
Region-Based Memory Management in Perspe
tiveMads Tofte (tofte�itu.dk) and Niels Hallenberg (nh�itu.dk)The IT University of CopenhagenInvited Talk presented at the Spa
e 2001 Workshop, Imperial College, London, Jan. 2001
1 Introdu
tionOriginally, Region-based Memory Management was 
on
eivedas a purely theoreti
al idea intended to solve a pra
ti
alproblem in the 
ontext of Standard ML, namely inventing adynami
 memory management dis
ipline whi
h is less spa
edemanding and more predi
table than generi
 garbage 
ol-le
tion te
hniques, su
h as generational garbage 
olle
tion.Over the subsequent eight years, 
onsiderable e�ort hasbeen devoted to re�ning the idea, proving it 
orre
t and �nd-ing out whether it worked in pra
ti
e. The pra
ti
al experi-ments revealed weaknesses, whi
h led to new program anal-yses, new theory and yet more experimentation. In short,we have sought to work on memory management as an ex-perimental s
ien
e: the work should be s
ienti�
 in the sensethat it should rest on a solid mathemati
al foundation and itshould be experimental in the sense that it should be testedagainst 
ompeting state-of-the-art implementation te
hnol-ogy.The purpose of this paper is to step ba
k and 
onsiderthe pro
ess as a whole. We �rst des
ribe the main te
hni
aldevelopments in the proje
t, with an emphasis of what moti-vated the developments. We then summarise what we thinkhas gone well and what has not gone so well leading to sug-gestions as to what one might do next and some thoughts onwhat we have learned about the intera
tion between theoryand pra
ti
e during the proje
t.2 First attemptsIn the late eightees, Standard ML of New Jersey was be
om-ing the most sophisti
ated Standard ML 
ompiler. Whileit generated fast 
ode, it seemed to require an inordinateamount of spa
e. The �rst author had for many years beenfas
inated by the beauty of the Algol sta
k and somewhatunhappy about the explanations of why, in prin
iple, some-thing similar 
ould not be done for the 
all-by-value lambda
al
ulus. (These explanations typi
ally had to do with \es-
aping fun
tions" and other 
on
epts that did not feel 
anon-i
al.)Surely, if an expression has type int (and there are noe�e
ts in the language) then all the memory that is allo-
ated during the 
omputation of the integer (ex
ept for thememory needed to hold the result) 
an be de-allo
ated on
ethe result has been 
omputed. This was in 
ontra
t to theway memory was used with garbage 
olle
tors (at the time),namely linear allo
ation in memory until memory be
omestoo full. The beauty of the sta
k dis
ipline is that it uses

r0 r1 r2 r3 : : :Figure 1: The store is a sta
k of regions; a region is a boxin the pi
ture.memory only proportional to the depth of the 
all sta
k,whereas with garbage 
olle
tion, one allo
ates memory as ifone is trying to put the entire 
all tree in memory. (The 
allsta
k may require only the logarithm of the spa
e requiredto represent the 
all tree.)In 1992, Talpin and Jouvelot published a type dis
iplinefor polymorphi
 referen
es whi
h used an e�e
t system for
ontrolling quanti�
ation of type variables [TJ92℄. Like ear-lier work on e�e
t systems, their system involved a notionof region (of referen
es). Tofte suggested to Talpin that theapproa
h may be generalised from dealing with referen
esto a

ounting for allo
ation and de-allo
ation of all valuesin the 
all-by-value lambda 
al
ulus. Together, Tofte andTalpin developed a basi
 region inferen
e system for a toylanguage based on ML [TT92℄. It had no re
ursive fun
tions.At runtime, the store 
onsists of a sta
k of regions, seeFigure 1. All values, in
luding fun
tion 
losures, are putinto regions.Every well-typed sour
e language expression, e, 
an betranslated into a region-annotated expression, e0, whi
h isidenti
al with e, ex
ept for 
ertain region annotations. Theevaluation of e0 
orresponds, step for step, to the evaluationof e. Two forms of annotations aree1 at �letregion � in e2 endThe �rst form is used whenever e1 is an expression whi
h di-re
tly produ
es a value. (Constant expressions, �-abstra
tions



