
Region-Based Memory Management in PerspetiveMads Tofte (tofte�itu.dk) and Niels Hallenberg (nh�itu.dk)The IT University of CopenhagenInvited Talk presented at the Spae 2001 Workshop, Imperial College, London, Jan. 2001
1 IntrodutionOriginally, Region-based Memory Management was oneivedas a purely theoretial idea intended to solve a pratialproblem in the ontext of Standard ML, namely inventing adynami memory management disipline whih is less spaedemanding and more preditable than generi garbage ol-letion tehniques, suh as generational garbage olletion.Over the subsequent eight years, onsiderable e�ort hasbeen devoted to re�ning the idea, proving it orret and �nd-ing out whether it worked in pratie. The pratial experi-ments revealed weaknesses, whih led to new program anal-yses, new theory and yet more experimentation. In short,we have sought to work on memory management as an ex-perimental siene: the work should be sienti� in the sensethat it should rest on a solid mathematial foundation and itshould be experimental in the sense that it should be testedagainst ompeting state-of-the-art implementation tehnol-ogy.The purpose of this paper is to step bak and onsiderthe proess as a whole. We �rst desribe the main tehnialdevelopments in the projet, with an emphasis of what moti-vated the developments. We then summarise what we thinkhas gone well and what has not gone so well leading to sug-gestions as to what one might do next and some thoughts onwhat we have learned about the interation between theoryand pratie during the projet.2 First attemptsIn the late eightees, Standard ML of New Jersey was beom-ing the most sophistiated Standard ML ompiler. Whileit generated fast ode, it seemed to require an inordinateamount of spae. The �rst author had for many years beenfasinated by the beauty of the Algol stak and somewhatunhappy about the explanations of why, in priniple, some-thing similar ould not be done for the all-by-value lambdaalulus. (These explanations typially had to do with \es-aping funtions" and other onepts that did not feel anon-ial.)Surely, if an expression has type int (and there are noe�ets in the language) then all the memory that is allo-ated during the omputation of the integer (exept for thememory needed to hold the result) an be de-alloated onethe result has been omputed. This was in ontrat to theway memory was used with garbage olletors (at the time),namely linear alloation in memory until memory beomestoo full. The beauty of the stak disipline is that it uses

r0 r1 r2 r3 : : :Figure 1: The store is a stak of regions; a region is a boxin the piture.memory only proportional to the depth of the all stak,whereas with garbage olletion, one alloates memory as ifone is trying to put the entire all tree in memory. (The allstak may require only the logarithm of the spae requiredto represent the all tree.)In 1992, Talpin and Jouvelot published a type disiplinefor polymorphi referenes whih used an e�et system forontrolling quanti�ation of type variables [TJ92℄. Like ear-lier work on e�et systems, their system involved a notionof region (of referenes). Tofte suggested to Talpin that theapproah may be generalised from dealing with referenesto aounting for alloation and de-alloation of all valuesin the all-by-value lambda alulus. Together, Tofte andTalpin developed a basi region inferene system for a toylanguage based on ML [TT92℄. It had no reursive funtions.At runtime, the store onsists of a stak of regions, seeFigure 1. All values, inluding funtion losures, are putinto regions.Every well-typed soure language expression, e, an betranslated into a region-annotated expression, e0, whih isidential with e, exept for ertain region annotations. Theevaluation of e0 orresponds, step for step, to the evaluationof e. Two forms of annotations aree1 at �letregion � in e2 endThe �rst form is used whenever e1 is an expression whih di-retly produes a value. (Constant expressions, �-abstrations



