for allocating
regions, deallocating regions, and allocating memory in regions.

Region based programming is promising in the area of embedded systems with real
time requirements to the software running and where memory is a limited resource.
Region based programming is also promising in situations where programs run shortly
and are executed often; in such situations region inferencecan provide very good cache
behavior and thus high efficiency. This latter situation arises often in server based web
applications where clients requests the execution of programs on a single server.

To get practical experience with the above scenarios, we have started two projects.
The Palm ML project (PaML) focuses on using the ML Kit for developing Palm Pilot
applications with extensive event-based computing. The SMLserver project focuses
on developing a framework for running web-server applications built with the ML Kit.
Both projects make use of the Kit Abstract Machine.

(Joint work with Niels Hallenberg and Ken Friis Larsen.)
The ML Kit with Regions web-site:http://www.it.edu/research/mlkit/



7

Reasoning about shared mutable data
structure

John Reynolds
School of Computer Science
Carnegie Mellon University

USA

Peter O’Hearn
Dept. of Computer Science

Queen Mary & Westfield College
UK

Abstract

We describe an extension of Hoare logic to permit reasoning about shared mutable data
structure.

The simple imperative language is extended with commands (not expressions) for
accessing and modifying shared mutable structures, and with nondetermininstic allo-
cation, explicit deallocation, and unrestricted address arithmetic. Semantically, this ex-
tension involves separating the state of the computation into a store that maps variables
into integers, and a heap that maps location (a subset of the integers) into integers.

Assertions are extended by introducing an independent conjunction operation that
asserts that its subformulas hold for disjoint parts of the heap. Coupled with the in-
ductive definition of predicates on abstract data structures, this extension permits the
concise and flexible description of data structures with controlled sharing.

Although address arithmetic is unrestricted, the nondeterminacy of storage allo-
cation insures that valid specifications never describe programs that violate record or
array boundaries.



8

Verification of data type implementations
using graph types and monadic second-order

logic

Anders Møller
BRICS

University of Aarhus
DENMARK

Abstract

We present a new framework for verifying partial specifications of programs in order
to catch type and memory errors and check data structure invariants. Our technique
can verify a large class of data structures, namely all thosethat can be expressed as
graph types. Earlier versions were restricted to simple special cases such as lists or
trees. Even so, our current implementation is as fast as the previous specialized tools.

Programs are annotated with partial specifications expressed in Pointer Assertion
Logic, a new notation for expressing properties of the program store. We work in the
logical tradition by encoding the programs and partial specifications as formulas in
monadic second-order logic. Validity of these formulas is checked by the MONA tool,
which also can provide explicit counterexamples to invalidformulas.

Other work with similar goals is based on more traditional program analyses, such
as shape analysis. That approach requires explicit introduction of an appropriate op-
erational semantics along with a proof of correctness whenever a new data structure is
being considered. In comparison, our approach only requires the data structure to be
abstractly described in Pointer Assertion Logic.

(Joint work with Michael I. Schwartzbach.)



9

An example of local reasoning in BI pointer
logic: the Schorr-Waite graph marking