and tuple expressions fall into this 
ategory.) The � is a re-gion variable; it indi
ates that the value of e1 is to be putin the region bound to �.The se
ond form introdu
es a region variable � with lo
als
ope e2. At runtime, �rst an unused region, r, is allo
atedand bound to �. Then e2 is evaluated (probably using r).Finally, r is de-allo
ated. The letregion expression is theonly way of introdu
ing and eliminating regions. Hen
e re-gions are allo
ated and de-allo
ated in a sta
k-like manner.The translation from the sour
e language to the languageof region-annotated terms was formalised by a set of formalinferen
e rules, the region inferen
e rules, that allowed oneto infer 
on
lusions of the formTE ` e) e0 : (�; �); 'read: in the type environment TE, the sour
e expressione may be translated into a region-annotated expression e0whi
h has type � , is pla
ed in region � and has e�e
t ',where, slightly simpli�ed, an e�e
t is a �nite set of regionvariables.There was a proof of 
orre
tness with respe
t to a stan-dard operational semanti
s, a region inferen
e algorithm anda proof of existen
e of prin
ipal types and minimal e�e
ts.Tofte built a prototype implementation of a slightly largertoy language with re
ursive fun
tions, pairs and lists. Theimplementation 
ontained a di�erent region inferen
e algo-rithm and an instrumented interpreter for region-annotatedterms. Experimental results were terrible. There seemed tobe two main 
auses:1. When a fun
tion f , say, returns a result in a region,then all 
alls of f must return their result in the sameregion. Thus the region must be kept alive until noresult of f was needed (whi
h is very 
onservative)2. In parti
ular, when a fun
tion 
alls itself re
ursively,the result of the re
ursive 
all must be put in the sameregion as the result of the fun
tion (even in 
ases wherethe re
ursive 
all produ
es a result whi
h is not partof the result of the fun
tion).The solution to the �rst problem was straightforward: fun
-tions should be allowed to take region parameters at runtime. Talpin observed a beautiful 
onne
tion between regionparameters and quanti�ed region variables in type s
hemes:a fun
tion of type8�1; : : : ; �k�1; : : : ; �n:� ! � 0should take �1; : : : ; �k as formal region parameters. The a
-tual parameters at a 
all of f are the result of instantiatingthe type s
heme to region variables at the 
all site. A fun
-tion is region-polymorphi
, if it takes regions as parameters.Thus two more forms of region annotations were intro-du
ed in region-annotated terms, one for de
laring (re
ur-sive) region-polymorphi
 fun
tionsletre
 f [�1; : : : ; �k℄(x) = e1 in e2and one for referring to them:f[�01; : : : ; �0k℄

3 Polymorphi
 re
ursionTofte noti
ed that what was required to solve the se
ondproblem mentioned above (re
ursive fun
tions) was poly-morphi
 re
ursion in regions. For example, 
onsider thesour
e expression:letre
 fa
(n)=if n=0 then 1else n*fa
(n-1)in fa
 100Translating this without polymorphi
 re
ursion would giveletre
 fa
[r1℄(n)=if n=0 then 1 at r1else (n*fa
[r1℄(n-1))at r1in fa
[r0℄100whi
h 
auses 100 values to pile up in the region r0. Withpolymorphi
 re
ursion, however, one 
ould translate the ex-pression intoletre
 fa
[r1℄(n)=if n=0 then 1 at r1elseletregion r2in (n*fa
[r2℄(n-1))at r1endin fa
[r0℄100so that ea
h re
ursive invo
ation uses its own (lo
al) region.However, there were still problems with re
usion in thespe
ial 
ase of tail re
ursion and iteration. For example,
onsider the following program, whi
h is intended to sumthe numbers from 1 to 100 (fst and snd stand for the �rstand se
ond proje
tion of pairs, respe
tively):letre
 sumit(p: int*int)=let a

= fst pin let n = snd pinif n=0 then pelsesumit(n+a

, n-1)infst(sumit(0,100))At �rst sight, the re
ursive 
all of sumit in its own body is atail 
all. Moreover, sin
e the two bran
hes of the 
onditionalmust put their results in the same region, sumit delivers itsresult pair in the same region as its argument resides. Butas a result, 100 pairs will pile up in the region that 
ontainsthe initial pair (0,100). (It would not improve matters touse polymorphi
 re
ursion: this would just give 100 pairsin 100 di�erent regions on the sta
k.) What one would liketo do is to have the pair (n+a

, n-1) overwrite the pair p,sin
e - in this program - p is not used after (n+a

, n-1) hasbeen 
reated.To a
hieve this, Birkedal and Tofte devised a so-
alledstorage mode analysis, whi
h allows the 
ompiler to generate
ode to reset regions prior to an allo
ation, when the analysis
an 
on
lude, that the region 
ontains no live value.The proof of 
orre
tness of the region inferen
e rules wasextended to deal with region polymorphism and polymorhi
region re
ursion. The region inferen
e algorithm was ex-tended to deal with polymorphi
 re
ursion by iterative re-gion inferen
e of the re
ursive fun
tion till a �xed point type