and tuple expressions fall into this ategory.) The � is a re-gion variable; it indiates that the value of e1 is to be putin the region bound to �.The seond form introdues a region variable � with loalsope e2. At runtime, �rst an unused region, r, is alloatedand bound to �. Then e2 is evaluated (probably using r).Finally, r is de-alloated. The letregion expression is theonly way of introduing and eliminating regions. Hene re-gions are alloated and de-alloated in a stak-like manner.The translation from the soure language to the languageof region-annotated terms was formalised by a set of formalinferene rules, the region inferene rules, that allowed oneto infer onlusions of the formTE ` e) e0 : (�; �); 'read: in the type environment TE, the soure expressione may be translated into a region-annotated expression e0whih has type � , is plaed in region � and has e�et ',where, slightly simpli�ed, an e�et is a �nite set of regionvariables.There was a proof of orretness with respet to a stan-dard operational semantis, a region inferene algorithm anda proof of existene of prinipal types and minimal e�ets.Tofte built a prototype implementation of a slightly largertoy language with reursive funtions, pairs and lists. Theimplementation ontained a di�erent region inferene algo-rithm and an instrumented interpreter for region-annotatedterms. Experimental results were terrible. There seemed tobe two main auses:1. When a funtion f , say, returns a result in a region,then all alls of f must return their result in the sameregion. Thus the region must be kept alive until noresult of f was needed (whih is very onservative)2. In partiular, when a funtion alls itself reursively,the result of the reursive all must be put in the sameregion as the result of the funtion (even in ases wherethe reursive all produes a result whih is not partof the result of the funtion).The solution to the �rst problem was straightforward: fun-tions should be allowed to take region parameters at runtime. Talpin observed a beautiful onnetion between regionparameters and quanti�ed region variables in type shemes:a funtion of type8�1; : : : ; �k�1; : : : ; �n:� ! � 0should take �1; : : : ; �k as formal region parameters. The a-tual parameters at a all of f are the result of instantiatingthe type sheme to region variables at the all site. A fun-tion is region-polymorphi, if it takes regions as parameters.Thus two more forms of region annotations were intro-dued in region-annotated terms, one for delaring (reur-sive) region-polymorphi funtionsletre f [�1; : : : ; �k℄(x) = e1 in e2and one for referring to them:f[�01; : : : ; �0k℄

3 Polymorphi reursionTofte notied that what was required to solve the seondproblem mentioned above (reursive funtions) was poly-morphi reursion in regions. For example, onsider thesoure expression:letre fa(n)=if n=0 then 1else n*fa(n-1)in fa 100Translating this without polymorphi reursion would giveletre fa[r1℄(n)=if n=0 then 1 at r1else (n*fa[r1℄(n-1))at r1in fa[r0℄100whih auses 100 values to pile up in the region r0. Withpolymorphi reursion, however, one ould translate the ex-pression intoletre fa[r1℄(n)=if n=0 then 1 at r1elseletregion r2in (n*fa[r2℄(n-1))at r1endin fa[r0℄100so that eah reursive invoation uses its own (loal) region.However, there were still problems with reusion in thespeial ase of tail reursion and iteration. For example,onsider the following program, whih is intended to sumthe numbers from 1 to 100 (fst and snd stand for the �rstand seond projetion of pairs, respetively):letre sumit(p: int*int)=let a= fst pin let n = snd pinif n=0 then pelsesumit(n+a, n-1)infst(sumit(0,100))At �rst sight, the reursive all of sumit in its own body is atail all. Moreover, sine the two branhes of the onditionalmust put their results in the same region, sumit delivers itsresult pair in the same region as its argument resides. Butas a result, 100 pairs will pile up in the region that ontainsthe initial pair (0,100). (It would not improve matters touse polymorphi reursion: this would just give 100 pairsin 100 di�erent regions on the stak.) What one would liketo do is to have the pair (n+a, n-1) overwrite the pair p,sine - in this program - p is not used after (n+a, n-1) hasbeen reated.To ahieve this, Birkedal and Tofte devised a so-alledstorage mode analysis, whih allows the ompiler to generateode to reset regions prior to an alloation, when the analysisan onlude, that the region ontains no live value.The proof of orretness of the region inferene rules wasextended to deal with region polymorphism and polymorhiregion reursion. The region inferene algorithm was ex-tended to deal with polymorphi reursion by iterative re-gion inferene of the reursive funtion till a �xed point type



