On Regions and Linear Types*
(Preliminary Notes)

David Walker and Kevin Watkins
Carnegie Mellon University

Abstract

We explore how two different mechanisms for reasoning about state, linear typing and the type,
region and effect discipline, complement one another in the design of a strongly typed functional
programming language. The basis for our language is a simple lambda calculus containing first-class
regions, which are explicitly passed as arguments to functions, returned as results and stored in
user-defined data structures. In order to ensure appropriate memory safety properties, we draw
upon the literature on linear type systems to help control access to and deallocation of regions.
In fact, we use two different interpretations of linear types, one in which multiple-use values are
freely copied and discarded and one in which multiple-use values are explicitly reference-counted,
and show that both interpretations give rise to interesting invariants for manipulating regions. We
also explore new programming paradigms that arise by mixing first-class regions and conventional
linear data structures.

1 Introduction

One of the classic challenges in programming languages research is to design mechanisms that help
programmers reason about the behavior of their code in the presence of imperative operations such as
update and deallocation of memory. Over the past 15 years, three techniques for solving this problem
have repeatedly found success, particularly for the domain of functional programming languages:

1. Girard’s linear logic [12] and related work on linear type systems [17, 1, 35] and syntactic control
of interference [27] control sharing and/or the number of uses of important computer resources
such as memory. These systems make it possible to deallocate and reuse storage safely.

2. Moggi’s computational lambda calculus [21] separates pure values from effectfull computations
through the use of monads. This idea forms the basis for adding imperative features to pure
functional languages such as Haskell [24].

*This research was sponsored in part by the Advanced Research Projects Agency CSTO under the title “The Fox
Project: Advanced Languages for System Software,” ARPA Order No. €533, issued by ESC/ENS under Contract No.
F19628-95-C-0050. the views and conclusions contained in this document are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the Defense Advanced Research Projects Agency
or the U.S. government.

3. Finally, the type and effect discipline developed by Gifford and Lucassen [11] and refined by
Jouvelot, Talpin and Tofte [15, 30, 32] uses a type system and type inference techniques to track
accesses to resources. In order to make their analysis feasible, resources are normally grouped
into regions. Tofte and others [31] use regions and effects to perform all memory management
operations in their ML compiler.

More recently, researchers have begun to investigate the relationships between these three funda-
mental mechanisms. For example, Chen and Hudak [5] have discovered a connection between linear
types and monads and Wadler [36] has recently presented a correspondence between monads and effect
systems. In this paper, we fill in the third side of the triangle by exploring the synergy between linear
types and region, type and effect systems, specifically for the purpose of exploring new techniques in
safe, static memory management.

1.1 A New Type System for Safe Static Memory Management

The starting point for our development is a simple functional programming language that contains
explicit programmer-controlled regions. A region is simply an unbounded area of memory or “address
space” where values such as function closures, lists or pairs may be allocated. The sole purpose of these
regions is to group objects with similar lifetimes. When no object in a region is needed to complete
the rest of the computation, the region (and all of the objects contained therein) may be deallocated.
Experimental results indicate that this batch-style deallocation can be very efficient in practice, rivaling
the best implementations of malloc and free [10].

Unlike previous approaches to region-based memory management, our regions are ordinary pro-
gramming objects with no special status. In particular, like ordinary objects, references to regions
are first-class: they may be stored in data structures and they may be passed explicitly to and from
procedures. Since regions have no special status, we may immediately apply known techniques from
linear type systems to track the number of uses of regions, just as we can use linear types to track the
number of uses of functions or pairs.

This “number of uses” information can be used in a variety of ways [34], but we will concentrate
on applications to memory management here. The main idea is that once any programming object
has been used for the last time, that object may safely be deallocated and its memory may be reused
without affecting the rest of the computation. Furthermore, if using an object within a region implies
using the region itself, then in the case a region is used for the last time, both the region and its contents
may safely be deallocated. The main contribution of this paper is to explore further the many ways
in which regions and linear types can be used together to specify and enforce a wide range of memory
management invariants.

