Region-Based Memory Management in Perspective

Mads Tofte (tofte@itu.dk) and Niels Hallenberg (nh@itu.dk)
The IT University of Copenhagen
Invited Talk presented at the Space 2001 Workshop, Imperial College, London, Jan. 2001

1 Introduction

Originally, Region-based Memory Management was conceived
as a purely theoretical idea intended to solve a practical
problem in the context of Standard ML, namely inventing a
dynamic memory management discipline which is less space
demanding and more predictable than generic garbage col-
lection techniques, such as generational garbage collection.

Over the subsequent eight years, considerable effort has
been devoted to refining the idea, proving it correct and find-
ing out whether it worked in practice. The practical experi-
ments revealed weaknesses, which led to new program anal-
yses, new theory and yet more experimentation. In short,
we have sought to work on memory management as an ex-
perimental science: the work should be scientific in the sense
that it should rest on a solid mathematical foundation and it
should be experimental in the sense that it should be tested
against competing state-of-the-art implementation technol-
ogy.

The purpose of this paper is to step back and consider
the process as a whole. We first describe the main technical
developments in the project, with an emphasis of what moti-
vated the developments. We then summarise what we think
has gone well and what has not gone so well leading to sug-
gestions as to what one might do next and some thoughts on
what we have learned about the interaction between theory
and practice during the project.

2 First attempts

In the late eightees, Standard ML of New Jersey was becom-
ing the most sophisticated Standard ML compiler. While
it generated fast code, it seemed to require an inordinate
amount of space. The first author had for many years been
fascinated by the beauty of the Algol stack and somewhat
unhappy about the explanations of why, in principle, some-
thing similar could not be done for the call-by-value lambda
calculus. (These explanations typically had to do with “es-
caping functions” and other concepts that did not feel canon-
ical.)

Surely, if an expression has type int (and there are no
effects in the language) then all the memory that is allo-
cated during the computation of the integer (except for the
memory needed to hold the result) can be de-allocated once
the result has been computed. This was in contract to the
way memory was used with garbage collectors (at the time),
namely linear allocation in memory until memory becomes
too full. The beauty of the stack discipline is that it uses

[]

To T1 T2 T3

Figure 1: The store is a stack of regions; a region is a box
in the picture.

memory only proportional to the depth of the call stack,
whereas with garbage collection, one allocates memory as if
one is trying to put the entire call tree in memory. (The call
stack may require only the logarithm of the space required
to represent the call tree.)

In 1992, Talpin and Jouvelot published a type discipline
for polymorphic references which used an effect system for
controlling quantification of type variables [TJ92]. Like ear-
lier work on effect systems, their system involved a notion
of region (of references). Tofte suggested to Talpin that the
approach may be generalised from dealing with references
to accounting for allocation and de-allocation of all values
in the call-by-value lambda calculus. Together, Tofte and
Talpin developed a basic region inference system for a toy
language based on ML [TT92]. It had no recursive functions.

At runtime, the store consists of a stack of regions, see
Figure 1. All values, including function closures, are put
into regions.

Every well-typed source language expression, e, can be
translated into a region-annotated expression, e’, which is
identical with e, except for certain region annotations. The
evaluation of e’ corresponds, step for step, to the evaluation
of e. Two forms of annotations are

erat p
letregion p in e> end

The first form is used whenever e; is an expression which di-
rectly produces a value. (Constant expressions, A-abstractions

and tuple expressions fall into this category.) The p is a re-
gion variable; it indicates that the value of e; is to be put
in the region bound to p.

The second form introduces a region variable p with local
scope ez. At runtime, first an unused region, r, is allocated
and bound to p. Then e, is evaluated (probably using r).
Finally, r is de-allocated. The letregion expression is the
only way of introducing and eliminating regions. Hence re-
gions are allocated and de-allocated in a stack-like manner.

The translation from the source language to the language
of region-annotated terms was formalised by a set of formal
inference rules, the region inference rules, that allowed one
to infer conclusions of the form

TEFe=e :(1,p),p

read: in the type environment TE, the source expression
e may be translated into a region-annotated expression e’
which has type 7, is placed in region p and has effect ¢,
where, slightly simplified, an effect is a finite set of region
variables.