s
heme was obtained. Ad-ho
 methods were used in orderto ensure termination. These ad-ho
 methods also made it
lear, that there was no guarantee that the algorithm would�nd most general type s
hemes for region-polymorphi
 fun
-tions. The results were presented at POPL '94 [TT94℄.The experimental results for runtime spa
e usage variedfrom the ex
ellent to the poor. Ex
ellent results were ob-tained for programs that were written iteratively or had anatural sta
k-like behaviour. Good results were obtained forqui
ksort and other small, 
lassi
al algorithms. Poor resultsfor programs where lifetimes just are not nested or wherethere is extensive use of higher-order fun
tions.En
ouraging fa
ts at this stage were:1. There are programs for whi
h the region s
heme worksextremely well (even without any other form of garbage
olle
tion)!2. Soundness of memory use is guaranteed3. Memory behaviour is expli
ated and 
an be studied ifone 
ares suÆ
iently about memory as a resour
eWorries at this stage:1. What will happen in big programs? What is the \typ-i
al" ratio between parts of the program for whi
h re-gion inferen
e works well and the parts for whi
h itdoes not work well? How diÆ
ult and time 
onsumingis it to rewrite programs to make them region friendly?2. The good experimental results were based on an in-strumented, ineÆ
ient interpreter. A
tual runtime per-forman
e was nowhere near what 
ompilers like SML/NJ
ould deliver. Could regions be managed eÆ
iently atruntime, or would administrative overhead at runtimebe prohibitive?3. Un
larity about prin
ipal types: looked like a toughproblem, even soundness of the algorithm was no longereasy!4. Soundness of region inferen
e rules was getting 
om-pli
ated, although do-able!5. Experimental results depended on the storage modeanalysis, whi
h had not been des
ribed and studiedindependently of the implementation.Of these questions, the two �rst seemed the most importantto address. In the long run, who would 
are about prin
ipaltypes and the 
orre
tness of extra analyses, if the overalls
heme did not work in pra
ti
e?There seemed to be only one way to �nd out whetherthis s
heme 
ould ever be
ome a serious 
ontender to themu
h more mature garbage 
olle
tion te
hniques that werealready present in many implementations. We would haveto build a real language implementation based on regioninferen
e and 
ompare it to other implementations.We de
ided to aim at doing region inferen
e for full Stan-dard ML. There were pragmati
 reasons for 
hoosing Stan-dard ML as the sour
e language: we already knew the lan-guage in detail and we had a Standard ML front-end whi
hwas 
ompliant with the language semanti
s, namely the MLKit, originally developed at Edinburgh University [BRTT93℄.Moreover, there existed several sophisti
ated SML 
ompilersthat 
ould be used for 
omparison and plenty of SML pro-grams that 
ould be used as experimental data. But there

was an other very important reason for 
hoosing SML as asour
e language: it is one thing to propose a new way ofimplementing programming languages - if one also proposesa new language, there is a danger that the whole enterprisebe
omes obs
ure. It seemed mu
h more promising to tryto develop the ideas in the 
ontext of an existing resear
h
ommunity.4 Aiming for the SML Core LanguageThe work on extending the ML Kit with regions began in thefall of 1993. Lars Birkedal developed a region-based runtimesystem, written in C, and a 
ode generator from region-annotated terms to C. Tofte extended the region inferen
ealgorithm to 
over the SML 
ore language, so it be
amepossible to 
ompile Core Standard ML programs to C-
ode,whi
h was then 
ompiled using a C-
ompiler and linked withthe runtime system using an ordinary linker. Martin Elsmanand Niels Hallenberg subsequently wrote a ma
hine 
odegenerator for the HP PA-RISC ar
hite
ture.With this system it be
ame possible to 
ompile mediumsized test programs (the largest being around 1000 lines ofStandard ML) into ma
hine 
ode. The test programs weretaken from the SML/NJ ben
hmark suite.At �rst, results were disappointing. Target programsused more spa
e and ran slower than when run under othersystems.However, inspe
tion of the produ
ed 
ode revealed thatslow running time likely had to do with unne
essary over-head in managing regions. It seemed that a lot of regionsonly ever 
ontained one value. Pla
ing su
h regions on thesta
k rather than allo
ating region pages for them mightredu
e exe
uting times.Birkedal, Tofte and Vejlstrup then developed and imple-mented a so-
alled multipli
ity inferen
e analysis, the theoryof whi
h was developed by Vejlstrup [Vej94℄. The idea wasto �nd out, for every region, an upper bound on the numberof values that were written into the region.Initially, the bound 
ould be an integer or in�nity (mean-ing that the analysis 
ould not �nd any �nite bound). Ex-periments on sample programs revealed that by far the most
ommon 
ase was that the upper bound was 1, the se
ondmost 
ommon 
ase was that the upper bound was in�nitywhile only very rarely did �nite upper bounds other than oneappear. Consequently, we simpli�ed the analysis so that itdistinguishes between �nite regions, de�ned as regions thathave a �nite upper bound of one value, and in�nite regions,meaning all other regions. Finite regions are part of the a
-tivation re
ord, while an in�nite region 
onsists of a linkedlist of �xed-size region pages, allo
ated from a free list ofregion pages, see Figure 2.Other optimisations in
luded elimination of regions that
ontain word-sized values only. (Su
h regions 
an be kept inma
hine registers - or spilled onto the sta
k, in 
ase of la
kof registers.)The e�e
ts of in
orporating these improvements were as-tonishing: in many programs, 90% or more of all allo
ationsat runtime were to �nite regions. In the largest test program(simple, a 1000 lines program), more than 99% of the allo
a-tions were on the sta
k. Changing the runtime system and
ode generator to use �nite regions led to an improvementin running times of roughly a fa
tor 3.After these optimisations, the test programs ran between10 times faster and four times slower under the Kit than



