
Conict Graph Based Allocation of Static Objectsto Memory BanksPeter Keyngnaert Bart DemoenBjorn De Sutter Bruno De Bus Koen De BosschereDepartment of Computer ScienceKatholieke Universiteit LeuvenB-3001 Leuven, Belgiumfpeter.keyngnaert,bart.demoeng@cs.kuleuven.ac.beDepartment of Electronics and Information SystemsUniversiteit GentB-9000 Gent, Belgiumfbjorn.desutter,bruno.debus,koen.debosschereg@elis.rug.ac.beJanuary 7, 2001AbstractSeveral architectures, in particular those speci�cally designed for digital signal processing, have amemory structure that consists of a number of banks with di�erent characteristics (waitstate, size, ...).There may also exist constraints on the accessibility of these banks, as some bank combinations canbe accessed in parallel, while others can not. As memory access conicts lead to pipeline stalls, theassignment of the data objects of a program to the set of memory banks is crucial with respect to aprogram's execution speed. Programmers usually do the assignment of the static objects manually. Wepresent a method to automate this process at/post link-time, as the linker is the �rst moment at whichboth the entire program as well as the target architecture's characteristics are fully known. Based uponstatistics drawn from an execution trace of the program, an ordering of conicts is derived accordingto the possible execution time penalties they generate. By allocating the objects of those conicts thathave the most negative impact on the program execution time �rst, a decent allocation can be derivedautomatically.1 IntroductionSome processors, especially those dedicated to digital signal processing (DSPs), have a complex memoryarchitecture: their main memory space physically consists of a number of memory banks that may not onlyhave di�erent sizes but also di�erent access constraints and access times: some (combinations of) banks maybe accessed in parallel while others don't; some banks allow more than one access per cpu cycle or have asmaller waitstate. For this kind of processing units, data placement has severe implications on the executionspeed of an application. Objects that are often accessed during the same cpu cycle greatly bene�t frombeing assigned to memory banks in such a way that the number of conicts leading to pipeline stalls or theinsertion of pipeline bubbles, is minimal.In the DSP world, it is still common practice to optimize the �nal version of a program by hand, as speedis crucial for real-time applications and humans still outperform compilers at writing the fastest code. One ofthe tasks not yet handled by the development environment is the aforementioned assignment of static objectsto memory banks. This task is partially supported by the system, as there exist tools that let programmersdrag variables from their source code into a visual representation of the memory architecture they target



(e.g. [19]), but it takes a lot of time and expertise to come up with a good placement. In this text, wepresent a novel way of automating this process.In section 2 we de�ne the problem and show it is NP complete. In section 3 we present a method togather the relevant information for subsequent allocation of objects to memory banks. We show a heuristic togenerate an ordered sequence by which the various objects should be allocated. In section 4, a �rst proposalis made for automatic allocation using the datastructures de�ned in section 3. Section 5 illustrates all thiswith an example. The �nal sections 6 and 7 consider related work and possible future work respectively.2 The problem and it's complexity2.1 The problemGiven are the set of static1 objects O used by a program P, as well as the set of memory banks M of thetarget architecture. The goal is to �nd an allocation function alloc : O !M that minimizes the executiontime of P.2.2 Problem complexityConsider the graph coloring problem[16], which has been extensively used in register allocation [4, 2]: givena graph, can its nodes be colored with n colors, provided that only nodes that are not connected by an edgecan be assigned the same color? Now consider a memory architecture with n memory banks, all of whichhave waitstate 0 and allow for 1 access per cycle. Moreover, none of them can be accessed in parallel. Tryingto assign the static objects of a program to these banks in such a way that no conicts arise during programexecution2 is essentially the same problem. Since the �rst problem is known to be NP[13], the second onemust also be NP. Moreover, the second problem is just a special case of the more general problem addressedin this document, where banks can have di�erent waitstates and allow for parallel access. This prohibits thepossibility of �nding an optimal solution for non-trivial applications within a reasonable time. Instead, ourgoal is to �nd a good approximation of the optimal solution in an acceptable amount of time.3 De�ning the allocation orderOur allocation method treats the most important objects �rst. Within the context considered, this im-portance is based on 2 notions: how often an object is used and how often it conicts with other objects.Clearly, objects that are used often and/or appear in a lot of access conicts need to be allocated to thefastest memory banks. This implies the need for an order on the set of objects that indicates which objectshave the most uses and constraints placed upon them and hence should be allocated �rst to maximally ex-ploit parallellism. In this section, we show how such an order can automatically be derived from an executiontrace of the program to be optimized.3.1 Gathering information by simulationIn [11] we presented a simple but general model of both the memory architecture as well as the pipelinedexecution of a DSP architecture. An execution trace of a program is given as input to a simulator modeled asa �nite state machine. By adding or removing states, the accuracy of the �nite state machine simulation canbe varied according to what is needed. The output of the simulation is the number of cpu cycles needed toexecute the trace as well as details about the pipeline conicts. In the execution trace, all arguments to theinstructions are assumed manifest3. We ignore instruction cache details by simply assuming that it is thereand delivers a new instruction each cpu cycle. No attempt is made to reschedule instructions. Instead, weassume that the compiler produces high quality code but that the assignment of datastructures to memorylocations (banks in particular) is potentially very poor and hence can be improved upon. Also, objects1see section 7 about future work for some thoughts on the handling of dynamic objects2A conict between objects is the need to access 2 or more objects during the same cpu cycle3i.e. their values are known