There was a proof of correctness with respect to a stan-
dard operational semantics, a region inference algorithm and
a proof of existence of principal types and minimal effects.

Tofte built a prototype implementation of a slightly larger
toy language with recursive functions, pairs and lists. The
implementation contained a different region inference algo-
rithm and an instrumented interpreter for region-annotated
terms. Experimental results were terrible. There seemed to
be two main causes:

1. When a function f, say, returns a result in a region,
then all calls of f must return their result in the same
region. Thus the region must be kept alive until no
result of f was needed (which is very conservative)

2. In particular, when a function calls itself recursively,
the result of the recursive call must be put in the same
region as the result of the function (even in cases where
the recursive call produces a result which is not part
of the result of the function).

The solution to the first problem was straightforward: func-
tions should be allowed to take region parameters at run
time. Talpin observed a beautiful connection between region
parameters and quantified region variables in type schemes:
a function of type

’
Vi, s PRQL, ..y Q. T — T

should take p1, ..., pr as formal region parameters. The ac-
tual parameters at a call of f are the result of instantiating
the type scheme to region variables at the call site. A func-
tion is region-polymorphic, if it takes regions as parameters.

Thus two more forms of region annotations were intro-
duced in region-annotated terms, one for declaring (recur-
sive) region-polymorphic functions

letrec flp1,...,pr)(z) = e1 in ey

and one for referring to them:

FIpL, Pkl

3 Polymorphic recursion

Tofte noticed that what was required to solve the second
problem mentioned above (recursive functions) was poly-
morphic recursion in regions. For example, consider the
source expression:

letrec fac(n)=
if n=0 then 1
else nxfac(n-1)
in fac 100

Translating this without polymorphic recursion would give

letrec fac[ril](n)=

if n=0 then 1 at ri

else (n*fac[ri]l(n-1))at ri
in fac[r0]100

which causes 100 values to pile up in the region r0. With
polymorphic recursion, however, one could translate the ex-
pression into

letrec fac[ri](n)=
if n=0 then 1 at ri
else
letregion r2
in (n*fac[r2] (n-1))at ri
end
in fac[r0]100

so that each recursive invocation uses its own (local) region.

However, there were still problems with recusion in the
special case of tail recursion and iteration. For example,
consider the following program, which is intended to sum
the numbers from 1 to 100 (fst and snd stand for the first
and second projection of pairs, respectively):

letrec sumit(p: int*int)=
let acc= fst p

in let n = snd p
in
if n=0 then p
else

sumit (n+acc, n-1)
in
fst (sumit (0,100))

At first sight, the recursive call of sumit in its own body is a
tail call. Moreover, since the two branches of the conditional
must put their results in the same region, sumit delivers its
result pair in the same region as its argument resides. But
as a result, 100 pairs will pile up in the region that contains
the initial pair (0,100). (It would not improve matters to
use polymorphic recursion: this would just give 100 pairs
in 100 different regions on the stack.) What one would like
to do is to have the pair (n+acc, n-1) overwrite the pair p,
since - in this program - p is not used after (n+acc, n-1) has
been created.

To achieve this, Birkedal and Tofte devised a so-called
storage mode analysis, which allows the compiler to generate
code to reset regions prior to an allocation, when the analysis
can conclude, that the region contains no live value.

The proof of correctness of the region inference rules was
extended to deal with region polymorphism and polymorhic
region recursion. The region inference algorithm was ex-
tended to deal with polymorphic recursion by iterative re-
gion inference of the recursive function till a fixed point type

scheme was obtained. Ad-hoc methods were used in order
to ensure termination. These ad-hoc methods also made it
clear, that there was no guarantee that the algorithm would
find most general type schemes for region-polymorphic func-
tions. The results were presented at POPL ’94 [TT94].
The experimental results for runtime space usage varied
from the excellent to the poor. Excellent results were ob-
tained for programs that were written iteratively or had a
natural stack-like behaviour. Good results were obtained for
quicksort and other small, classical algorithms. Poor results
for programs where lifetimes just are not nested or where
there is extensive use of higher-order functions.
Encouraging facts at this stage were:

1. There are programs for which the region scheme works
extremely well (even without any other form of garbage
collection)!