Our main technical results arise from two further observations. First, by varying our operational
interpretation of linear types, it is possible to develop radically different region-based type systems.
More specifically, we contrast a language based on the use types of Turner and others [34, 40] where
references to multiple-use objects may be freely copied or discarded with Chirimar, Gunter and Riecke’s
interpretation of intuitionistic linear types [7] where references to multiple-use objects are reference
counted. The first interpretation gives rise to a purely static mechanism for ensuring memory safety.
We believe the resulting language can be used to encode Tofte and Talpin’s original region-based type
system. The second interpretation gives rise to a new, more dynamic memory management system. We
derived this new system directly from the work of Chirimar et al. and our novel core language of regions.
Independently, Makholm, Niss and Henglein [19] have developed a related reference-counting system

from first principles and they are currently working on type inference techniques for the language. We
do not address the issue of type inference in this paper, leaving this topic and other source-language
questions to future work.

The second key observation is that because we treat regions as ordinary objects and apply a lin-
ear typing discipline uniformly across the entire language, we are free to develop new programming
paradigms that mix linear regions with other linear data structures. For example, when we freely mix
regions with linear types, we can easily define a linear list of regions, where each region contains some
other complex data structure, such as a binary tree. In this case, all the nodes in any particular tree
are managed as a unit (and all such nodes may alias one another) whereas each tree is managed inde-
pendently of the others (but no tree may alias any other — unless the trees are reference counted). No
existing type system gives programmers the flexibility to alternate between the coarse-grained memory
management used on the nodes of the trees and the fine-grained memory management used on the trees
themselves. In traditional linear type systems, aliasing is disallowed and in traditional region-based
type systems all objects in the same container data structure must inhabit the same region. Similar
limitations arise when programming with mutable data structures: in traditional region-based type
systems all objects stored in a mutable data structure must inhabit the same region, even if they have
wildly different lifetimes. We have developed related techniques to handle this problem as well.

In the remainder of this article, we present a language of regions and linear types in more detail.
Section 2 describes a core calculus including features for allocating and deallocating linear regions, pairs
and functions. The linear types in this language are based on use types which are in turn derived from
Girard’s Logic of Unity. Although use types are the correct starting point for our exploration of this
topic, they are not quite flexible for our purposes. Therefore we add a construct to our language derived
from Wadler’s let! operator [35]. With this new operator, we can encode Tofte and Talpin’s original
type system. Section 3 describes the abstract machine that executes programs in our language. It
specifies the evaluation relation for the abstract machine and the static semantics for abstract machine
states. Section 4 extends the language with reference-counted regions. Once again, Wadler’s let!
comes in handy, as it permits us to define a form of deferred reference counting. We give both static
and operational semantics for these extensions. Section 5 extends the language again, this time with
lists. Our main goal in this section is to demonstrate how programmers can safely mix linear types,
regions, and reference counting in the implementation of complex data structures. Section 6 introduces
mutable data structures and shows how they interact with with regions and linear types. Finally, section
7 discusses related work and section 8 concludes.

2 The Core Language

Our core language arises from the synthesis of a particular linear type system, the use types of Turner
et al.[34], and a somewhat new variant of Tofte and Talpin’s region type system.

2.1 The Types

We first explain our choice of linear type system and then proceed to augment the language of types
with types for regions.

2.1.1 Use Types

There are many subtly different type systems that, to a first approximation, might be called “linear.”
Although the differences may appear small they can result in significantly different memory management
properties. True linear type systems, those type systems pulled along the Curry-Howard isomorphism
from Girard’s linear logic [12], such as Abramsky’s intuitionistic linear type system [1] contain a col-
lection of multiplicatives, including 7, — 72, a function type that requires its argument to be used
exactly once, and 7, ® 73, a pair in which each component is used exactly once. In order to retain the
expressiveness of an ordinary intuitionistic calculus, a single operator (!) is used to make it possible to
duplicate arguments to a function or components of a pair.