sheme was obtained. Ad-ho methods were used in orderto ensure termination. These ad-ho methods also made itlear, that there was no guarantee that the algorithm would�nd most general type shemes for region-polymorphi fun-tions. The results were presented at POPL '94 [TT94℄.The experimental results for runtime spae usage variedfrom the exellent to the poor. Exellent results were ob-tained for programs that were written iteratively or had anatural stak-like behaviour. Good results were obtained forquiksort and other small, lassial algorithms. Poor resultsfor programs where lifetimes just are not nested or wherethere is extensive use of higher-order funtions.Enouraging fats at this stage were:1. There are programs for whih the region sheme worksextremely well (even without any other form of garbageolletion)!2. Soundness of memory use is guaranteed3. Memory behaviour is expliated and an be studied ifone ares suÆiently about memory as a resoureWorries at this stage:1. What will happen in big programs? What is the \typ-ial" ratio between parts of the program for whih re-gion inferene works well and the parts for whih itdoes not work well? How diÆult and time onsumingis it to rewrite programs to make them region friendly?2. The good experimental results were based on an in-strumented, ineÆient interpreter. Atual runtime per-formane was nowhere near what ompilers like SML/NJould deliver. Could regions be managed eÆiently atruntime, or would administrative overhead at runtimebe prohibitive?3. Unlarity about prinipal types: looked like a toughproblem, even soundness of the algorithm was no longereasy!4. Soundness of region inferene rules was getting om-pliated, although do-able!5. Experimental results depended on the storage modeanalysis, whih had not been desribed and studiedindependently of the implementation.Of these questions, the two �rst seemed the most importantto address. In the long run, who would are about prinipaltypes and the orretness of extra analyses, if the overallsheme did not work in pratie?There seemed to be only one way to �nd out whetherthis sheme ould ever beome a serious ontender to themuh more mature garbage olletion tehniques that werealready present in many implementations. We would haveto build a real language implementation based on regioninferene and ompare it to other implementations.We deided to aim at doing region inferene for full Stan-dard ML. There were pragmati reasons for hoosing Stan-dard ML as the soure language: we already knew the lan-guage in detail and we had a Standard ML front-end whihwas ompliant with the language semantis, namely the MLKit, originally developed at Edinburgh University [BRTT93℄.Moreover, there existed several sophistiated SML ompilersthat ould be used for omparison and plenty of SML pro-grams that ould be used as experimental data. But there

was an other very important reason for hoosing SML as asoure language: it is one thing to propose a new way ofimplementing programming languages - if one also proposesa new language, there is a danger that the whole enterprisebeomes obsure. It seemed muh more promising to tryto develop the ideas in the ontext of an existing researhommunity.4 Aiming for the SML Core LanguageThe work on extending the ML Kit with regions began in thefall of 1993. Lars Birkedal developed a region-based runtimesystem, written in C, and a ode generator from region-annotated terms to C. Tofte extended the region inferenealgorithm to over the SML ore language, so it beamepossible to ompile Core Standard ML programs to C-ode,whih was then ompiled using a C-ompiler and linked withthe runtime system using an ordinary linker. Martin Elsmanand Niels Hallenberg subsequently wrote a mahine odegenerator for the HP PA-RISC arhiteture.With this system it beame possible to ompile mediumsized test programs (the largest being around 1000 lines ofStandard ML) into mahine ode. The test programs weretaken from the SML/NJ benhmark suite.At �rst, results were disappointing. Target programsused more spae and ran slower than when run under othersystems.However, inspetion of the produed ode revealed thatslow running time likely had to do with unneessary over-head in managing regions. It seemed that a lot of regionsonly ever ontained one value. Plaing suh regions on thestak rather than alloating region pages for them mightredue exeuting times.Birkedal, Tofte and Vejlstrup then developed and imple-mented a so-alled multipliity inferene analysis, the theoryof whih was developed by Vejlstrup [Vej94℄. The idea wasto �nd out, for every region, an upper bound on the numberof values that were written into the region.Initially, the bound ould be an integer or in�nity (mean-ing that the analysis ould not �nd any �nite bound). Ex-periments on sample programs revealed that by far the mostommon ase was that the upper bound was 1, the seondmost ommon ase was that the upper bound was in�nitywhile only very rarely did �nite upper bounds other than oneappear. Consequently, we simpli�ed the analysis so that itdistinguishes between �nite regions, de�ned as regions thathave a �nite upper bound of one value, and in�nite regions,meaning all other regions. Finite regions are part of the a-tivation reord, while an in�nite region onsists of a linkedlist of �xed-size region pages, alloated from a free list ofregion pages, see Figure 2.Other optimisations inluded elimination of regions thatontain word-sized values only. (Suh regions an be kept inmahine registers - or spilled onto the stak, in ase of lakof registers.)The e�ets of inorporating these improvements were as-tonishing: in many programs, 90% or more of all alloationsat runtime were to �nite regions. In the largest test program(simple, a 1000 lines program), more than 99% of the alloa-tions were on the stak. Changing the runtime system andode generator to use �nite regions led to an improvementin running times of roughly a fator 3.After these optimisations, the test programs ran between10 times faster and four times slower under the Kit than