2. Soundness of memory use is guaranteed

3. Memory behaviour is explicated and can be studied if
one cares sufficiently about memory as a resource

Worries at this stage:

1. What will happen in big programs? What is the “typ-
ical” ratio between parts of the program for which re-
gion inference works well and the parts for which it
does not work well? How difficult and time consuming
is it to rewrite programs to make them region friendly?

2. The good experimental results were based on an in-
strumented, inefficient interpreter. Actual runtime per-

formance was nowhere near what compilers like SML/NJ

could deliver. Could regions be managed efficiently at
runtime, or would administrative overhead at runtime
be prohibitive?

3. Unclarity about principal types: looked like a tough
problem, even soundness of the algorithm was no longer
easy!

4. Soundness of region inference rules was getting com-
plicated, although do-able!

5. Experimental results depended on the storage mode
analysis, which had not been described and studied
independently of the implementation.

Of these questions, the two first seemed the most important
to address. In the long run, who would care about principal
types and the correctness of extra analyses, if the overall
scheme did not work in practice?

There seemed to be only one way to find out whether
this scheme could ever become a serious contender to the
much more mature garbage collection techniques that were
already present in many implementations. We would have
to build a real language implementation based on region
inference and compare it to other implementations.

We decided to aim at doing region inference for full Stan-
dard ML. There were pragmatic reasons for choosing Stan-
dard ML as the source language: we already knew the lan-
guage in detail and we had a Standard ML front-end which
was compliant with the language semantics, namely the ML
Kit, originally developed at Edinburgh University [BRTT93].
Moreover, there existed several sophisticated SML compilers
that could be used for comparison and plenty of SML pro-
grams that could be used as experimental data. But there

was an other very important reason for choosing SML as a
source language: it is one thing to propose a new way of
implementing programming languages - if one also proposes
a new language, there is a danger that the whole enterprise
becomes obscure. It seemed much more promising to try
to develop the ideas in the context of an existing research
community.

4 Aiming for the SML Core Language

The work on extending the ML Kit with regions began in the
fall of 1993. Lars Birkedal developed a region-based runtime
system, written in C, and a code generator from region-
annotated terms to C. Tofte extended the region inference
algorithm to cover the SML core language, so it became
possible to compile Core Standard ML programs to C-code,
which was then compiled using a C-compiler and linked with
the runtime system using an ordinary linker. Martin Elsman
and Niels Hallenberg subsequently wrote a machine code
generator for the HP PA-RISC architecture.

With this system it became possible to compile medium
sized test programs (the largest being around 1000 lines of
Standard ML) into machine code. The test programs were
taken from the SML/NJ benchmark suite.

At first, results were disappointing. Target programs
used more space and ran slower than when run under other
systems.

However, inspection of the produced code revealed that
slow running time likely had to do with unnecessary over-
head in managing regions. It seemed that a lot of regions
only ever contained one value. Placing such regions on the
stack rather than allocating region pages for them might
reduce executing times.

Birkedal, Tofte and Vejlstrup then developed and imple-
mented a so-called multiplicity inference analysis, the theory
of which was developed by Vejlstrup [Vej94]. The idea was
to find out, for every region, an upper bound on the number
of values that were written into the region.

Initially, the bound could be an integer or infinity (mean-
ing that the analysis could not find any finite bound). Ex-
periments on sample programs revealed that by far the most
common case was that the upper bound was 1, the second
most common case was that the upper bound was infinity
while only very rarely did finite upper bounds other than one
appear. Consequently, we simplified the analysis so that it
distinguishes between finite regions, defined as regions that
have a finite upper bound of one value, and infinite regions,
meaning all other regions. Finite regions are part of the ac-
tivation record, while an infinite region consists of a linked
list of fixed-size region pages, allocated from a free list of
region pages, see Figure 2.

Other optimisations included elimination of regions that
contain word-sized values only. (Such regions can be kept in
machine registers - or spilled onto the stack, in case of lack
of registers.)

The effects of incorporating these improvements were as-
tonishing: in many programs, 90% or more of all allocations
at runtime were to finite regions. In the largest test program
(simple, a 1000 lines program), more than 99% of the alloca-
tions were on the stack. Changing the runtime system and
code generator to use finite regions led to an improvement
in running times of roughly a factor 3.