Unfortunately, it appears that this type system cannot be given an operational semantics with
satisfying memory management properties. Turner and Wadler [33] demonstrate that when working
within this type system, one must make a choice: in order to do useful work on an intuitionistic object,
one must either make a complete copy of the object in which case the language admits no effective way
to share objects, or, if one does not make copy of an intuitionistic object each time it is used, then there
is no way to guarantee that it is safe to deallocate objects of linear type.

For our application, we must allow sharing; regions can contain an unbounded number of objects so
copying them is much too expensive. Type system support for explicit deallocation is equally important.
Consequently, a true linear type system will not work here. Instead, we use a slightly different system
in which the types of storable objects, such as functions and pairs, have two variants: The “linear”
variant! classifies objects that are referenced by exactly one pointer and must be used exactly once.
The intuitionistic variant classifies objects that can be used an unlimited number of times (including
not at all). Since we have two sorts of functions and two sorts of pairs, we do not need the modality
“ »

We write 71 i’) Ty for generic functions where the qualifier ¢ is either -, indicating an intuitionistic
function that may be used many times, or A, indicating a linear function that must be used exactly
once.? After its single use, the closure containing the function’s free variables will be deallocated.

Likewise, we write 7 i 79 for generic pair types. A linear pair is deallocated after its components have
been projected. Normally, we will suppress the “” annotation above the intuitionistic types. Hence,
we write int X int for an intuitionistic pair of integers.

In our formal work, we will use () as a based type and assume it may be used many times. We
could have introduced two variants of () just as we have two variants of the other types, but instead
we will assume that there is no cost to using () (an implementation need not allocate it in the store)
and therefore no need to define the linear variant. In our examples, we will freely use other base types,
such as integers.

For simplicity, we did not include multi-argument functions in our language. However, we can
simulate them easily using single-argument functions that accept linear pairs as arguments. Therefore,
in our examples, rather than write

A
wnt X int — int

we will often write

I1We continue to use the terms “linear” and “intuitionistic” despite loose connections with intuitionistic linear logic.

2Notice that the function is used once or many times. Unlike type systems based directly on linear logic, these function
types say nothing about how often their arguments are used. The number of uses of an argument is determined exclusively
by the argument’s type.

(int,int) — int

In order to preserve the single-use invariant of linear objects, it is necessary to ensure that intu-
itionistic objects do not contain linear objects. The term formation rules help maintain this invariant
by preventing linear assumptions from being captured in intuitionistic closures. These rules are dis-
cussed in more detail in the following section. In addition, we consider intuitionistic pairs with linear

A
component types, such as (71 X 72) x 73 to be syntactically ill-formed.

2.1.2 Regions

Regions are unbounded extents of memory that hold groups of objects. Every region has a unique
name, denoted using the meta-variable p, that can be used to identify the region and the objects it
contains. For most purposes, regions are just like any other storage objects. A region with name p has

a type that may be qualified as either linear or intuitionistic: rgn (p). When a region has linear type,
it may be deallocated.
When a value is allocated in a region with name p, the type of the value is tagged with p. For

example, a closure in p has type 7 R T at p and similarly with pairs. For the sake of uniformity in
our formal language we will assume that all stored objects are allocated in some region and therefore
that all function and product types are annotated “at p,” for some region p. However, in our examples
we will assume there is some global top-level region named “__” that is never deallocated and we will
normally omit the “at __” annotations.