r1 r2 r3 r4

--
66
6

66 66 --Figure 2: The runtime sta
k (bottom) 
ontains three in�niteregions (r1, r2,r4) and a �nite region (r3). An in�nite regionis represented by a region des
riptor on the sta
k and alinked list of �xed size region pages. A region des
riptor
ontains a pointer to the last (i.e., most re
ently allo
ated)region page, a pointer to the �rst free position in this regionpage, and a pointer to the �rst region page. A �nite regionis just a number of words on the sta
k.under SML/NJ v. 93, whi
h was generally 
onsidered thestate-of-the-art SML 
ompiler at the time. Spa
e usage forthe test programs run under the Kit varied between 8% andover 3000% of the spa
e usage for the same programs rununder SML/NJ v. 93, with most of the test programs using
onsiderably less spa
e under the Kit than under SML/NJ,on
e the test programs had been modi�ed to be
ome \regionfriendly".The pro
ess of making programs \region friendly" wastime 
onsuming and required intimate understanding of theanalyses involved (although not mu
h knowledge of the algo-rithms that implemented the analyses). Basi
ally, the pro-
ess involved peering at the region-annotated 
ode to seewhether the region annotations gave reasonable life-times.De
iding what was reasonable life-times involved understand-ing the various test programs in some detail. For example,sin
e the Game of Life test program 
on
eptually is an it-erative 
omputation of subsequent \generations" of a gameboard, a reasonable obje
tive was to organize the use of re-gions so that no more than two generations of the game werelive at the same time. On
e this obje
tive was a
hieved,spa
e usage redu
ed to 376KB, or around one fourth of thespa
e usage of SML/NJ on the same program.For the largest of the test programs (1000 lines), it wasestimated that making a detailed analysis and perhaps rewrit-ing of the program would be too time 
onsuming; fortu-nately the analyses worked well without any modi�
ation ofthe test program in this 
ase: the program still used lessmemory under the Kit than under SML/NJ.So, signi�
ant progress:1. It was possible to extend the entire s
heme to all ofthe Core Language of Standard ML2. Programs of up to 1000 lines of SML 
ould be exe-
uted with speed and spa
e usage 
omparable to thatof SML/NJ3. Programs that were (re-)written with 
are 
ould be

made to run in signi�
antly less spa
e than under SML/NJSo, from a purely te
hni
al point of view, we felt that region-based implementation had passed its �rst test with the 
om-petition in the pra
ti
al world. However, 
on
erns about thepro
ess of programming with regions were mounting. Therewere the following problems:1. Region inferen
e favours a parti
ular dis
ipline of pro-gramming. How would one explain this dis
ipline toprogrammers?2. Region inferen
e generates a large number of regionsand region parameters to region-polymorphi
 fun
tions.Therefore, region-annotated programs are large anddiÆ
ult to read.3. As sour
e programs 
hange, the region annotations
hange as well. Thus the time invested in understand-ing the region annotations of one program may be lost,when the sour
e program is modi�ed slightly.4. Almost all of the region annotations seemed to be �ne.If one were fa
ed with an apparent spa
e leak, howwould one lo
ate it, other than by studying the entireprogram?5. Could region inferen
e be extended to ML Modules?In short, there was a strong sense that here was a te
hnol-ogy whi
h 
ould produ
e astonishing results, when it workedwell, but it was too diÆ
ult to hit those pre
ise points wherethis happens. Moreover, if it is diÆ
ult for the people whodeveloped the te
hnology, what would be the 
han
es of su
-
ess with the average programmer? We felt that we la
kedinstruments other than the sour
e 
ode and the intermediateforms produ
ed by the 
ompiler to understand the runtimememory behaviour of programs.5 Pro�ling and the ML KitAt this point (Summer 1995), we be
ame aware of the workby Run
iman and Wakelin on pro�ling of Haskell-programs[RW93℄. Based on their system, Hallenberg developed aregion pro�ler for the Kit. This was a break-through forour ability to program with regions in pra
ti
e. Runningsome of the programs that had been hand-tuned using thepro�ler resulted in fas
inating pi
tures of memory usage, seeFigure 3 for an example.Also, the pro�ler made it mu
h easier to lo
ate and elim-inate spa
e leaks, i.e., annotations whi
h 
ause a programto use mu
h more memory than one would expe
t.A dis
ipline of programming was emerging. From thepeering at the region annotated programs, we had learneda great deal about what works well and what does not workwell with regions. The pro�ler was the tool required to lo-
ate spa
e leaks and, more generally, to verify that memorywas used as planned.Hen
e we de
ided to try to des
ribe a dis
ipline of pro-gramming with regions in a 
omprehensive report [TBE+97℄.It gives a step-by-step introdu
tion to programming usingregions, moving from basi
 values and lists over �rst-orderre
ursive fun
tions to datatypes, referen
es, ex
eptions andhigher-order fun
tions.The report was released in april 1997 as part of \The MLKit, Version 2".11http://www.it-
.dk/resear
h/mlkit/kit2/readme.html