After these optimisations, the test programs ran between
10 times faster and four times slower under the Kit than

T1 T2 r3 T4

Figure 2: The runtime stack (bottom) contains three infinite
regions (r1, r2,rs) and a finite region (r3). An infinite region
is represented by a region descriptor on the stack and a
linked list of fixed size region pages. A region descriptor
contains a pointer to the last (i.e., most recently allocated)
region page, a pointer to the first free position in this region
page, and a pointer to the first region page. A finite region
is just a number of words on the stack.

under SML/NJ v. 93, which was generally considered the
state-of-the-art SML compiler at the time. Space usage for
the test programs run under the Kit varied between 8% and
over 3000% of the space usage for the same programs run
under SML/NJ v. 93, with most of the test programs using
considerably less space under the Kit than under SML/NJ,
once the test programs had been modified to become “region
friendly”.

The process of making programs “region friendly” was
time consuming and required intimate understanding of the
analyses involved (although not much knowledge of the algo-
rithms that implemented the analyses). Basically, the pro-
cess involved peering at the region-annotated code to see
whether the region annotations gave reasonable life-times.
Deciding what was reasonable life-times involved understand-
ing the various test programs in some detail. For example,
since the Game of Life test program conceptually is an it-
erative computation of subsequent “generations” of a game
board, a reasonable objective was to organize the use of re-
gions so that no more than two generations of the game were
live at the same time. Once this objective was achieved,
space usage reduced to 376KB, or around one fourth of the
space usage of SML/NJ on the same program.

For the largest of the test programs (1000 lines), it was
estimated that making a detailed analysis and perhaps rewrit-
ing of the program would be too time consuming; fortu-
nately the analyses worked well without any modification of
the test program in this case: the program still used less
memory under the Kit than under SML/NJ.

So, significant progress:

1. It was possible to extend the entire scheme to all of
the Core Language of Standard ML

2. Programs of up to 1000 lines of SML could be exe-
cuted with speed and space usage comparable to that
of SML/NJ

3. Programs that were (re-)written with care could be

made to run in significantly less space than under SML/NJ

So, from a purely technical point of view, we felt that region-
based implementation had passed its first test with the com-
petition in the practical world. However, concerns about the
process of programming with regions were mounting. There
were the following problems:

1. Region inference favours a particular discipline of pro-
gramming. How would one explain this discipline to
programmers?

2. Region inference generates a large number of regions
and region parameters to region-polymorphic functions.
Therefore, region-annotated programs are large and
difficult to read.

3. As source programs change, the region annotations
change as well. Thus the time invested in understand-
ing the region annotations of one program may be lost,
when the source program is modified slightly.

4. Almost all of the region annotations seemed to be fine.
If one were faced with an apparent space leak, how
would one locate it, other than by studying the entire
program?

5. Could region inference be extended to ML Modules?

In short, there was a strong sense that here was a technol-
ogy which could produce astonishing results, when it worked
well, but it was too difficult to hit those precise points where
this happens. Moreover, if it is difficult for the people who
developed the technology, what would be the chances of suc-
cess with the average programmer? We felt that we lacked
instruments other than the source code and the intermediate
forms produced by the compiler to understand the runtime
memory behaviour of programs.

5 Profiling and the ML Kit

At this point (Summer 1995), we became aware of the work
by Runciman and Wakelin on profiling of Haskell-programs
[RW93]. Based on their system, Hallenberg developed a
region profiler for the Kit. This was a break-through for
our ability to program with regions in practice. Running
some of the programs that had been hand-tuned using the
profiler resulted in fascinating pictures of memory usage, see
Figure 3 for an example.

Also, the profiler made it much easier to locate and elim-
inate space leaks, i.e., annotations which cause a program
to use much more memory than one would expect.

A discipline of programming was emerging. From the
peering at the region annotated programs, we had learned
a great deal about what works well and what does not work
well with regions. The profiler was the tool required to lo-
cate space leaks and, more generally, to verify that memory
was used as planned.

Hence we decided to try to describe a discipline of pro-
gramming with regions in a comprehensive report [TBE* 97].
It gives a step-by-step introduction to programming using
regions, moving from basic values and lists over first-order
recursive functions to datatypes, references, exceptions and
higher-order functions.