algorithm

Hongseok Yang
Dept. of Computer Science

University of Illinois at Urbana-Champaign
USA

Abstract

Reasoning about programs manipulating pointers has been considered as difficult not
because of the lack of formalisms for verifying pointer programs, but because of the
significant increase in the complexity of proofs in each formalism over an informal
argument. Recently, there has been significant developmentin handling the complexity
by exploiting locality of memory access within a code fragment. Reynolds introduced a
pointer logic based on a ”spatial” interpretation, where different parts of a formula refer
to different area of memory; this holds the promise of managing complexity of aliasing
information. O’Hearn proposed a ”tight” interpretation ofHoare triples which reflects
locality of memory access: in addition to the usual requirement of Hoare triples, a
command is required to access only those memory cells ”mentioned” in a precondition.
These two ideas are combined in the Frame Introduction rule,proposed by Ishtiaq and
O’Hearn in BI pointer logic, to exploit locality of memory access in verification of
pointer programs. Frame Introduction supports two stage reasoning for a piece of code:
first reasoning about a local fact for the piece of code, and then deriving a global fact
from the local one by incorporating all other unaccessed cells on the heap. O’Hearn
calls this style of reasoning local reasoning. In this talk,we show the promise of
local reasoning in BI pointer logic by an example: the Schorr-Waite graph marking
algorithm. Our verification gives an evidence that even in a program with no clear
separations of data structures, the locality of memory access can still be exploited in
a formal proof with Frame Introduction and BI multiplicative connectives and that the
resulting verification becomes significantly simpler.



10

A type system for controlling heap space and
its translation to JavaCard

Martin Hofmann
Laboratory for Foundations of Computer Science

University of Edinburgh
UK

Abstract

JavaCard is a subset of Java intended for programming smart cards. The most striking
difference to Java proper is the absence of garbage collection (to reduce overhead)
and of explicit deallocation (for the sake of safety). Accordingly, every object created
remains in memory throughout the lifetime of the program. Given the limited amount
of memory on a smart card it therefore appears to be sensible to reuse existing objects
whenever possible rather than creating new ones.

To that end we have adapted an existing type system for a linear functional language
(M.H. ESOP’00) with inductive datatypes to admit a translation to JavaCard. The main
result is that the heap usage of translated programs is statically bounded and that their
behaviour agrees with an obvious functional semantics.

The main technical novelties beyond our previous work (M.H.ESOP’00) are the
inclusion of general (first-order) recursive datatypes, arrays, string literals, as well as
a tentative version of ”read-only types” which relax the strict linearity regime in the
case of non-modifying access and provide a controlled amount of aliasing for recursive
datastructures (eg representation of certain binary treesas dags).

Our approach to read-only types extends and unifies parts of existing work by
Wadler-Odersky (observer types), Kobayashi (quasi-linear types), and O’Hearn-Pym
(logic of bunched implication).

(Joint work with David Aspinall.)



11

Program logics in the presence of garbage
collection

Cristiano Calcagno
Queen Mary

University of London
UK

Abstract

Garbage collection relieves the programmer of the burden ofmanaging dynamically
allocated memory, by providing an automatic way to reclaim unneeded storage. This
eliminates or lessens program errors that arise from attempts to access disposed mem-
ory, and generally leads to simpler programs. One might therefore expect that rea-
soning about programs in garbage collected languages wouldbe much easier than in
languages where the programmer has more explicit control over memory. But existing
program logics are based on a low level view of storage that issensitive to the presence
or absence of unreachable cells, a view that is not invariantunder garbage collection,
and Reynolds has pointed out that the Hoare triples derivable in these logics are even
incompatible with garbage collection. We present a semantics of program logic asser-
tions based on a view of the heap as finite, but extensible; this is for a logical language
with primitives for dereferencing pointer expressions. The essential property of the
semantics is that all propositions are invariant under operations of adding or removing
garbage cells; in short, they are garbage insensitive.



12

On deleting aggregate objects

David Clarke
School of Computer Science and Engineering

University of New South Wales
AUSTRALIA

Abstract

We describe the intuitions underlying a typed object calculus which makes explicit the
nesting between objects. The calculus is based on Abadi and Cardelli’s object calculus
extended with regions. Regions have properties describingtheir nesting and the bounds
on their access. Regions are used not only in a stack-based manner, but also to store
an object’s private implementation. This creates opportunities to improve memory
management. In particular, the calculus allows the entire private implementation of
an aggregate object to be deleted when the interface to the aggregate becomes garbage.
The calculus also allows entire aggregate object to be allocated in a stack-based manner.