r1 r2 r3 r4

--
66
6

66 66 --Figure 2: The runtime stak (bottom) ontains three in�niteregions (r1, r2,r4) and a �nite region (r3). An in�nite regionis represented by a region desriptor on the stak and alinked list of �xed size region pages. A region desriptorontains a pointer to the last (i.e., most reently alloated)region page, a pointer to the �rst free position in this regionpage, and a pointer to the �rst region page. A �nite regionis just a number of words on the stak.under SML/NJ v. 93, whih was generally onsidered thestate-of-the-art SML ompiler at the time. Spae usage forthe test programs run under the Kit varied between 8% andover 3000% of the spae usage for the same programs rununder SML/NJ v. 93, with most of the test programs usingonsiderably less spae under the Kit than under SML/NJ,one the test programs had been modi�ed to beome \regionfriendly".The proess of making programs \region friendly" wastime onsuming and required intimate understanding of theanalyses involved (although not muh knowledge of the algo-rithms that implemented the analyses). Basially, the pro-ess involved peering at the region-annotated ode to seewhether the region annotations gave reasonable life-times.Deiding what was reasonable life-times involved understand-ing the various test programs in some detail. For example,sine the Game of Life test program oneptually is an it-erative omputation of subsequent \generations" of a gameboard, a reasonable objetive was to organize the use of re-gions so that no more than two generations of the game werelive at the same time. One this objetive was ahieved,spae usage redued to 376KB, or around one fourth of thespae usage of SML/NJ on the same program.For the largest of the test programs (1000 lines), it wasestimated that making a detailed analysis and perhaps rewrit-ing of the program would be too time onsuming; fortu-nately the analyses worked well without any modi�ation ofthe test program in this ase: the program still used lessmemory under the Kit than under SML/NJ.So, signi�ant progress:1. It was possible to extend the entire sheme to all ofthe Core Language of Standard ML2. Programs of up to 1000 lines of SML ould be exe-uted with speed and spae usage omparable to thatof SML/NJ3. Programs that were (re-)written with are ould be

made to run in signi�antly less spae than under SML/NJSo, from a purely tehnial point of view, we felt that region-based implementation had passed its �rst test with the om-petition in the pratial world. However, onerns about theproess of programming with regions were mounting. Therewere the following problems:1. Region inferene favours a partiular disipline of pro-gramming. How would one explain this disipline toprogrammers?2. Region inferene generates a large number of regionsand region parameters to region-polymorphi funtions.Therefore, region-annotated programs are large anddiÆult to read.3. As soure programs hange, the region annotationshange as well. Thus the time invested in understand-ing the region annotations of one program may be lost,when the soure program is modi�ed slightly.4. Almost all of the region annotations seemed to be �ne.If one were faed with an apparent spae leak, howwould one loate it, other than by studying the entireprogram?5. Could region inferene be extended to ML Modules?In short, there was a strong sense that here was a tehnol-ogy whih ould produe astonishing results, when it workedwell, but it was too diÆult to hit those preise points wherethis happens. Moreover, if it is diÆult for the people whodeveloped the tehnology, what would be the hanes of su-ess with the average programmer? We felt that we lakedinstruments other than the soure ode and the intermediateforms produed by the ompiler to understand the runtimememory behaviour of programs.5 Pro�ling and the ML KitAt this point (Summer 1995), we beame aware of the workby Runiman and Wakelin on pro�ling of Haskell-programs[RW93℄. Based on their system, Hallenberg developed aregion pro�ler for the Kit. This was a break-through forour ability to program with regions in pratie. Runningsome of the programs that had been hand-tuned using thepro�ler resulted in fasinating pitures of memory usage, seeFigure 3 for an example.Also, the pro�ler made it muh easier to loate and elim-inate spae leaks, i.e., annotations whih ause a programto use muh more memory than one would expet.A disipline of programming was emerging. From thepeering at the region annotated programs, we had learneda great deal about what works well and what does not workwell with regions. The pro�ler was the tool required to lo-ate spae leaks and, more generally, to verify that memorywas used as planned.Hene we deided to try to desribe a disipline of pro-gramming with regions in a omprehensive report [TBE+97℄.It gives a step-by-step introdution to programming usingregions, moving from basi values and lists over �rst-orderreursive funtions to datatypes, referenes, exeptions andhigher-order funtions.The report was released in april 1997 as part of \The MLKit, Version 2".11http://www.it-.dk/researh/mlkit/kit2/readme.html