In order to use functions in many contexts, they must be polymorphic with respect to the names of
their region arguments®. A polymorphic function is considered linear (intuitionistic), if the underlying
monomorphic function is linear (intuitionistic). For example, the intuitionistic function pair, which
allocates a pair of integers in its argument region p, could be given the type

Y(p].(int, rgn(p)) — (int X int at p)

Sometimes, we will wish to define functions that return new regions they have allocated. For this
purpose, we will use an existential type. The simplest such function takes no argument and returns
some new region p:

() = 3p. rgn (p)

Traditional region-based type systems disallow objects of existential type as existentials allow regions to
escape the scope of their definition, and, normally, deallocation is linked to the scope of region definition.
Our system is similar in that if we want to be able to deallocate intuitionistic regions, we must place
some constraints on the way they flow through programs. However, we do not have to restrict the flow
of linear regions, we must simply ensure references to linear regions are not duplicated. Therefore, an
existential type is permitted to hide the name of a linear region but is not permitted to hide the name
of an intuitionistic region. Moreover, existential types are themselves linear, meaning that they may be
opened exactly once. We will explain the rules for manipulating existentials in more detail in section
2.2.2.

31t is fairly straightforward to make our functions polymorphic over types as well as regions, but for simplicity we omit
this degree of freedom in this paper.

type contexts A o= | A)p
quali fiers ¢ = A
¢ ¢
types T u= ()]|rgn (p) | V[A].71 % 1 at plm xmat p|Ipr
intuitionistic types I == ()| rgn(p) | V[A]l.m = mat p| 1 X [zat p
A
linear types L == rgn (p) |V[Al. 7y D mat p| 7 X mpat p|Ipr

Figure 1: Syntax: Types

2.1.3 Summary of Type Syntax

Figure 1 summarizes the syntax of the type language. It also documents a subset of the types, ranged
over by the meta-variable I, that we refer to as ”intuitionistic” and a disjoint subset, the linear types,
ranged over by the meta-variable L. Types (and later terms) are considered equivalent up to renaming
of bound variables. We implicitly assume that type contexts, A, contain no repeated region names. We
concatenate two type contexts using the notation AA’. If A and A’ have any region names in common
then the notation is undefined.

Figure 2 summarizes the well-formedness conditions on types. These conditions are given by a
judgment with the form A F 7.

2.2 Expressions

Figure 3 presents the expression syntax. As usual, the syntax includes variables as well as introduction
and elimination forms for each type of object. We also include two forms of let-expression. The first is
standard, but the second is special and will be explained later. The expressions are best explained in
conjunction with their typing rules, but before we can proceed with the typing rules we must present a
few auxiliary definitions.

2.2.1 Type Checking Contexts

The typing rules for expressions have the form A;I' e : 7 where I is a list of assumptions concerning
the free type variables in e. We assume that no variable is repeated in I'. Rather than using the explicit
structural rules exchange, contraction and weakening to control reordering, duplication and discarding
of assumptions, our type system relies upon a nondeterministic operation (<) that splits the linear
assumptions in I' between the contexts I'y and I's. The splitting operation is defined below. We will
often write ' = I'; > 'y < '3 as an abbreviation for ' =T'y IV and I =Ty < I's.

FL=T"I"
Uyz:l = (I, z:I) > (T, 2:1)

F=T"paI
Oyo:L = (", z:L) > T

AF()

— (€l
A Frgn (p)

AAIFTl AA,FTQ
AF VA7 i’) Ty at p

(pe i)

A"Tl A"TQ

- (peA)
AF7 XTpat p

AL AFI

AFL xLatp PEY

ApkT
AFdp.r

Figure 2: Well-formed Types

value contexts I' == -|T,x:7

erpressions e

2| () |enses | NAlzir 3 ey at es | e1[A] ¢ e at ey

| e1 i ey at 63|letw§y:elat ey ines
| pack[p, €] as 3p.7 | unpack p,x = e; ines
| alloc e | free [ple

| letz =e; iney | let (y =lej)z = ez ines

Figure 3: Syntax: Expressions

F=T"paI
Lyo:L=T"pa (I, 2:L)

(4
We also use the notation I'. When ¢ is -, then all the types in I' must be intuitionistic. When ¢ is
A then I' is unrestricted. This notation is used to prevent intuitionistic object from containing linear
objects.