are treated as indivisible objects, e.g. the elements of an array should be placed at consecutive memoryaddresses. Splitting up objects would also imply changing the code which is beyond our current aims. Theinteraction between data placement and code generation is among the topics for future research.An optimal solution for the problem can be found by using the simulation as the evaluation functionfor an appropriate search strategy. However, repeatedly simulating a program is painstakingly slow. Sucha search process can be sped up by either reducing the number of evaluations or reducing the cost of theevaluation. We opt for a variant of the former method by using the pipeline simulation just once to gatherrelevant information. A heuristic then uses this information to determine an order by which the objectsshould be allocated to the memory banks, and in which bank each object should reside. Since we only haveone simulation, we can a�ord to use a detailed variant of the �nite state machine simulator.3.2 Conict graphWe de�ne a conict c(o1; : : : ; om) between m objects o1; : : : ; om as the need for simultaneous access of theseobjects during program execution. The use of an object is any access of that object, either read or write.To minimize the execution time of the program, the objects need to be placed in the di�erent memory banksin such a way that the cpu cycle penalties4 for both the conicts and the uses are minimal. While going overthe execution trace with the �nite state machine, a data structure called the conict graph G = (V;E) isbuild. This graph keeps track of the number of conicts, the objects involved in them as well as the overallnumber of uses of each object:� a node n 2 V contains an object (its identi�er and its size) and the number of times that object hasbeen accessed without being part of a conict.� an edge e 2 E represents the conicts involving the nodes connected by it. A label attached to theedge indicates how many such conicts appear in the worst case.Note that an edge can connect more than 2 nodes. Representing a conict between 3 nodes can also bedone by 3 normal edges that connect the 3 possible pairs of nodes (see �gure 1), but this results in a loss ofknowledge. Indeed, using 3 edges that connect 2 nodes each (as is depicted in (a)) would give the impressionthat there are 3 possibly independent conicts. The fact that it really is 1 conict in which all nodes areaccessed during the same cpu cycle is lost. Clearly, graph (b) has a notion of time that graph (a) has not: itcan express that certain conicts between pairs of objects happen simultaneously. We call edges that connectmore than 2 nodes multi-edges. Note that self-referencing edges may exist, i.e. an edge can be connectedto a certain node more than once. This takes into account multiple accesses to the same object within aconict. In �gure 2 (c), node B has a self-referencing edge.Assume 2 nodes A and B exist, taking part in 2 conicts: c1(A;B;B), which occurs 10 times, andc2(B;B), which occurs only twice. Figure 2 illustrates 3 possibilities to model these conicts. The wayconicts are modeled can have a severe impact on the quality of the allocation: if the simple heuristic ofresolving the most frequently occuring conict �rst is used, each graph may, under certain circumstances,lead to di�erent results. In (a), the conict between A and B is resolved �rst, but this may cause B to beallocated to a memory bank that doesn't allow 2 accesses during each cpu cycle, so the self-referencing edgeof B can not be dealt with. In (b) we resolve the self-referencing conict �rst, but duplicating nodes maymake the decision problem much harder as information concerning one particular conict is spread all overthe graph. Graph (c) allows us to deal with both decisions concerning the placement of A and B at once.Therefore, allowing edges to have a degree5 higher than 2 seems the best option.It is clear that the dominating factors in the allocation are the number of times each object is used andthe number of conicts. If an object is used very often, it should reside in the fastest memory bank possible.If several objects are accessed simultaneously, they should be assigned to (possibly di�erent) memory banksthat allow these accesses in the shortest possible time. The importance of the size factor is described in thesection about future work. The reason we currently ignore this aspect is that either a large object is usedvery often and then it is allocated early in the process (to a fast bank, if it �ts into it), or it is not used allthat often in which case it doesn't really matter that it is only allocated to a slow memory bank later on.4i.e. the number of extra cpu cycles needed to access the objects involved due to their allocation5The degree of an edge is the number of nodes it connects