rp2ps - Region profiling Fri Apr 18 12:17:50 1997

OTHER

r1805fin

r1775inf

r1610fin

r1606fin

r1621fin

r1625fin

r1inf

rDesc

r1787inf

r1788inf

stack

r1771inf

r1772inf

r1812inf

r1813inf

r1785inf

r1786inf

r1773inf

r1774inf

seconds0.1 20.1 40.1 60.1

by
te

s

0k

200k

400k

600k

800k

1000k

1200k

1400k

1600k

1800k

Maximum allocated bytes in regions: 1600284.

Figure 3: Region pro�ling of region-optimised mergesort.The two upper trianges ontain unsorted elements, whilethe two lower triangles ontain sorted elements.We also held a summer shool on programming with re-gions2, onsisting of letures on the theory behind regionsand pratial programming exerises. Conerning the latter,it was interesting to see how some students beame very ex-ited about getting their programs to run in as little memoryas they ould possibly manage, showing that the tehnologyreally does give the programmer a handle on understandingspae. It also beame lear that programmers found thatsome of the analyses, espeially the storage mode analysis,were unpleasantly ompliated.We felt that we had made good progress on the �rstand the fourth of the �ve problems listed at the end of Se-tion 4. The seond and the third problem seemed hard todo anything about, without hanging the approah to, say,onsidering expliit region annotations in the soure lan-guage (whih we did not want to do, sine this would meandeparting from using SML as the soure language).Rather than delving into the design of a new program-ming language, it was more interesting to work on whetherregions ould be extended to ML Modules. There were tworeasons for this. First, to be able to ompile big ML pro-grams, one would need to be able to handle ML Modules.Seond, dealing with region inferene in some modular fash-ion was an interesting hallenge in itself. Region inferenedepends on a muh �ner level of desription than the MLtype system itself o�ers. Separate ompilation of modulesnormally requires only type information. To what extent isit possible to ompile modules separately using region-basedimplementation tehnology?6 Modules and Separate CompilationIn his Ph.D.-thesis, Martin Elsman [Els99℄ presented hissolution to the problem in the form of a general shemefor propagation of ompile-time information aross moduleboundaries, exempli�ed by a separate ompilation systemfor the ML Kit with Regions. This sheme was used in Ver-sion 3 of the ML Kit[TBE+98℄.Version 3 of the ML Kit made it possible for the �rsttime to ompile large ML programs for a region-based im-2See http://www.it-.dk/researh/mlkit/kit2/summershool.html

plementation. AnnoDomini, a 58,000 lines SML-program,took 1.5 hours to ompile. Running it with the region pro-�ler revealed a ouple of spae leaks. It was possible to �xthese by rewriting around 10 of the 58.000 lines of ML ode.Thereafter, AnnoDomini used less spae under the Kit thanunder SML/NJ.This is a very interesting result, sine muh of the ode inAnnoDomini is written by programmers who do not knowhow to program with regions - in fat, of the 58.000 linesof SML, more than 10,000 lines were aounted for by amahine generated lexer and parser. On the other hand, itrequired a regions expert to loate and hange the 10 lines.So, progress:1. It is possible to extend region analyses to all of Stan-dard ML, inluding modules2. Proof of onept for large programs: a large ML pro-gram was ompiled and run using the system3. Making this large program region friendly required a(surprisingly) small amount of modi�ation to the pro-gram.That the ompiler was slow was of ourse a problem thatwould require further work, for the tehnology to beomeattrative in pratie; more of a onern were the thingshaving to do with the way programmers would use regionsin pratie.It was always known that there are programs that arejust not well suited for region inferene. Even if the Ann-oDomini experiment suggests that one an get far withoutperforming major revision of the ode, it must be a onernfor everybody who uses regions that there is no guaranteethat one will be able to solve all problems that one enoun-ters within the regions sheme. Clearly, it is one thing toinvest time in tuning a program with a view to using re-gions. This is something one is likely to be willing to do, ifone really ares about ontrol over memory resoures andthe other bene�ts obtained by region inferene (e.g., forreal-time programming in embedded systems). It is anotherthing to invest time without knowing whether, at the verylast moment, one will run into a problem whih will foreone to do major revisions to the ode or, in the worst ase,give up on regions altogether!Summing up, the problems to do with how one programswith regions were:1. Region inferene generates a large number of regionsand region parameters to region-polymorphi funtions.Therefore, region-annotated programs are large anddiÆult to read.2. As soure programs hange, the region annotationshange as well. Thus the time invested in understand-ing the region annotations of one program may be lost,when the soure program is modi�ed slightly.3. What is one to do, if one annot see how to rewritethe program to use regions more eÆiently (or if onean see it, but it would mean an inordinate amountof work)? What about algorithms that just are inher-ently not well suited for regions?The solution of the �rst two problems still seemed to requirehange of soure language, whih we were not willing to do.But the third problem ould perhaps be addressed by �nd-ing a ombination of region inferene and garbage olletion.