rp2ps - Region profiling Fri Apr 18 12:17:50 1997

OTHER

r1805fin

r1775inf

r1610fin

r1606fin

r1621fin

r1625fin

r1inf

rDesc

r1787inf

r1788inf

stack

r1771inf

r1772inf

r1812inf

r1813inf

r1785inf

r1786inf

r1773inf

r1774inf

seconds0.1 20.1 40.1 60.1

by
te

s

0k

200k

400k

600k

800k

1000k

1200k

1400k

1600k

1800k

Maximum allocated bytes in regions: 1600284.

Figure 3: Region pro�ling of region-optimised mergesort.The two upper trianges 
ontain unsorted elements, whilethe two lower triangles 
ontain sorted elements.We also held a summer s
hool on programming with re-gions2, 
onsisting of le
tures on the theory behind regionsand pra
ti
al programming exer
ises. Con
erning the latter,it was interesting to see how some students be
ame very ex-
ited about getting their programs to run in as little memoryas they 
ould possibly manage, showing that the te
hnologyreally does give the programmer a handle on understandingspa
e. It also be
ame 
lear that programmers found thatsome of the analyses, espe
ially the storage mode analysis,were unpleasantly 
ompli
ated.We felt that we had made good progress on the �rstand the fourth of the �ve problems listed at the end of Se
-tion 4. The se
ond and the third problem seemed hard todo anything about, without 
hanging the approa
h to, say,
onsidering expli
it region annotations in the sour
e lan-guage (whi
h we did not want to do, sin
e this would meandeparting from using SML as the sour
e language).Rather than delving into the design of a new program-ming language, it was more interesting to work on whetherregions 
ould be extended to ML Modules. There were tworeasons for this. First, to be able to 
ompile big ML pro-grams, one would need to be able to handle ML Modules.Se
ond, dealing with region inferen
e in some modular fash-ion was an interesting 
hallenge in itself. Region inferen
edepends on a mu
h �ner level of des
ription than the MLtype system itself o�ers. Separate 
ompilation of modulesnormally requires only type information. To what extent isit possible to 
ompile modules separately using region-basedimplementation te
hnology?6 Modules and Separate CompilationIn his Ph.D.-thesis, Martin Elsman [Els99℄ presented hissolution to the problem in the form of a general s
hemefor propagation of 
ompile-time information a
ross moduleboundaries, exempli�ed by a separate 
ompilation systemfor the ML Kit with Regions. This s
heme was used in Ver-sion 3 of the ML Kit[TBE+98℄.Version 3 of the ML Kit made it possible for the �rsttime to 
ompile large ML programs for a region-based im-2See http://www.it-
.dk/resear
h/mlkit/kit2/summers
hool.html

plementation. AnnoDomini, a 58,000 lines SML-program,took 1.5 hours to 
ompile. Running it with the region pro-�ler revealed a 
ouple of spa
e leaks. It was possible to �xthese by rewriting around 10 of the 58.000 lines of ML 
ode.Thereafter, AnnoDomini used less spa
e under the Kit thanunder SML/NJ.This is a very interesting result, sin
e mu
h of the 
ode inAnnoDomini is written by programmers who do not knowhow to program with regions - in fa
t, of the 58.000 linesof SML, more than 10,000 lines were a

ounted for by ama
hine generated lexer and parser. On the other hand, itrequired a regions expert to lo
ate and 
hange the 10 lines.So, progress:1. It is possible to extend region analyses to all of Stan-dard ML, in
luding modules2. Proof of 
on
ept for large programs: a large ML pro-gram was 
ompiled and run using the system3. Making this large program region friendly required a(surprisingly) small amount of modi�
ation to the pro-gram.That the 
ompiler was slow was of 
ourse a problem thatwould require further work, for the te
hnology to be
omeattra
tive in pra
ti
e; more of a 
on
ern were the thingshaving to do with the way programmers would use regionsin pra
ti
e.It was always known that there are programs that arejust not well suited for region inferen
e. Even if the Ann-oDomini experiment suggests that one 
an get far withoutperforming major revision of the 
ode, it must be a 
on
ernfor everybody who uses regions that there is no guaranteethat one will be able to solve all problems that one en
oun-ters within the regions s
heme. Clearly, it is one thing toinvest time in tuning a program with a view to using re-gions. This is something one is likely to be willing to do, ifone really 
ares about 
ontrol over memory resour
es andthe other bene�ts obtained by region inferen
e (e.g., forreal-time programming in embedded systems). It is anotherthing to invest time without knowing whether, at the verylast moment, one will run into a problem whi
h will for
eone to do major revisions to the 
ode or, in the worst 
ase,give up on regions altogether!Summing up, the problems to do with how one programswith regions were:1. Region inferen
e generates a large number of regionsand region parameters to region-polymorphi
 fun
tions.Therefore, region-annotated programs are large anddiÆ
ult to read.2. As sour
e programs 
hange, the region annotations
hange as well. Thus the time invested in understand-ing the region annotations of one program may be lost,when the sour
e program is modi�ed slightly.3. What is one to do, if one 
annot see how to rewritethe program to use regions more eÆ
iently (or if one
an see it, but it would mean an inordinate amountof work)? What about algorithms that just are inher-ently not well suited for regions?The solution of the �rst two problems still seemed to require
hange of sour
e language, whi
h we were not willing to do.But the third problem 
ould perhaps be addressed by �nd-ing a 
ombination of region inferen
e and garbage 
olle
tion.