B
u

BB
s

C

uCC
s

A
uA

s
A

B
u

B

(b)

B
s

C

uCC
s

A
uA

s
A

n

n

n

n

(a)Figure 1: Edges connecting more than 2 nodes represent additional knowledge.
nA

nB

uA

uB

A

B

nA

nB

uA

uB

A

B

n

2

A uA

nB uB

B

nB uB

B

(a) (b) (c)

A

20

12

10

10

12

10

Figure 2: Edges connecting more than 2 nodes introduce additional bene�ts.3.3 Deciding object allocation orderThe algorithm used to do the allocation is based on the use of a set of tables T = fTi j 1 � i � ng wheren = maxfdegree(e) j e 2 Eg. Each table Ti has �#Banks + i � 1i � entries6 where Banks is the set of memorybanks in the architecture. Each entry in Ti is a functionf(b1; :::; bi) : Banks�Banks� : : :�Banks! Nwhere bj (j 2 [1::i]) is a memory bank and f(b1; :::; bi) is the number of cycles lost due to a conict of degreei (i.e. a conict involving i objects) where one object is in bank b1, one object is in b2, : : : and one object isin bi. Once both G and T are generated, we combine the information they contain into a new table Tfinalupon which our heuristic is built. For each edge7 in G, there is an entry in Tfinal that indicates the loss ofcpu cycles that can be avoided by doing a good allocation of the objects involved.The basic idea is to try to resolve the edge that represents the most costly conicts �rst. This is basedupon the assumption that a minimalization of the number of conicts corresponds to a maximalization of theexecution speed of the program, provided often used objects are assigned to the fastest banks. We proposethe following heuristic that approximates the biggest possible gain in cpu cycles for an edge e 2 E thatconnects nodes N1, : : : , Nm8: GAINe =WORSTe �BESTewhere n = degree(e) andBESTe = f(b01; : : : ; b0n)� conflicts(e) + mXi=1 uses(Ni)� (waitstate(b0i) + 1)6i-combinations with repetition of #Banks7Some nodes in G may not be connected to any other nodes. For our algorithm to work, we add a self-referencing edge tothem labeled with 0 number of uses.8with m � degree(e): we take each node into account only once.