Program tgt #GCgt trgt #GCrgtkitlife35u 74.20 5254 39.84 0kittmergesort 15.27 27 7.36 4kitqsort 47.89 76 17.68 11kitreynolds2 13.61 963 10.03 0kitkbjul9 95.22 3976 47.32 31kitlife old 46.22 2832 38.83 43kitkb old 191.05 674 57.62 18kitreynolds3 45.94 4540 24.75 553professor game 26.83 3621 15.53 78Table 1: Using garbage olletion without and with regioninferene.If suessful, a ombination of region inferene and garbageolletion ould perhaps even redue the importane of the�rst two problems: one might oneivably not have to lookat region-annotated programs at all, beause garbage olle-tion would handle the spae leaks instead.7 Garbage Colletion and RegionsIn his M.S. thesis [Hal99℄, Hallenberg developed a shemefor garbage olleting regions and implemented it in the MLKit.3The sheme onsists of a generalisation of Cheney's stop-and-opy opying garbage olletion algorithm to apply toregions. Very briey, the idea is to perform a Cheney opy-ing olletion of all regions on the region stak but to do itin suh a way that two live values are in the same regionbefore the olletion if and only if they are in the same re-gion after the olletion. The garbage olletor is invokedwhenever more than 2/3 of the region pages in the free listhave been used.In the ase where there is just one region, the algorithmredues to (essentially) Cheney's algorithm. Thus one anget a rough idea of the interation between region infereneand garbage olletion by omparing what happens whenone fores all values to be put in a global region to whathappens when region inferene is allowed to run its normalourse.Hallenberg onduted this experiment on a number oftest programs. The results are shown in Table 1. The �rstolumn is the name of the benhmark program. The seondand third olumns show what happened when all values areput in global regions (so that region inferene ollets novalues at runtime); the seond olumn shows the runningtime (in seonds), while the third olumn shows the numberof times the garbage olletor had to run. The fourth and�fth olumns show what happened when region infereneis allowed to ollet regions in the usual way; the fourtholumn shows the running times (in seonds) and the �ftholumn shows the number of times the garbage olletor wasinvoked.4We see that using region inferene greatly redues thenumber of times, the garbage olletor needs to run. Fur-thermore, using a ombination of region inferene and garbageolletion redues the running time signi�antly, omparedto using the garbage olletor without region inferene.3This will beome available in Version 4 of the ML Kit, soon toappear!4The \t" in the subsripts stand for \tagging", for reasons thatwill beome apparent below.