13

Heap profiling for theoreticians

Colin Runciman
Dept. of Computer Science

University of York
UK

Abstract

Heap profiling began as an improvised solution to an urgent practical problem: if a
program demands too much memory, which program components should be modified
to save the most space? A basic heap profiler takes a complete census of live heap
memory at intervals throughout a computation, and summarises this data graphically
using various classifications of memory – most of them linkedto program components.
(Fancier two-pass methods involving the examination of garbage are needed for the
fullest classification of heap cross-sections.) The programmer gazes alternately at pro-
file and program until inspiration strikes and a modified program runs in the available
space.

Such pragmatism seems a long way from abstract theories usedto analyse and
govern the rules of memory management. What exactly is a heapprofile? Does it
have a semantics? How are different kinds of profile related?What is the relative
power of the methods used to extract them? Is there a theory ofheap profiling? Has
it any connection with other theories to do with memory space? These are the sorts of
questions to be addressed in this talk.



14

Principled scavenging

Stefan Monnier
Dept. of Computer Science

Yale University
USA

Abstract

Proof-carrying code and typed assembly languages aim to minimize the trusted com-
puting base by directly certifying the actual machine code.Unfortunately, these sys-
tems cannot get rid of the dependency on a trusted garbage collector. Indeed, con-
structing a provably type-safe garbage collector is one of the major open problems in
the area of certifying compilation.

Building on an idea by Wang and Appel, we present a series of new techniques for
writing type-safe stop-and-copy garbage collectors. We show how to use intensional
type analysis to capture the contract between the mutator and the collector, and how
the same method can be applied to support forwarding pointers and generations. Un-
like Wang and Appel (which requires whole-program analysis), our new framework
directly supports higher-order functions and is compatible with separate compilation;
our collectors are written in provably type-safe languageswith rigorous semantics and
fully formalized soundness proofs.

(This is joint work with Zhong Shao and Bratin Saha.)



15

Memory management = Partitioning +
Alpha-renaming

Alex Garthwaite
Sun Microsystems Labs

USA

Abstract

Safe languages like Java and ML are an important advance in the construction of cor-
rect, robust, and scalable applications. By providing a strong type system and runtime
services like automatic memory management, these languages eliminate whole classes
of programming errors. However, programs written in these safe languages must rely
on the correctness of their underlying runtime services.

This reliance on the correctness of these underlying services makes formal frame-
works for modelling their correctness important. Recent work by Greg Morrisett, for
example, on operational semantics that model the interaction of memory management
with the supported language has shown the correctness of collection techniques for
partitioning the heap based on reachability. While representing an important advance,
however, his lambda-gc framework ignores several important aspects of memory man-
agement:� the correctness of allocation policies.� the fact that collection is more than a partitioning problem; for example, copying

collection tecniques also must correctly perform alpha-renaming on the values
of the heap as these values are moved during collection.� the way in which the language and services interact through read and write bar-
riers.

Because of these omissions, the lambda-gc framework is not able to distinguish among
different tracing collection techniques, and has a limitedability to model the behavior
of generational, incremental, and concurrent collection techniques.

Our work extends the lambda-gc framework to model these aspects. In particular,
we extend the operational semantics to include:� the making of the tracing of references in heap values explicit.� the introduction of mapping functions that are built up during the course of col-

lection.� the use of these mapping functions in both the collection’s and the supported
language’s operational semantics.

Using these extensions, we show that specific tracing techniques may be specified in-
cluding copying, mark-sweep, mark-compact, and Baker-style incremental copying
collection. Finally, we extend the set of properties we can prove about these tech-
niques to include the fact that they correctly rename all references for objects moved
during collection.