WORSTe = f(bslow; : : : ; bslow)� conflicts(e) + mXi=1 uses(Ni)� (waitstate(bslow) + 1)with b01; : : : ; b0n such that f(b01; : : : ; b0n) = minb01;::: ;b0n f(b01; : : : ; b0n) 2 Tn8i; 1 � i � #Banks : waitstate(bslow) � waitstate(bi)uses(Ni) is the number of times the object of node Ni was accessed without being part of the currentconict (i.e. the conict represented by e), conflicts(e) is the number of conicts of type e, bslow is theslowest memory bank available and waitstate(bi) is the waitstate of bank bi. Note that we use waitstate()+ 1 instead of just waitstate() because in general the latter is 0 for the fastest banks, which would eliminatethe inuence of the number of uses not part of the current conict. The entries in Tfinal are ordered bydecreasing value of the GAINe �eld of the table. The objects of the edges with a higher GAINe value shouldbe allocated �rst.4 Towards automatic allocationTfinal can be used to guide manual allocation by the programmer. However, given the information in thetable, it should be possible to also have this �nal step in the allocation process automated. The allocationguidelines handled by a prototype system we have developed include:� When assigning the objects of nodes N1; : : : ; Ndegree(e) to banks b01; : : : ; b0degree(e), we try to assign themost often used objects to the fastest banks.� If multiple f values in Ti are minimal, we try to spread the objects over as many di�erent banks aspossible.� If nodes of objects have self-referencing edges in G or appear more than once as the node of a multiedge in G, they are assigned to faster banks which allow multiple accesses per cycle (if such banksexist).� If one object needs to be assigned and there are multiple possibilities of equally fast memory banks,the bank with the most free space left is picked.The allocation is based on a single iteration over the entries in Tfinal in the order in which they were sorted.All entries start as unmarked. For each entry that is not marked, all nodes in it are allocated according tothe guidelines above. Within such an entry, nodes with more uses are allocated �rst. This entry is thenmarked, as well as all entries that contain only nodes that have already been allocated. Currently, a postprocessing checks for memory banks that have leftover space as it may be bene�cial to duplicate read onlyobjects to maximize parallellism. The linker can then decide which version of the object needs to be accessedat which point in the code, and modify the addresses in the instructions accordingly. In the next section,we illustrate our approach with an example.5 A small exampleAssume a target architecture with Banks = fb1; b2; b3g where the banks have sizes of 25, 25 and 1000 wordsrespectively. Each cpu cycle, 2 accesses to b1 are possible. b1 and b2 can be accessed in parallel, resulting in1 access to b1 and 1 access to b2 during the same cycle. b3 is slower, having a waitstate of 1. b3 can not beaccessed in parallel with either b1 or b2. This results in T = fT1; T2; T3g as shown in tables 1, 2 and 3.



T1f # lost cyclesf(b1) 0f(b2) 0f(b3) 1Table 1: Table of penalties for conicts of degree 1 for the example.
T2f # lost cyclesf(b1; b1) 0f(b1; b2) 0f(b2; b2) 1f(b1; b3) 2f(b2; b3) 2f(b3; b3) 3Table 2: Table of penalties for conicts of degree 2 for the example.
T3f # lost cyclesf(b1; b1; b1) 1f(b1; b1; b2) 1f(b1; b2; b2) 1f(b1; b2; b3) 2f(b1; b1; b3) 2f(b2; b2; b2) 2f(b2; b2; b3) 3f(b1; b3; b3) 4f(b2; b3; b3) 4f(b3; b3; b3) 5Table 3: Table of penalties for conicts of degree 3 for the example.