The report was released in april 1997 as part of “The ML
Kit, Version 2”.!

Yhttp://www.it-c.dk/research/mlkit/kit2/readme.html

Fri Apr 18 12:17:50 1997 ‘

W 1774t
[r1773int
1800k [r1786int
W 1785t
[r1s13int
[ris12int
W 17720t
[ra771int
[stack
B r1788int
W 1787t
[rpesc
D ainf
W r1625in
[r1621fin
[r1606tin
B r1610fin
[raz7sint
[r1805fin
M otHer

seconds

rp2ps - Region profiling
P

Maximum allocated bytes in regions: 1600284,

byte

1600k |

1400k |

1200k

1000k |

800k

600k |

400k |

Figure 3: Region profiling of region-optimised mergesort.
The two upper trianges contain unsorted elements, while
the two lower triangles contain sorted elements.

We also held a summer school on programming with re-
gions?, consisting of lectures on the theory behind regions
and practical programming exercises. Concerning the latter,
it was interesting to see how some students became very ex-
cited about getting their programs to run in as little memory
as they could possibly manage, showing that the technology
really does give the programmer a handle on understanding
space. It also became clear that programmers found that
some of the analyses, especially the storage mode analysis,
were unpleasantly complicated.

We felt that we had made good progress on the first
and the fourth of the five problems listed at the end of Sec-
tion 4. The second and the third problem seemed hard to
do anything about, without changing the approach to, say,
considering explicit region annotations in the source lan-
guage (which we did not want to do, since this would mean
departing from using SML as the source language).

Rather than delving into the design of a new program-
ming language, it was more interesting to work on whether
regions could be extended to ML Modules. There were two
reasons for this. First, to be able to compile big ML pro-
grams, one would need to be able to handle ML Modules.
Second, dealing with region inference in some modular fash-
ion was an interesting challenge in itself. Region inference
depends on a much finer level of description than the ML
type system itself offers. Separate compilation of modules
normally requires only type information. To what extent is
it possible to compile modules separately using region-based
implementation technology?

6 Modules and Separate Compilation

In his Ph.D.-thesis, Martin Elsman [Els99] presented his
solution to the problem in the form of a general scheme
for propagation of compile-time information across module
boundaries, exemplified by a separate compilation system
for the ML Kit with Regions. This scheme was used in Ver-
sion 3 of the ML Kit[TBE*98].

Version 3 of the ML Kit made it possible for the first
time to compile large ML programs for a region-based im-

2See http://www.it-c.dk/research/mlkit/kit2/summerschool.html

plementation. AnnoDomini, a 58,000 lines SML-program,
took 1.5 hours to compile. Running it with the region pro-
filer revealed a couple of space leaks. It was possible to fix
these by rewriting around 10 of the 58.000 lines of ML code.
Thereafter, AnnoDomini used less space under the Kit than
under SML/NJ.

This is a very interesting result, since much of the code in
AnnoDomini is written by programmers who do not know
how to program with regions - in fact, of the 58.000 lines
of SML, more than 10,000 lines were accounted for by a
machine generated lexer and parser. On the other hand, it
required a regions expert to locate and change the 10 lines.
So, progress:

1. It is possible to extend region analyses to all of Stan-
dard ML, including modules

2. Proof of concept for large programs: a large ML pro-
gram was compiled and run using the system

3. Making this large program region friendly required a
(surprisingly) small amount of modification to the pro-
gram.

That the compiler was slow was of course a problem that
would require further work, for the technology to become
attractive in practice; more of a concern were the things
having to do with the way programmers would use regions
in practice.

It was always known that there are programs that are
just not well suited for region inference. Even if the Ann-
oDomini experiment suggests that one can get far without
performing major revision of the code, it must be a concern
for everybody who uses regions that there is no guarantee
that one will be able to solve all problems that one encoun-
ters within the regions scheme. Clearly, it is one thing to
invest time in tuning a program with a view to using re-
gions. This is something one is likely to be willing to do, if
one really cares about control over memory resources and
the other benefits obtained by region inference (e.g., for
real-time programming in embedded systems). It is another
thing to invest time without knowing whether, at the very
last moment, one will run into a problem which will force
one to do major revisions to the code or, in the worst case,
give up on regions altogether!