Program tgt #GCgt trgt #GCrgtkitlife35u 74.20 5254 39.84 0kittmergesort 15.27 27 7.36 4kitqsort 47.89 76 17.68 11kitreynolds2 13.61 963 10.03 0kitkbjul9 95.22 3976 47.32 31kitlife old 46.22 2832 38.83 43kitkb old 191.05 674 57.62 18kitreynolds3 45.94 4540 24.75 553professor game 26.83 3621 15.53 78Table 1: Using garbage 
olle
tion without and with regioninferen
e.If su

essful, a 
ombination of region inferen
e and garbage
olle
tion 
ould perhaps even redu
e the importan
e of the�rst two problems: one might 
on
eivably not have to lookat region-annotated programs at all, be
ause garbage 
olle
-tion would handle the spa
e leaks instead.7 Garbage Colle
tion and RegionsIn his M.S
. thesis [Hal99℄, Hallenberg developed a s
hemefor garbage 
olle
ting regions and implemented it in the MLKit.3The s
heme 
onsists of a generalisation of Cheney's stop-and-
opy 
opying garbage 
olle
tion algorithm to apply toregions. Very brie
y, the idea is to perform a Cheney 
opy-ing 
olle
tion of all regions on the region sta
k but to do itin su
h a way that two live values are in the same regionbefore the 
olle
tion if and only if they are in the same re-gion after the 
olle
tion. The garbage 
olle
tor is invokedwhenever more than 2/3 of the region pages in the free listhave been used.In the 
ase where there is just one region, the algorithmredu
es to (essentially) Cheney's algorithm. Thus one 
anget a rough idea of the intera
tion between region inferen
eand garbage 
olle
tion by 
omparing what happens whenone for
es all values to be put in a global region to whathappens when region inferen
e is allowed to run its normal
ourse.Hallenberg 
ondu
ted this experiment on a number oftest programs. The results are shown in Table 1. The �rst
olumn is the name of the ben
hmark program. The se
ondand third 
olumns show what happened when all values areput in global regions (so that region inferen
e 
olle
ts novalues at runtime); the se
ond 
olumn shows the runningtime (in se
onds), while the third 
olumn shows the numberof times the garbage 
olle
tor had to run. The fourth and�fth 
olumns show what happened when region inferen
eis allowed to 
olle
t regions in the usual way; the fourth
olumn shows the running times (in se
onds) and the �fth
olumn shows the number of times the garbage 
olle
tor wasinvoked.4We see that using region inferen
e greatly redu
es thenumber of times, the garbage 
olle
tor needs to run. Fur-thermore, using a 
ombination of region inferen
e and garbage
olle
tion redu
es the running time signi�
antly, 
omparedto using the garbage 
olle
tor without region inferen
e.3This will be
ome available in Version 4 of the ML Kit, soon toappear!4The \t" in the subs
ripts stand for \tagging", for reasons thatwill be
ome apparent below.