Instructions are of the form mnemonic src1, src2, dst where src1 and src2 can be an immediatevalue, a register or an address of/into an object and dst can be either a register or an address. Sinceimmediates and registers are irrelevant for our concerns, they are replaced by a -. Accesses to an objectare represented by #x where x is the name of the object. Each memory cell of any bank can hold exactly 1instruction (or 1 word of data). The pipeline has 5 stages: stage 1 fetches the instruction, stage 2 decodesit and stage 3 reads the source operands src1 and src2 from memory. Stage 4 executes the instruction and�nally during stage 5 the result is written to dst.Consider the execution trace in �gure 3 featuring 8 objects A (size 9), B (size 7), C (size 15), D (size2), E (size 2), F (size 6), G (size 16) and H (size 5).instr #A, -, -instr -, #A, -instr -, -, #Ainstr -, -, -instr -, -, -instr -, -, -instr -, #B, -instr #B, #C, #Dinstr #D, #C, #Cinstr #D, -, #Binstr #D, #E, -instr #B, -, -instr -, #C, #Einstr #F, #C, #Einstr #C, #C, #Cinstr -, #C, #Finstr #B, -, #Binstr #G, #C, #Einstr #G, -, #Einstr #E, #H, -instr -, -, -instr #E, #G, #Cinstr -, -, #BFigure 3: Trace for the example.The conict graph for this trace is shown in �gure 4. Note the edges that connect more than 2 nodes(dotted lines) as well as the self-referencing edges of A and B.From T and G, the values for BESTe and WORSTe (and hence for GAINe) can be derived, resultingin Tfinal (see table 4 where the entries are ordered according to decreasing GAINe value).According to the results from table 4, the object allocation is done as follows:1. First try to assign C since is has 44 uses in total, which is more than both D (12 uses) and E (28 uses).Since there exist conicts in which C is accessed twice during the same cpu cycle (in this example,there is only one such conict: (C;C;E)), C is put in the only memory bank that allows this, i.e. b1.Next, E is considered. It also has a conict where it is accessed twice, so E is also put in b1 since it still�ts into that bank. D is never accessed more than once during the same conict and gets put into b2since f(b1,b1,b2) = f(b1,b1,b1) = 1: there is no need to take up place in b1 when allocating the object tob2 doesn't make the handling of the conict any slower. Entry (D;E;C) in Tfinal is marked as done.Also, entries (C;C;E), (C;E) and (D;E) are marked as done since all of the objects featured in anyof these entries already have been allocated to a memory bank.2. When considering entry (B;C), we only need to allocate B since C has a place already. B has anentry in Tfinal where it is accessed twice (i.e. (B;B)) so it is put in b1. Both (B;C) and (B;B) are



B
7 2

C
15 2

D
2 0

E
2 1

H
5 0

G
16 0

9

F
6 0

1

2

1

1

1

1

1

1

1

1

0

1
A

3

Figure 4: Conict graph for the example.
edge conflicts WORSTe BESTe GAINe(D,E,C) 1 41 19 22(B,C) 2 34 14 20(C,C,E) 1 35 16 19(C,E) 1 35 16 19(G,C,F) 1 31 14 17(D,C) 1 27 12 15(F,C) 1 25 11 14(G,B) 1 19 8 11(E,G) 1 19 8 11(E,H,E) 1 15 6 9(B,B) 1 13 5 8(A,A) 0 6 3 3Table 4: Tfinal: heuristically deciding the order for conict resolution for the example from section 2.6.



marked as done.3. For entry (G;C; F ), G and F still need to be allocated. G has more uses than F so G is put into b2while F, which no longer �ts in either b1 or b2, is put into the slow bank b3. Entries (G;C; F ), (F;C),(G;B) and (E;G) are marked as done.4. Entry (E;H;E) only has H as an object that still needs a place to reside during execution. H still �tsinto b2 so it is put there. (E;H;E) is marked as done.5. The only entry left is (A;A). A is put into the only memory bank that has enough space left for it:b3. (A;A) is marked as done and the algorithm terminates.The �nal allocation is represented in �gure 5. In the worst case, which for this architecture meansallocating all objects to b3, the execution of the example would take 82 cpu cycles (we assume that aninstruction is fetched from the I-cache each cycle and that all instructions take 1 cpu cycle to execute).Given the allocation above, this is reduced to 38 cycles. The total penalty for the conicts due to the initialbad allocation has been reduced from 55 to 11.
A

��
��
��

��
��
��

B

��
��
��
�� C

��
��
��

��
��
��

D

����
����
����

����
����
����

E

��
��
��
��

��
��
��
��

F

��
��
��
��

��
��
��
��

G

��
��
��

��
��
��

H

b

����
����
����

����
����
����

3b2b1

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

������
������
������
������

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

������
������
������
������
������
������

������
������
������
������
������
������
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