2.2.2 Typing Rules for Expressions

The typing rules for expressions are derived from consideration of three main invariants:

1. An object of linear type must be "used” exactly once.

2. Any access to a region (i.e. allocation within a region or use of an object within a region) must
be accompanied by proof that the region is still live.

3. References to intuitionistic regions must not escape the scope in which the intuitionistic region is
introduced.

The first invariant is enforced mainly through careful manipulation of the type checking context
and the use of the nondeterministic splitting operator. The second invariant is enforced by requiring
that the program present a reference to a region every time the region is accessed. We subsequently
ensure that there is a reference to a region if and only if the region is still live. The third invariant is
enforced by ensuring that intuitionistic regions always appear in the type of the data structure that
contains them. This final invariant ensures it is possible to perform a type-based analysis to prevent
stored intuitionistic regions from escaping the scope of their definitions.

Figures 4 and 5 present the typing rules for expressions. The first three rules do not involve regions
so they are normal natural deduction-style typing rules from the linear lambda calculus. The rule for
variables requires that the contexts I'; and I'; contain the only intuitionistic variables — we must not let
linear variables go unused. The rule for unit is similar. The last of the three is the rule for sequencing.
It uses the splitting operator to divide the linear variables between the first and second expressions in
the sequence.

The rules for pairs and functions are more complex since we must worry about accessing regions.

Pairs are the simpler of the two so we will explain them first. Pairs are allocated using the expression

?
e1 X es at ez where e; and e; compute values that form the components of the pair. The pair is

allocated into the region denoted by expression es. As in the typing rule for sequencing, the splitting
operator divides the linear variables between the three expressions. There are two further details to
notice in this rule. First, the third expression should have type rgn(p), the type of an intuitionistic
region. We do not allow allocation into linear region because we do not want an allocation to be the
single use of a linear region. What would be the point of allocating an object in a region that could not
be used in the future? It would be impossible to use the object itself.* In a moment, we will define an

4There are other ways we could organize our language so that access to linear regions is allowed and yet access does
not constitute the single use of a linear region. For example, an allocation operation could return a pair of the allocated
object and the reference to the region. However, this solution and others we have considered lead to a more complicated
operational semantics.

operation that temporarily converts linear regions into intuitionistic regions in order to allow access to
linear regions without having to deallocate them.

A second subtle but important aspect to this rule is that it explicitly maintains the invariant that
intuitionistic objects (in this case intuitionistic pairs) do not contain linear objects. It does so through
the well-formedness judgment on the result type of the expression. If the pair’s qualifier ¢ is - then this
constraint specifies that the component types must not be linear.

The elimination form for pairs, let z; i To = e; at ep ineg, projects of the two components of the
pair e; and binds them to z; and xy before continuing with the expression ez. The pair must inhabit
the region computed by expression es. This region is not needed at run time to implement projection
function. However, at compile time, it serves as a witness to the continued existence of the region and
the pair contained therein. An implementation can optimize away the runtime overhead of passing
around these region references using the “ignore region” optimization proposed by Birkedal et al.[2],
but we will not concern ourselves with such details here. As in the introduction form for pairs, the type
of the accessed region is required to be intuitionistic.

2.2.3 Escaping Regions, Function Closures and Existential Packages

Before we can explain the typing rules for functions or existentials, we must clarify the invariants that
govern intuitionistic and linear regions. In a typical intuitionistic linear lambda calculus, it is impossible
to reclaim the resources used to construct intuitionistic objects, unless one resorts to meta-linguistic
tools such as a garbage collector. In our language, it is possible to reclaim intuitionistic functions and
pairs if we place them in linear regions. However, if we would like to ensure that all data structures are
eventually collected, we must also find some way to collect intuitionistic regions.