Hallenberg also 
ompared the running times in Table 1 torunning times (tr) obtained by using region inferen
e alone,without the garbage 
olle
tor. For all ben
hmark programs,the fastest exe
ution was obtained by using region inferen
ewithout garbage 
olle
tion (mostly be
ause tags are not ne
-essary, if one does not do garbage 
olle
tion). So the patternobserved was: tr < trgt < tgtCon
erning spa
e, programs that had been optimised forregions used up to four times more spa
e when running un-der the 
ombination of region inferen
e and garbage 
olle
-tion than when using region inferen
e only. (This is notsurprising, sin
e the garbage 
olle
tor requires tags and to-spa
es.) So for programs that had been optimised for re-gions, it was best not to add garbage 
olle
tion, both fromthe point of view of time and spa
e.However, programs that had not been optimised for re-gions all used mu
h less spa
e when run using both thegarbage 
olle
tor and region inferen
e than when using re-gion inferen
e alone. Again, this is not surprising, for pro-grams that have not been optimised for regions often 
ontainsome spa
e leaks that makes memory usage linear in the run-ning time. The experiments thus 
on�rmed the hope, thatadding a garbage 
olle
tor to region inferen
e really doestake 
are of the (relatively few) allo
ations that are not re-
laimed well by region inferen
e.In short: the best results (both 
on
erning time andspa
e) are obtained by optimising programs for regions tothe point where they do not need garbage 
olle
tion at all,but if one does not or 
annot do this, garbage 
olle
tion doestake 
are of the 
ases, where region inferen
e does a poorjob.An important question remained, however: what was thespa
e usage using garbage 
olle
tion alone 
ompared to us-ing region inferen
e and garbage 
olle
tion in 
ombination?One might think that one would save spa
e by using bothregion inferen
e and garbage 
olle
tion 
ompared to usinggarbage 
olle
tion alone (sin
e region inferen
e takes 
are ofsome of the de-allo
ation, the garbage 
olle
tor would needless spa
e to work in). Indeed this e�e
t was observed forprograms that had been optimised for regions. But for pro-grams that had not, the opposite happened: it required lessspa
e to use the garbage 
olle
tor alone than using the 
om-bination of the garbage 
olle
tor and region inferen
e. Thereason is probably that in�nite regions on the region sta
kresult in fragmentation of memory. Many in�nite regions
ontaining only a few values ea
h 
an take up mu
h morespa
e than putting all the values in a global region.So, unfortunately, it 
annot be re
ommended to addregion inferen
e as just an \optimisation" on a basi
allygarbage 
olle
ted system, if programmers are assumed notto spend time optimising their programs for regions: pro-grams that have not been optimised for regions may welluse more spa
e than when using garbage 
olle
tion only.On the other hand, if one is willing to spend time opti-mising programs for regions, the garbage 
olle
tor provides afall-ba
k position whi
h one 
an either use alone or in 
om-bination with region inferen
e, depending on how far onegets with optimising the program.8 Current BeliefsThings we believe work well:



1. The expressive power of the region inferen
e is fully
apable of taking 
are of the vast majority of mem-ory management that one typi
ally wants to do in alanguage like SML.2. The de-allo
ation that is not done well by region in-feren
e 
an be handled adequately by the garbage 
ol-le
tor.3. Having a proof of soundness of the region inferen
erules (and the region inferen
e algorithm) gives an un-usually high degree of 
on�den
e in the memory in-tegrity of 
ompiled programs, even if the proof doesnot 
over all of Standard ML.4. Learning the dis
ipline of programming with regions isa worthwhile e�ort, if one is interested in 
ontrol overmemory resour
es.5. The te
hnology does s
ale to 
ompli
ated language
onstru
ts (like ML Modules) and large programs6. Region-based runtime systems 
an be small and eÆ-
ient and the operations they need to perform �t wellwith both RISC and SISC ma
hines.7. Finite regions are a very powerful 
on
ept. They typ-i
ally a

ount for the vast majority of allo
ations atruntime and they 
an be handled with speed and 
om-pa
tness at runtime.8. Region pro�ling is an ex
ellent way of lo
ating and �x-ing spa
e leaks, ex
ept for the fa
t that region pro�lingrequires inspe
tion of region-annotated terms, whi
h
an be verbose.Things that have disappointed:1. Leaving region inferen
e 
ompletely to the 
ompiler isprobably not a good idea. It makes region-annotatedterms unne
essary big and vulnerable to program 
hanges.2. The storage mode analysis was probably not the bestway of handling tail re
ursion; it was too 
ompli
atedand vulnerable to program 
hanges3. In�nite regions are perhaps not su
h a good idea. Theygive fragmentation problems and there is no naturalsize of region page to pi
k. Moreover, they introdu
e
ompli
ations throughout the analyses and 
ode gen-eration and the experien
e with the garbage 
olle
torsuggests that it is better to use garbage 
olle
tion forobje
ts that region inferen
e puts into in�nite regions,due to fragmentation problems.9 Future Dire
tionsThe general approa
h taken in the proje
t so far has beento start from Standard ML and then push region inferen
ethrough a number of program analyses right down to ma-
hine language.What has emerged is that the very heavy employment ofautomati
 program analyses has pragmati
 drawba
ks andalso that the implementation of regions on
e it gets all theway down to the ma
hine representation be
omes somewhat
lumsy. On the other hand, as a result of the experimenta-tion,we now know mu
h more about what the strong points

of regions are and what parts of the theory and implemen-tation that are 
andidates for s
rapping.The obvious next step would be to reverse the engineer-ing pro
ess. One 
ould start by designing a simple abstra
tma
hine that in
orporates all the su