Figure 5: Final allocation for the example.6 Related WorkA compiler [1] produces relocatable code that allows the linker [14] to put both data and code at theappropriate addresses in memory. Assigning objects to memory banks is clearly something that should beincorporated into (or after) the linkage process, since unlike the compiler, the linker knows the memorymap. Research that has focused on (post) link-time optimization (for general purpose processors) includes[20, 18, 17, 10, 5, 7, 6, 15].A problem similar to the one in this paper (together with a methodology for solving it) is describedin chapter 11 of [3]. Given a program and the objects used by it, a memory bank con�guration (and theallocation of the objects to it) is derived, such that the power consumption versus execution speed trade-o�is as good as possible.[9] suggests a technique where a pre-compiler phase is used to eliminate objects that are not used by theprogram or to see which objects can be layouted at the same locations. This is orthogonal to what we do atlink-time.



Other research such as [12] or [8] focuses on using the typical addressing methods of DSP processors tooptimize data placement, but they do not consider the memory hierarchy.7 Future workSince all instruction operands in the trace are manifest, we can �nd the dynamic objects of the program bylooking for malloc (or similar) instruction sequences: we then know the address space each object occupies,as well as its size.Size does matter It is clear that the dominating factors in the allocation are the number of times eachobject is used and the number of conicts. If an object is used very often, it should reside in the fastestmemory bank possible. If a group of objects are accessed simultaneously, they should be assigned to (possiblydi�erent) memory banks that allow these accesses in the shortest possible time. However, the size of an objectcan play a major role which is illustrated in �gure 6. The conict edge between A and B is removed earlyon because this edge represents the highest number of conicts. However, after the allocation of A and B tosmall but fast memory banks, all other objects need to be put into the large, slow memory because the sizesof the already allocated objects take up almost all of the space in the faster banks. Our algorithm needs toaddress the problems that are due to the size of objects better.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

A

A

B

F

G

D

E

C ������������������ �����
�����
�����

�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
�����������

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��

��
��
��
��
��
��
��

10

9

9 9

9

9 9

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

B

C

D

E

F

G

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
���������������
����������
����������
����������
����������

����������
����������
����������
����������
����������

C

D

E

F

G
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

Figure 6: The importance of object sizes.Size can also play a role the other way around, i.e. if we have space left when all objects have beenassigned to memory. A simple way would be to have a postprocessing step that duplicates read only objectsand copies them into the available space if this is bene�cial for parallellism. Obviously, this requires anotherrun over the linked code to check which copy of an object should be accessed at which point in time. However,this may also result in additional code if objects need to be kept consistent.A third interesting look at object size may result in the concept of switch cost. Indeed, if an object isvery heavily accessed but is too big to reside in a fast memory bank, it may still be worth it to add codethat copies parts of the object to the fast bank as they are needed. This is related to the research aboutcompiler controlled (smart) caches.Finally, an object that is too big may also be splitted into separate objects that can then be alloatedindividually. Clearly, code may need to be added or changed here.Dynamic objects Clearly, dynamic objects can be handled using the same algorithm as the static ones.We just have to know which dynamic objects there are, as well as their sizes. This is easily done whilescanning the execution trace by looking for malloc sequences. The problem with dynamic objects is thatthey are only live for a certain (smaller) part of the program, so it would be highly bene�cial to have some