In principle, our solution is very similar to the original solution proposed by Tofte and Talpin. The
key idea is to prevent usable references to intuitionistic regions from escaping a particular program
scope by forcing every data structure that contains a reference to a region to declare the names of
these regions in its type. When all region references appear in the types of the data structures that
contain them, it is possible to detect escaping references by analyzing the type of the data structure.
Moreover, if we can guarantee that no reference to a region escape a particular scope then it will be
safe to deallocate the region when control exits that scope — we have constructed the language so that
every region access requires a reference to the region as proof that the region is still live.

Unless we are careful, function closures will be able to capture references to intuitionistic regions
without revealing these references in the type of the closure. Tofte and Talpin solve this problem by
isolating regions in a separate syntactic class from other values and annotating functions with a “latent
effect” that includes regions stored in the function closure. Qur approach is similar except that we
do not define a separate syntactic class of regions. Instead, we require all functions to be closed with
respect to intuitionistic regions. Therefore, if a function wants to access a value in an intuitionistic
region, that region must be explicitly passed as an argument to the function. Hence, the “latent effect”
of the function is represented as part of the type of the function argument. Since regions are ordinary
first-class values, this is a natural and elegant design. The closure requirement is enforced by the
predicate closed,(T) (pronounced “r is region-closed with respect to p”), defined below.

closed ,(()) = true

closed ,(rgn(p)) = false

closed ,(rgn(p')) = true (p' # p)
closedp(ré\n) = true

closed ,(V[A]. 71 2 T at p') = true

¢
closed, (1 x Ty at p') = closed, (1) A closed ,(T2)
closed ,(3p".7 = closed,(r) (p' # p)

We use the notation closed(r) (pronounced “r is region-closed”) when closed,(r) for all regions p.
We lift the definition of region-closed pointwise to contexts I.

Given these definitions we can now interpret the typing rules for functions (see figure 4). As before,
the splitting operator partitions the linear assumptions between the context used to check the function
body and the computation that generates the region into which the closure is allocated. If the closure
is an intuitionistic object then following our rule about no linear objects inside intuitionistic objects,
the context used to check the function body can contain no linear variables. Finally, this context must
also be region-closed. The rule for function application ensures the region name arguments (A’) match
the expected region name parameters® and that the argument has the expected type. As before, the
presence of the region eg attests to the fact that the region containing the function closure has not yet
been deallocated.

Existential types pose similar difficulties and have similar solutions as function closures. In fact, due
to Minamide, Morrisett and Harper’s encoding of function closures as existential packages [20],existential
types may be viewed as the real source of the problem of escaping regions. To ensure intuitionistic
regions can be restricted to a particular program scope, we require the type 7 to be closed with respect
to intuitionistic regions named p when we form an existential of type Jp.7 using the pack expression.
Well-formed existentials normally contain linear regions, which are not restricted to any particular
scope. The elimination form for existentials is the standard unpack expression.

2.2.4 Region Allocation and Deallocation

We have covered the introduction and elimination forms for all of the standard types, only regions
remain (see figure 5 for the typing rules). The alloc primitive generates a new linear region with

a fresh name. Intuitively, it has the type () — Jp. rgn (p) and formally, we could make it a special
constant with this type, but for the sake of convenience® we add allocation as a primitive. The free
operation consumes a linear region. It naturally has the type V[p]. rﬁn (p) = (), but again we add it as
a primitive to the language.

Intuitionistic regions are introduced and eliminated using a single syntactic form, let (y =le;)z =
e2 ines, that was inspired by Wadler’s let! construct [35]. Operationally, we evaluate e; expecting a
linear region named p. That region is bound to y and may be used in e3. The result of evaluating e, is
bound to x and both x and y may be used in e3. Since the linear region bound to y is potentially used

5In this rule, we rely on alpha-conversion of the bound region names in the function type.