Hallenberg also ompared the running times in Table 1 torunning times (tr) obtained by using region inferene alone,without the garbage olletor. For all benhmark programs,the fastest exeution was obtained by using region inferenewithout garbage olletion (mostly beause tags are not ne-essary, if one does not do garbage olletion). So the patternobserved was: tr < trgt < tgtConerning spae, programs that had been optimised forregions used up to four times more spae when running un-der the ombination of region inferene and garbage olle-tion than when using region inferene only. (This is notsurprising, sine the garbage olletor requires tags and to-spaes.) So for programs that had been optimised for re-gions, it was best not to add garbage olletion, both fromthe point of view of time and spae.However, programs that had not been optimised for re-gions all used muh less spae when run using both thegarbage olletor and region inferene than when using re-gion inferene alone. Again, this is not surprising, for pro-grams that have not been optimised for regions often ontainsome spae leaks that makes memory usage linear in the run-ning time. The experiments thus on�rmed the hope, thatadding a garbage olletor to region inferene really doestake are of the (relatively few) alloations that are not re-laimed well by region inferene.In short: the best results (both onerning time andspae) are obtained by optimising programs for regions tothe point where they do not need garbage olletion at all,but if one does not or annot do this, garbage olletion doestake are of the ases, where region inferene does a poorjob.An important question remained, however: what was thespae usage using garbage olletion alone ompared to us-ing region inferene and garbage olletion in ombination?One might think that one would save spae by using bothregion inferene and garbage olletion ompared to usinggarbage olletion alone (sine region inferene takes are ofsome of the de-alloation, the garbage olletor would needless spae to work in). Indeed this e�et was observed forprograms that had been optimised for regions. But for pro-grams that had not, the opposite happened: it required lessspae to use the garbage olletor alone than using the om-bination of the garbage olletor and region inferene. Thereason is probably that in�nite regions on the region stakresult in fragmentation of memory. Many in�nite regionsontaining only a few values eah an take up muh morespae than putting all the values in a global region.So, unfortunately, it annot be reommended to addregion inferene as just an \optimisation" on a basiallygarbage olleted system, if programmers are assumed notto spend time optimising their programs for regions: pro-grams that have not been optimised for regions may welluse more spae than when using garbage olletion only.On the other hand, if one is willing to spend time opti-mising programs for regions, the garbage olletor provides afall-bak position whih one an either use alone or in om-bination with region inferene, depending on how far onegets with optimising the program.8 Current BeliefsThings we believe work well:



1. The expressive power of the region inferene is fullyapable of taking are of the vast majority of mem-ory management that one typially wants to do in alanguage like SML.2. The de-alloation that is not done well by region in-ferene an be handled adequately by the garbage ol-letor.3. Having a proof of soundness of the region inferenerules (and the region inferene algorithm) gives an un-usually high degree of on�dene in the memory in-tegrity of ompiled programs, even if the proof doesnot over all of Standard ML.4. Learning the disipline of programming with regions isa worthwhile e�ort, if one is interested in ontrol overmemory resoures.5. The tehnology does sale to ompliated languageonstruts (like ML Modules) and large programs6. Region-based runtime systems an be small and eÆ-ient and the operations they need to perform �t wellwith both RISC and SISC mahines.7. Finite regions are a very powerful onept. They typ-ially aount for the vast majority of alloations atruntime and they an be handled with speed and om-patness at runtime.8. Region pro�ling is an exellent way of loating and �x-ing spae leaks, exept for the fat that region pro�lingrequires inspetion of region-annotated terms, whihan be verbose.Things that have disappointed:1. Leaving region inferene ompletely to the ompiler isprobably not a good idea. It makes region-annotatedterms unneessary big and vulnerable to program hanges.2. The storage mode analysis was probably not the bestway of handling tail reursion; it was too ompliatedand vulnerable to program hanges3. In�nite regions are perhaps not suh a good idea. Theygive fragmentation problems and there is no naturalsize of region page to pik. Moreover, they introdueompliations throughout the analyses and ode gen-eration and the experiene with the garbage olletorsuggests that it is better to use garbage olletion forobjets that region inferene puts into in�nite regions,due to fragmentation problems.9 Future DiretionsThe general approah taken in the projet so far has beento start from Standard ML and then push region inferenethrough a number of program analyses right down to ma-hine language.What has emerged is that the very heavy employment ofautomati program analyses has pragmati drawbaks andalso that the implementation of regions one it gets all theway down to the mahine representation beomes somewhatlumsy. On the other hand, as a result of the experimenta-tion,we now know muh more about what the strong points