of them, that are not simultaneously live, occupy the same memory space. This requires 2 things we donot have at this moment: liveness information in the conict graph and the possibility of adding code (ascopying objects from one memory to another is needed then).Implementation for a target architecture Once the results of our general prototype seem satisfactory,a transit should be made to a target architecture because all the intended re�nements and/or extensionsconsider either adding or changing code. Also, for some instruction sets the order of the operands caninuence the execution speed, so it is highly desirable that we take this e�ect into account for such systems.8 AcknowledgmentsThis work is sponsored by the Fund for Scienti�c Research - Flanders under grant 3G001998. Personalcorrespondence with Saumya Debray of the University of Arizona, members of the ACCA research group atK.U.Leuven and members of the SEMP research group at IMEC was much appreciated.References[1] A. H. Aho, R. Sethi, and J. D. Ullman. Compilers - Principles, Techniques, and Tools. Addison-Wesley,Reading, Massachusetts, USA, 1986.[2] P. Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice University, Houston, TX, USA,1992.[3] F. Catthoor, S. Wuytack, E. De Greef, F. B. L. Nachtergaele, and A. Vandecappelle. Custom MemoryManagement Methodology. Kluwer Academic Publishers, 1998.[4] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and P. Markenstein. Register allocationvia coloring. Computer Languages, 6(1):47{57, 1981.[5] R. Cohn, D. Goodwin, P. Lowney, and N. Rubin. Spike: An optimizer for aplha/nt executables. USENIXWindows NT Workshop, August 1997.[6] B. De Sutter, B. De Bus, K. De Bosschere, P. Keyngnaert, and B. Demoen. On the static analysis ofindirect control transfers in binaries. In Proceedings of the International Conference on Parallel andDistributed Processing Techniques and Applications, Las Vegas, Nevada, USA, pages 1013{1019, June2000.[7] S. Debray, W. Evans, R. Muth, and B. De Sutter. Compiler techniques for code compression. ACMTransactions on Programming Languages and Systems (TOPLAS). To appear.[8] E. Eckstein and A. Krall. Minimizing cost of local variables access for dsp-processors. In Proceedings ofthe ACM SIGPLAN 1999 workshop on Languages, compilers, and tools for embedded systems, Atlanta,GA USA, pages 20{27, May 1999.[9] P. Ellervee, M. Miranda, F. Catthoor, and A. Hemani. Exploiting data transfer locality in memorymapping. In Proceedings of the 25th IEEE Euromicro Conference, Milan, Italy, pages 14{21, September1999.[10] M. F. Fernandez. A Retargettable, optimizing linker. PhD thesis, Princeton University, USA, January1996.[11] P. Keyngnaert, B. Demoen, B. De Sutter, and K. De Bosschere. Trace-based memory layout op-timization for dsps. Technical Report CW282, K.U.Leuven, Belgium, March 2000. Avaliable fromhttp://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW282.ps.gz.



[12] N. Kogure, N. Sugino, and A. Nishihara. Memory allocation method for indirect addressing dsps with� update operations. IEICE TRANS. FUNDAMENTALS, (3), March 1998.[13] D. C. Kozen. The Design and Analysis of Algorithms. Springer-Verlag, New York, USA, 1992.[14] J. R. Levine, editor. Linkers & Loaders. Morgan Kaufman Publishers, San Francisco, California, USA,2000.[15] R. Muth, S. Debray, S. Watterson, and K. De Bosschere. alto: A link-time optimizer for the compaqalpha. Software Practice and Experience. To appear (also available as Technical Report 98-14, Dec.1998; this is a revised and updated version of Technical Report 96-15, Dept. of Computer Science, TheUniversity of Arizona, Tucson, USA).[16] R. Nelson and R. J. Wilson, editors. Graph Colourings (Proceedings of a Conference on Graph Colour-ings, Milton Keynes, 1988). Longman Scienti�c & Technical, Essex, 1990.[17] A. Srivastava and D. Wall. A practical system for intermodule code optimization at link-time. Journalof Programming Languages, pages 1{8, March 1993.[18] A. Srivastava and D. Wall. Link-time optimization of address calculation on a 64-bit architecture. InProceedings of the SIGPLAN '94 Conference on Programming Language Design and Implementation,pages 49{60, June 1994.[19] Texas instruments' visual linker, see http://dspvillage.ti.com/docs/ccstudio/.[20] D. W. Wall. Global register allocation at link time. In Proceedings of the ACM SIGPLAN '86 Conferenceon Compiler Construction., pages 264{275, 1986.