16

Conflict graph based allocation of static
objects to memory banks

Peter Keyngnaert
Dept. of Computer Science

K.U. Leuven
BELGIUM

Abstract

Several architectures, in particular those specifically designed for digital signal pro-
cessing, have a memory structure that consists of a number ofbanks with different
characteristics (waitstate, size, . . . ). There may also exist constraints on the accessibil-
ity of these banks, as some bank combinations can be accessedin parallel, while others
can not. As memory access conflicts lead to pipeline stalls, the assignment of the data
objects of a program to the set of memory banks is crucial withrespect to a program’s
execution speed. Programmers usually do the assignment of the static objects manu-
ally. We present a method to automate this process at/post link-time, as the linker is
the first moment at which both the entire program as well as thetarget architecture’s
characteristics are fully known. Based upon statistics drawn from an execution trace
of the program, an ordering of conflicts is derived accordingto the possible execution
time penalties they generate. By allocating the objects of those conflicts that have the
most negative impact on the program execution time first, a decent allocation can be
derived automatically.

(Joint work with Bart Demoen, Bjorn De Sutter, Bruno De Bus and Koen De Boss-
chere, still in a rather early stage.)



17

Looking for leaks

Adam Bakewell
Dept. of Computer Science

University of York
UK

Abstract

Implementations of programming languages that assist the programmer by providing
automatic memory management can containspace leaks. We define a leaky implemen-
tation as one with asymptotically worse space usage than thelanguage standard for
some program — the leak witness.

This paper is about proving that an implementation — or rather its operational
semantics, expressed as a term-graph rewriting system —- has a space leak. We do this
by conducting an automated search for candidate leak witnesses. These are programs
that do not terminate and keep on allocating more memory without limit.

To make the problem decidable we restrict ourselves to finding witnesses from a
class of looping programs which are evaluated by repeatedlyapplying the same se-
quence of rules from the operational semantics. A non-standard unification procedure
is used to construct asuper-rule— the repeating rule sequence. A matching procedure
tests whether a super-rule can self feed, producing its own redex and so representing a
set of non-terminating programs. An approximation is applied to test if the super-rule
will also allocate at each iteration, thus selecting candidate witnesses.

This brute force search is slow, so we employ the idea ofproof planningto reduce
the search space. We also use an approximation to the exact super-rule construction
procedure to avoid generating multiple solutions.

The search technique is applied to variants of a simple call by name operational
semantics for Core Haskell.



18

Spikes and ballast: The algebra of space

David Sands
Computing Science Dept.

Chalmers University of Technology
SWEDEN

Abstract

The space-usage of lazy functional programs is perhaps the most thorny problem facing
programmers using languages such as Haskell. Programmers unable to predict or con-
trol the space behaviour of their lazy programs. Even the most advanced programmers,
who are able to visualise the space use of their programs, complain that the “state-of-
the-art” compilersintroducespace-leaks into programs that they believe ought to be
space-efficient.

Apart from a few high-level operational semantics which claim to model space be-
haviour, to the best of our knowledge there have been no formal/theoretical/semantics-
based approaches to reasoning about space behaviour of programs. Rather than tack-
ling the problem of determining the absolute space behaviour of a program, we study
relative space efficiency. We pose the question: when it is space-safe to replace one pro-
gram fragment by another? To this end we introduce a space-improvement relation on
terms, which guarantees that transformations can never lead to asymptotically worse
space (heap or stack) behaviour, for a particular model of computation and garbage
collection. Space improvement satisfies an interesting andnontrivial collection of al-
gebraic laws which are expressed with the help of syntactic representations of stack
and heap-use phenomena:spikesandballast.

(Joint work with Jörgen Gustavsson.)



19

Next generation low-level languages

Greg Morrisett
Dept. of Computer Science

Cornell University
USA

Abstract

High-level languages, such as ML and Java, provide demonstrated safety and software
engineering benefits. Nonetheless, today’s critical systems are still coded in low-level,
unsafe, and error-prone languages such as C. A big reason forthis is inertia. But there
are also technical reasons. For instance, C provides good programmer control over data
representations and memory management, whereas high-level languages do not. This
is witnessed by the fact that the run-time system of almost any high-level language
implementation is coded in C.