Summing up, the problems to do with how one programs
with regions were:

1. Region inference generates a large number of regions
and region parameters to region-polymorphic functions.
Therefore, region-annotated programs are large and
difficult to read.

2. As source programs change, the region annotations
change as well. Thus the time invested in understand-
ing the region annotations of one program may be lost,
when the source program is modified slightly.

3. What is one to do, if one cannot see how to rewrite
the program to use regions more efficiently (or if one
can see it, but it would mean an inordinate amount
of work)? What about algorithms that just are inher-
ently not well suited for regions?

The solution of the first two problems still seemed to require
change of source language, which we were not willing to do.
But the third problem could perhaps be addressed by find-
ing a combination of region inference and garbage collection.

| Program | tgt | #GCyt | trgt | #GCrge |
kitlife35u 74.20 5254 | 39.84 0
kittmergesort 15.27 27 | 7.36 4
kitgsort 47.89 76 | 17.68 11
kitreynolds2 13.61 963 | 10.03 0
kitkbjul9 95.22 3976 | 47.32 31
kitlife_old 46.22 2832 | 38.83 43
kitkb_old 191.05 674 | 57.62 18
kitreynolds3 45.94 4540 | 24.75 553
professor_game | 26.83 3621 | 15.53 78

Table 1: Using garbage collection without and with region
inference.

If successful, a combination of region inference and garbage
collection could perhaps even reduce the importance of the
first two problems: one might conceivably not have to look
at region-annotated programs at all, because garbage collec-
tion would handle the space leaks instead.

7 Garbage Collection and Regions

In his M.Sc. thesis [Hal99], Hallenberg developed a scheme
for g3arbage collecting regions and implemented it in the ML
Kit.

The scheme consists of a generalisation of Cheney’s stop-
and-copy copying garbage collection algorithm to apply to
regions. Very briefly, the idea is to perform a Cheney copy-
ing collection of all regions on the region stack but to do it
in such a way that two live values are in the same region
before the collection if and only if they are in the same re-
gion after the collection. The garbage collector is invoked
whenever more than 2/3 of the region pages in the free list
have been used.

In the case where there is just one region, the algorithm
reduces to (essentially) Cheney’s algorithm. Thus one can
get a rough idea of the interaction between region inference
and garbage collection by comparing what happens when
one forces all values to be put in a global region to what
happens when region inference is allowed to run its normal
course.

Hallenberg conducted this experiment on a number of
test programs. The results are shown in Table 1. The first
column is the name of the benchmark program. The second
and third columns show what happened when all values are
put in global regions (so that region inference collects no
values at runtime); the second column shows the running
time (in seconds), while the third column shows the number
of times the garbage collector had to run. The fourth and
fiftth columns show what happened when region inference
is allowed to collect regions in the usual way; the fourth
column shows the running times (in seconds) and the fifth
column shows the number of times the garbage collector was
invoked.*

We see that using region inference greatly reduces the
number of times, the garbage collector needs to run. Fur-
thermore, using a combination of region inference and garbage
collection reduces the running time significantly, compared
to using the garbage collector without region inference.

3This will become available in Version 4 of the ML Kit, soon to
appear!

4The “t” in the subscripts stand for “tagging”, for reasons that
will become apparent below.

Hallenberg also compared the running times in Table 1 to
running times (¢,) obtained by using region inference alone,
without the garbage collector. For all benchmark programs,
the fastest execution was obtained by using region inference
without garbage collection (mostly because tags are not nec-
essary, if one does not do garbage collection). So the pattern
observed was:

tr < trgt < tgt

Concerning space, programs that had been optimised for
regions used up to four times more space when running un-
der the combination of region inference and garbage collec-
tion than when using region inference only. (This is not
surprising, since the garbage collector requires tags and to-
spaces.) So for programs that had been optimised for re-
gions, it was best not to add garbage collection, both from
the point of view of time and space.

However, programs that had not been optimised for re-
gions all used much less space when run using both the
garbage collector and region inference than when using re-
gion inference alone. Again, this is not surprising, for pro-
grams that have not been optimised for regions often contain
some space leaks that makes memory usage linear in the run-
ning time. The experiments thus confirmed the hope, that
adding a garbage collector to region inference really does
take care of the (relatively few) allocations that are not re-
claimed well by region inference.