essful features of theregion runtime system of the Kit Abstra
t Ma
hine (anddoes away with 
ompli
ated or rarely used features). Thenone 
ould try to design a sour
e language whi
h makes itpossible for programmers to use the simple abstra
t ma-
hine as their 
on
eptual memory model (mu
h as C pro-grammers have a rough understanding of how the 
all sta
kworks). This sour
e language should allow (but not for
e)the programmer to program expli
itly with regions. Thusthe 
ompiler should perform both region inferen
e and re-gion 
he
king.All messages that the user needs to understand in orderto tune programs must be in terms of 
on
epts and enti-ties that may be written in the sour
e 
ode. This is inorder to remove the need for understanding and manipu-lating intermediate 
ompiler representations. Allowing theuser to program dire
tly with regions furthermore addressesthe problem that region annotations might 
hange as theprogram 
hanges, if region annotations are invented by the
ompiler.There should only be one in�nite region, and it shouldbe garbage 
olle
ted. Sour
e language syntax (not programanalysis) determines whether an allo
ation is done into thein�nite region or into a �nite region.Fun
tion 
alls that are supposed to de-allo
ate or over-write the a
tivation re
ord and �nite regions of the 
allingfun
tion must be indi
ated as tail 
alls in the sour
e 
ode.The 
ompiler must 
he
k whether the de-allo
ation is safe,but it should not try to dis
over tail 
alls.10 Con
lusionOne form of intera
tion between theory and pra
ti
e is thatas one tries to make theory pra
ti
al, pra
ti
e produ
esproblems, whi
h one 
an invent yet more theory to ta
kle.But this is perhaps not the most fruitful form of intera
-tion. If pra
ti
e obje
ts, the reason 
ould be that the theoryis too 
ompli
ated and not that it is in need of further 
om-pli
ation or re�nement.Some 
omplexity seems unavoidable - for region infer-en
e, polymorphi
 re
ursion in regions is a 
ase in point. Butwhen working with theory alone, it is very diÆ
ult to knowwhether some parti
ular expressive 
apability is important.Our experien
e has been that one pays for expressive powerin the sour
e language or program analyses by a sometimesinordinate amount of further diÆ
ult design and implemen-tation 
hoi
es in the implementation. Other times, one 
anbe fortunate to invent analyses that do just the right thingand work wonderfully well. Only experimentation allowsone to tell the di�eren
e.Perhaps the most important power of experimentationand pra
ti
e is to guide the sele
tion of what expressivepower needs to be present in the sour
e language and inthe analyses embedded in the 
ompiler. Pra
ti
e is thatwonderful thing that allows us to dis
ard some theory assuper
uous, so that we 
an 
on
entrate on developing andimplementing theory that the programmer �nds useful.



Referen
es[BRTT93℄ Lars Birkedal, Ni
k Rothwell, Mads Tofte, andDavid N. Turner. The ML Kit (Version 1).Te
hni
al Report DIKU-report 93/14, Depart-ment of Computer S
ien
e, University of Copen-hagen, Universitetsparken 1, DK-2100 Copen-hagen, 1993.[Els99℄ Martin Elsman. Program Modules, Sepa-rate Compilation, and Intermodule Optimisa-tion. PhD thesis, Dept. of Computer S
ien
e,University of Copenhagen, 1999.[Hal99℄ Niels Hallenberg. Combining garbage 
ol-le
tion and region inferen
e in the mlkit. Master's thesis, Dept. of ComputerS
ien
e, University of Copenhagen, 1999.http://www.itu.dk/resear
h/mlkit/kit general/papers.html.[RW93℄ Colin Run
iman and DavidWakelin. Heap pro�l-ing of lazy fun
tional languages. Journal of Fun
-tional Programming, 3(2):217{245, April 1993.[TBE+97℄ Mads Tofte, Lars Birkedal, Martin Elsman,Niels Hallenberg, Tommy H�jfeld Olesen, Pe-ter Sestoft, and Peter Bertelsen. Pro-gramming with regions in the ML Kit.Te
hni
al Report DIKU-TR-97/12, Dept. ofComputer S
ien
e, University of Copenhagen,1997. (http://www.diku.dk/resear
h-groups/topps/a
tivities/kit2).[TBE+98℄ Mads Tofte, Lars Birkedal, Martin Elsman,Niels Hallenberg, Tommy H�jfeld Olesen, Pe-ter Sestoft, and Peter Bertelsen. Program-ming with regions in the ML Kit (for ver-sion 3). Te
hni
al Report DIKU-TR-98/25,Dept. of Computer S
ien
e, University of Copen-hagen, 1998. (http://www.diku.dk/resear
h-groups/ topps/a
tivities/kit3/manual.ps).[TJ92℄ Jean-Pierre Talpin and Pierre Jouvelot. Poly-morphi
 type, region and e�e
t inferen
e.Journal of Fun
tional Programming, 2(3), 1992.[TT92℄ Mads Tofte and Jean-Pierre Talpin. Data regioninferen
e for polymorphi
 fun
tional languages.Manus
ript., July 1992.[TT94℄ Mads Tofte and Jean-Pierre Talpin. Implement-ing the 
all-by-value lambda-
al
ulus using asta
k of regions. In Pro
eedings of the 21st ACMSIGPLAN-SIGACT Symposium on Prin
iples ofProgramming Languages, pages 188{201. ACMPress, January 1994.[Vej94℄ Magnus Vejlstrup. Multipli
ity inferen
e. Mas-ter's thesis, Dept. of Computer S
ien
e, Univ. ofCopenhagen, September 1994. report 94-9-1.