The question is, can we provide a next generation low-level language that provides
the programmer control of C and the safety of ML? I claim that,leveraging recent
breakthroughs in linear-, region-, and alias-based type systems, we can come pretty
close to achieving this goal.



20

Towards a more flexible region type system

Henning Makholm Henning Niss
Dept. of Computer Science
University of Copenhagen

DENMARK

Abstract

Region-based memory management was proposed by Tofte and Talpin in 1994 as an
alternative to garbage collection for call-by-value functional programming languages.
It consists of a compile-time analysis that augments a program with explicit deallo-
cation instructions, and a run-time memory manager which implements the ”region”
abstraction used by the analysis.

Unfortunately, the original Tofte-Talpin analysis leads to unacceptably large mem-
ory use when it is used on programs that use popular programming patterns like tail
recursion in the straightforward way. Several proposals for how to deal with this prob-
lem have been proposed; most involve doing additional compile-time analysis on the
results of the Tofte-Talpin analysis, and all require most actual programs to be rewritten
to fit the solution, often in ways that can only be understood by programmers who are
intimately familiar with the region model.

The goal of this project is to clean up this situation by replacing the Tofte-Talpin
analysis with a stronger analysis that incorporated the earlier proposals. At present we
have a theory on paper and thought experiments that indicatethat our solution can work
in many cases without rewriting the programs at all. An implementation of our system
is under construction.

(Joint work: Fritz Henglein, Henning Makholm, and Henning Niss.)



21

A type system for reference-counted regions

David Gay
Computer Science Division

University of California
Berkeley

USA

Abstract

Region-based memory management systems, where objects areallocated in “regions”
and memory is only reclaimed by deleting regions, have traditionally been either� statically verified through a type system that guarantees that the objects in a

region are not accessed after the region is deleted;� completely unsafe, with no restrictions on where or how regions are deleted.

Our compiler for C with regions, RC, prevents unsafe region deletions by keeping a
count of references to each region. There are thus no restrictions on C’s type system
or where regions are deleted, but there are no static safety guarantees and the reference
counting imposes a certain overhead.

To make the structure of a program’s region more explicit andto reduce the over-
head of reference counting we have extended RC in two ways:� We have added the concept of a “subregion”: if A is a subregionof B then A’s

lifetime is strictly contained within B’s lifetime.� RC includes type annotations declaring properties of pointers within the pro-
gram’s region hierarchy. Assignments to locations of annotated type are verified
either statically or dynamically.

We generalise these annotations in a region type system, similar to the type systems
of statically verified region systems, which can represent RC’s annotated types. The
main novelty of this type system is the use of existentially quantified abstract regions to
represent pointers to objects whose region is partially or totally unknown. An analysis
of RC programs based on the concepts from this type system allows us to eliminate
up to 99% of the checks that would be performed in a purely dynamic system. The
extensions and analysis reduce the overhead of reference counting from a maximum of
27% to a maximum of 18% on a collection of eight small to large benchmarks.



22

On linear types and regions

David Walker
School of Computer Science
Carnegie Mellon University

USA

Abstract

We explore how two different mechanisms for reasoning aboutstate, linear typing
and the type, region and effect discipline, complement one another in the design of
a strongly typed functional programming language. The basis for our language is a
simple lambda calculus containing first-class regions, which are explicitly passed as
arguments to functions, returned as results and stored in user-defined data structures.
In order to ensure appropriate memory safety properties, wedraw upon the literature
on linear type systems to help control access to and deallocation of regions. In fact,
we use two different interpretations of linear types, one inwhich multiple-use values
are freely copied and discarded and one in which multiple-use values are explicitly
reference-counted, and show that both interpretations give rise to interesting invariants
for manipulating regions. We also explore new programming paradigms that arise by
mixing first-class regions and conventional linear data structures.

(Joint work with Kevin Watkins.)