In short: the best results (both concerning time and
space) are obtained by optimising programs for regions to
the point where they do not need garbage collection at all,
but if one does not or cannot do this, garbage collection does
take care of the cases, where region inference does a poor
job.

An important question remained, however: what was the
space usage using garbage collection alone compared to us-
ing region inference and garbage collection in combination?

One might think that one would save space by using both
region inference and garbage collection compared to using
garbage collection alone (since region inference takes care of
some of the de-allocation, the garbage collector would need
less space to work in). Indeed this effect was observed for
programs that had been optimised for regions. But for pro-
grams that had not, the opposite happened: it required less
space to use the garbage collector alone than using the com-
bination of the garbage collector and region inference. The
reason is probably that infinite regions on the region stack
result in fragmentation of memory. Many infinite regions
containing only a few values each can take up much more
space than putting all the values in a global region.

So, unfortunately, it cannot be recommended to add
region inference as just an “optimisation” on a basically
garbage collected system, if programmers are assumed not
to spend time optimising their programs for regions: pro-
grams that have not been optimised for regions may well
use more space than when using garbage collection only.

On the other hand, if one is willing to spend time opti-
mising programs for regions, the garbage collector provides a
fall-back position which one can either use alone or in com-
bination with region inference, depending on how far one
gets with optimising the program.

8 Current Beliefs

Things we believe work well:

1. The expressive power of the region inference is fully
capable of taking care of the vast majority of mem-
ory management that one typically wants to do in a
language like SML.

2. The de-allocation that is not done well by region in-
ference can be handled adequately by the garbage col-
lector.

3. Having a proof of soundness of the region inference
rules (and the region inference algorithm) gives an un-
usually high degree of confidence in the memory in-
tegrity of compiled programs, even if the proof does
not cover all of Standard ML.

4. Learning the discipline of programming with regions is
a worthwhile effort, if one is interested in control over
mMemory resources.

5. The technology does scale to complicated language
constructs (like ML Modules) and large programs

6. Region-based runtime systems can be small and effi-
cient and the operations they need to perform fit well
with both RISC and SISC machines.

7. Finite regions are a very powerful concept. They typ-
ically account for the vast majority of allocations at
runtime and they can be handled with speed and com-
pactness at runtime.

8. Region profiling is an excellent way of locating and fix-
ing space leaks, except for the fact that region profiling
requires inspection of region-annotated terms, which
can be verbose.

Things that have disappointed:

1. Leaving region inference completely to the compiler is
probably not a good idea. It makes region-annotated

terms unnecessary big and vulnerable to program changes.

2. The storage mode analysis was probably not the best
way of handling tail recursion; it was too complicated
and vulnerable to program changes

3. Infinite regions are perhaps not such a good idea. They
give fragmentation problems and there is no natural
size of region page to pick. Moreover, they introduce
complications throughout the analyses and code gen-
eration and the experience with the garbage collector
suggests that it is better to use garbage collection for
objects that region inference puts into infinite regions,
due to fragmentation problems.

9 Future Directions

The general approach taken in the project so far has been
to start from Standard ML and then push region inference
through a number of program analyses right down to ma-
chine language.

What has emerged is that the very heavy employment of
automatic program analyses has pragmatic drawbacks and
also that the implementation of regions once it gets all the
way down to the machine representation becomes somewhat
clumsy. On the other hand, as a result of the experimenta-
tion,we now know much more about what the strong points

of regions are and what parts of the theory and implemen-
tation that are candidates for scrapping.

The obvious next step would be to reverse the engineer-
ing process. One could start by designing a simple abstract
machine that incorporates all the successful features of the
region runtime system of the Kit Abstract Machine (and
does away with complicated or rarely used features). Then
one could try to design a source language which makes it
possible for programmers to use the simple abstract ma-
chine as their conceptual memory model (much as C pro-
grammers have a rough understanding of how the call stack
works). This source language should allow (but not force)
the programmer to program explicitly with regions. Thus
the compiler should perform both region inference and re-
gion checking.