6If we made it a constant, we would need to find a region to hold the function. We could use the ”__” region, but then
we would have to add this region to our system formally. Nevertheless, this is a possibility and it is satisfying to know
that the type structure captures region allocation exactly.

multiple times, we must take great care to ensure that there is no way the region can be deallocated too
early. In the first expression, y is given the intuitionistic type rgn(p) in e;. However, the typing rule
constrains the type of es to be region-closed with respect to p so intuitionistic references to p cannot
escape from ey into es. In es, y is once again given the linear type rgn (p)- Since no references to this
region can flow from e; to es, y is the only reference to p in eg, justifying its linear type. The complete
typing rule for this construct can be found in figure 5.

2.3 Tofte and Talpin’s letregion

There are close connections between the let! introduced by Wadler and modified here and Tofte and
Talpin’s letregion. Both constructs use a type-based escape analysis to ensure safety. When Wadler
first introduced this idea into his linear lambda calculus, he had no notion of a region name, so his
analysis was very imprecise. Region names are a form of singleton type, a very precise classifier for
regions that makes our modified construct much more effective. In fact, we believe it is possible to use
this idea to encode Tofte and Talpin’s letregion construct in our calculus. Informally, the translation
is quite straightforward:

letregionp ine =
unpack p,z = alloc ()in
let (z =lz)y =€ in
free [p|z;y

where the expression ¢’ is the translation of e. We conjecture a formal translation from Tofte and
Talpin’s calculus” into our own will be straightforward, but we have not worked through the exercise
yet.

3 The Abstract Machine

Programs in our language execute on an abstract machine. An abstract machine state includes the
region names that may be in use (A), a description of the store (S), which includes a collection of
allocated regions (R) and a collection of values inhabiting these regions (H) and finally, the expression
to be evaluated. The syntax of abstract machine states is presented in Figure 6.

In order to facilitate the proof that our type system is sound, we extend the source language type
system to the abstract machine, giving well-formedness conditions for machine states, the store and
stored values. The inference rules for the well-formed machine states can be found in figure 8. The
main purpose of these rules is to guarantee the following simple facts:

e There is at most one region with a given region name.
e All stored values are well-formed.
e The expression to be executed is well-formed with respect to the current store.

The typing rules for stored values are derived directly from the corresponding source-level expres-
sions. The formal rules may be found in figure 7.

A;f‘l,x:T, le- T T

A;TH ()2 ()

F:F11><1F2 A;Fll—elz() A;Fz"@zZT
A;TFepses: T

¢ ®
r :F11><1 Fz AA'F T A,A,;Fl,iL”ZT F €1 T A,Fz F €y . rgn(p)

(closed(T'1))
AT FANA |z BKerat er: D mat p
=T,y Ty A;F1|—€1:V[AI].T1£)TQatp
A;TobFey:m A;Ds Fes : rgn(p) (A C A)

AT Fe[A'] ¢ exat es: T

F:F11><1F21><]F3 A;F1|‘€12T1
]
Ao Fes:m AF7 XTpat p A;T3 Fes:rgn(p)

[@
A;T'Fe; Xegateg:Tg X pat p

[
=TIl =T A;Fll-elsrlxrgatp
A;Ty Foes:rgn(p) AT, x1:m,02:2 F e3 1 73

[
A;TFletx; X 12 = ey at ex ines : 713

ATke:T
A;T F pack[p, €] as Jp.7

(closed, (T))(p € A)

F=Ty=ly ATy Fep:3pr ApiDo,xmhes:m (p € FV (m))

A;T' F unpack p,x = e; ines : T»

Figure 4: Well-formed Expressions

AT ke ()
A;T F alloce: dp. rgn (p)

A;T ke :rﬁn (p)
A;T F free [ple: ()

(peA)

F:F1 [><1F2 A;F1|_€11T1 A;F2,$1T1|_621T2
A;T'Fletx =ejines : 1

T =T, =Dyl AT Fepirgn (p)
A;To,yirgn(p) Foea s 7o A; s, y: rgn (p),x:T2 Fe3:73

losed (-
AT F let (y =le1)s — ez ines : 73 (closed,(72))