of regions are and what parts of the theory and implemen-tation that are andidates for srapping.The obvious next step would be to reverse the engineer-ing proess. One ould start by designing a simple abstratmahine that inorporates all the suessful features of theregion runtime system of the Kit Abstrat Mahine (anddoes away with ompliated or rarely used features). Thenone ould try to design a soure language whih makes itpossible for programmers to use the simple abstrat ma-hine as their oneptual memory model (muh as C pro-grammers have a rough understanding of how the all stakworks). This soure language should allow (but not fore)the programmer to program expliitly with regions. Thusthe ompiler should perform both region inferene and re-gion heking.All messages that the user needs to understand in orderto tune programs must be in terms of onepts and enti-ties that may be written in the soure ode. This is inorder to remove the need for understanding and manipu-lating intermediate ompiler representations. Allowing theuser to program diretly with regions furthermore addressesthe problem that region annotations might hange as theprogram hanges, if region annotations are invented by theompiler.There should only be one in�nite region, and it shouldbe garbage olleted. Soure language syntax (not programanalysis) determines whether an alloation is done into thein�nite region or into a �nite region.Funtion alls that are supposed to de-alloate or over-write the ativation reord and �nite regions of the allingfuntion must be indiated as tail alls in the soure ode.The ompiler must hek whether the de-alloation is safe,but it should not try to disover tail alls.10 ConlusionOne form of interation between theory and pratie is thatas one tries to make theory pratial, pratie produesproblems, whih one an invent yet more theory to takle.But this is perhaps not the most fruitful form of intera-tion. If pratie objets, the reason ould be that the theoryis too ompliated and not that it is in need of further om-pliation or re�nement.Some omplexity seems unavoidable - for region infer-ene, polymorphi reursion in regions is a ase in point. Butwhen working with theory alone, it is very diÆult to knowwhether some partiular expressive apability is important.Our experiene has been that one pays for expressive powerin the soure language or program analyses by a sometimesinordinate amount of further diÆult design and implemen-tation hoies in the implementation. Other times, one anbe fortunate to invent analyses that do just the right thingand work wonderfully well. Only experimentation allowsone to tell the di�erene.Perhaps the most important power of experimentationand pratie is to guide the seletion of what expressivepower needs to be present in the soure language and inthe analyses embedded in the ompiler. Pratie is thatwonderful thing that allows us to disard some theory assuperuous, so that we an onentrate on developing andimplementing theory that the programmer �nds useful.



Referenes[BRTT93℄ Lars Birkedal, Nik Rothwell, Mads Tofte, andDavid N. Turner. The ML Kit (Version 1).Tehnial Report DIKU-report 93/14, Depart-ment of Computer Siene, University of Copen-hagen, Universitetsparken 1, DK-2100 Copen-hagen, 1993.[Els99℄ Martin Elsman. Program Modules, Sepa-rate Compilation, and Intermodule Optimisa-tion. PhD thesis, Dept. of Computer Siene,University of Copenhagen, 1999.[Hal99℄ Niels Hallenberg. Combining garbage ol-letion and region inferene in the mlkit. Master's thesis, Dept. of ComputerSiene, University of Copenhagen, 1999.http://www.itu.dk/researh/mlkit/kit general/papers.html.[RW93℄ Colin Runiman and DavidWakelin. Heap pro�l-ing of lazy funtional languages. Journal of Fun-tional Programming, 3(2):217{245, April 1993.[TBE+97℄ Mads Tofte, Lars Birkedal, Martin Elsman,Niels Hallenberg, Tommy H�jfeld Olesen, Pe-ter Sestoft, and Peter Bertelsen. Pro-gramming with regions in the ML Kit.Tehnial Report DIKU-TR-97/12, Dept. ofComputer Siene, University of Copenhagen,1997. (http://www.diku.dk/researh-groups/topps/ativities/kit2).[TBE+98℄ Mads Tofte, Lars Birkedal, Martin Elsman,Niels Hallenberg, Tommy H�jfeld Olesen, Pe-ter Sestoft, and Peter Bertelsen. Program-ming with regions in the ML Kit (for ver-sion 3). Tehnial Report DIKU-TR-98/25,Dept. of Computer Siene, University of Copen-hagen, 1998. (http://www.diku.dk/researh-groups/ topps/ativities/kit3/manual.ps).[TJ92℄ Jean-Pierre Talpin and Pierre Jouvelot. Poly-morphi type, region and e�et inferene.Journal of Funtional Programming, 2(3), 1992.[TT92℄ Mads Tofte and Jean-Pierre Talpin. Data regioninferene for polymorphi funtional languages.Manusript., July 1992.[TT94℄ Mads Tofte and Jean-Pierre Talpin. Implement-ing the all-by-value lambda-alulus using astak of regions. In Proeedings of the 21st ACMSIGPLAN-SIGACT Symposium on Priniples ofProgramming Languages, pages 188{201. ACMPress, January 1994.[Vej94℄ Magnus Vejlstrup. Multipliity inferene. Mas-ter's thesis, Dept. of Computer Siene, Univ. ofCopenhagen, September 1994. report 94-9-1.