All messages that the user needs to understand in order
to tune programs must be in terms of concepts and enti-
ties that may be written in the source code. This is in
order to remove the need for understanding and manipu-
lating intermediate compiler representations. Allowing the
user to program directly with regions furthermore addresses
the problem that region annotations might change as the
program changes, if region annotations are invented by the
compiler.

There should only be one infinite region, and it should
be garbage collected. Source language syntax (not program
analysis) determines whether an allocation is done into the
infinite region or into a finite region.

Function calls that are supposed to de-allocate or over-
write the activation record and finite regions of the calling
function must be indicated as tail calls in the source code.
The compiler must check whether the de-allocation is safe,
but it should not try to discover tail calls.

10 Conclusion

One form of interaction between theory and practice is that
as one tries to make theory practical, practice produces
problems, which one can invent yet more theory to tackle.

But this is perhaps not the most fruitful form of interac-
tion. If practice objects, the reason could be that the theory
is too complicated and not that it is in need of further com-
plication or refinement.

Some complexity seems unavoidable - for region infer-
ence, polymorphic recursion in regions is a case in point. But
when working with theory alone, it is very difficult to know
whether some particular expressive capability is important.
Our experience has been that one pays for expressive power
in the source language or program analyses by a sometimes
inordinate amount of further difficult design and implemen-
tation choices in the implementation. Other times, one can
be fortunate to invent analyses that do just the right thing
and work wonderfully well. Only experimentation allows
one to tell the difference.

Perhaps the most important power of experimentation
and practice is to guide the selection of what expressive
power needs to be present in the source language and in
the analyses embedded in the compiler. Practice is that
wonderful thing that allows us to discard some theory as
superfluous, so that we can concentrate on developing and
implementing theory that the programmer finds useful.

References

[BRTT93] Lars Birkedal, Nick Rothwell, Mads Tofte, and
David N. Turner. The ML Kit (Version 1).
Technical Report DIKU-report 93/14, Depart-
ment of Computer Science, University of Copen-
hagen, Universitetsparken 1, DK-2100 Copen-
hagen, 1993.

[Els99] Martin Elsman. Program Modules, Sepa-
rate Compilation, and Intermodule Optimisa-
tion. PhD thesis, Dept. of Computer Science,
University of Copenhagen, 1999.

[Hal99] Niels Hallenberg. Combining garbage col-
lection and region inference in the ml
kit. Master’s thesis, Dept. of Computer
Science, University of Copenhagen, 1999.
http://www.itu.dk/research/mlkit/kit_general /papers.html.

[RW93] Colin Runciman and David Wakelin. Heap profil-
ing of lazy functional languages. Journal of Func-
tional Programming, 3(2):217-245, April 1993.

[TBET97] Mads Tofte, Lars Birkedal, Martin Elsman,
Niels Hallenberg, Tommy Hgjfeld Olesen, Pe-
ter Sestoft, and Peter Bertelsen. Pro-
gramming with regions in the ML Kit.
Technical Report DIKU-TR-97/12, Dept. of
Computer Science, University of Copenhagen,
1997. (http://www.diku.dk/research-groups/
topps/activities/kit2).

[TBET98] Mads Tofte, Lars Birkedal, Martin Elsman,
Niels Hallenberg, Tommy Hgjfeld Olesen, Pe-
ter Sestoft, and Peter Bertelsen. Program-
ming with regions in the ML Kit (for ver-
sion 3). Technical Report DIKU-TR-98/25,
Dept. of Computer Science, University of Copen-
hagen, 1998. (http://www.diku.dk/research-
groups/ topps/activities/kit3/manual.ps).

[TJ92] Jean-Pierre Talpin and Pierre Jouvelot. Poly-
morphic type, region and effect inference.
Journal of Functional Programming, 2(3), 1992.

[TT92] Mads Tofte and Jean-Pierre Talpin. Data region
inference for polymorphic functional languages.
Manuscript., July 1992.

[TT94] Mads Tofte and Jean-Pierre Talpin. Implement-
ing the call-by-value lambda-calculus using a
stack of regions. In Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 188-201. ACM
Press, January 1994.

[Vej94] Magnus Vejlstrup. Multiplicity inference. Mas-
ter’s thesis, Dept. of Computer Science, Univ. of
Copenhagen, September 1994. report 94-9-1.