Figure 5: Well-formed Expressions, continued

= ()| (NA]z 7 LA e)p | (z1 i x2), | pack[p,x] as Ip.7 |l

stored values s

eTpressions e == - |let(y=lz,H)z =e; iney
region heaps R == | R,z rgn(p)

value heaps H = - |Hzxzws

stores S == R,H

machine states ¥ = (A;S;e)

Figure 6: Abstract Machine

A;TH ()2 ()

¢
AA'F7 AAD,zthRe: T

P (pel)
A;TH (NA]z 4 e), : VAT 4 at p

?
I'=I1 =I5 A;F1|_$11T1 A;Fz"l’zZTz A|—7'1><7'2atp

5 5 (peA)
AT F(r1 X 22),: 71 X T2 at p

A;Thx:T
A;T |+ pack[p, 2] as Ip.7: Ip.T

(pe€A)

AN AN :rgAn (p)
A;T Ha o rgn(p)

Figure 7: Well-Formed Stored Values

F X : 7 program

AFS:Tstore A;TkFe:T
F (A;S;e) : 7 program

|A|—S:Fst0re
AFR:T ATHH:TY
A+ R, H : T' store
AAFR:T

Ap,A'"F Rz rgn(p): T,z :rg/}\n (p)

A;THS:TY

A;TF-:T

)

ATHFH:T! T"=D; =Dy ATy Fs:T
ATHFHx—s: Do,z T

Figure 8: Well-Formed Machine States

In order to facilitate our proof of type soundness, we have also added one run-time expression to the
language. The runtime expression let (y =!z, H)z = e; ineg is a natural extension of the programming
construct let (y =le;)x = ez inez. As indicated by the operational semantics below, once the abstract
machine has evaluated the expression e; and produced an address z, it continues with the evaluation
of e5. If es allocates new objects, these new objects will be stored in the local heap H. Once es has
evaluated to a value, the local heap H is promoted to the global store (or the next enclosing local store).
This organization facilitates the proof that references to y do not escape the computation es. The typing
rule for this runtime expression extends the earlier rule for the special let construct to account for the
local heap H:

=Tyl ATy Fy =tz H:yirgn(p), IV
A;Ty yirgn(p), I Feo: 1 A; s, y: rgn (p),x:T2 Fe3:T3
A;TFlet(y =l2,H)r = ez ines : 73

(closed ,(12))

3.1 Operational Semantics

This subsection defines the operational semantics of the abstract machine. The operational semantics is
really quite straightforward for such a powerful language, but we need to define a fair amount of notation
to give a concise specification of the various operations on regions as well as linear and intuitionistic
objects.

We use the following notation to add a binding to the store. The notation is only defined if x does
not already appear in the domain of the store.

(R, H),z — rgn(p) = (R,x — rgn(p), H)

(R,H),z— s=(R,H,x — s)

We extend this notation in the natural way to allow sequences of bindings to be added to the store
as in S, H which extends S with H or S, S’ which extends S with S’.

The operation S(z) selects the object at address x from store S. If « does not appear in the store
then the operation is undefined. The operation is defined below.

S,z rgn(p),S'(x) = rgn(p)
S,z — 5,5 (x) = s (s #ly)
S,z —ly, S'(z) = S(y)

When an intuitionistic object is used, it remains in the store. However, when a linear object is used,

. A
it is deallocated. The following two operations (— for intuitionistic objects and — for linear objects)
implement this behavior.

S—z=S5

“If we add universal polymorphism over types to our language, we believe we can encode the entire language. Without
universal polymorphism over types in our language, we cannot encode the polymorphism over types or effects in the Tofte
and Talpin calculus, but all the other constructs appear straightforward.

S,x»—)rgn(p),S’ix = 59
S,st,S’ﬁx = 595

Finally, before we can define the operational semantics, we need to define the evaluation contexts.
This definition is mostly standard. Notice, however, that there is no evaluation context of the form
let (y =!2, H)x = E ine. The operational semantics makes use of this fact.

E = []|E;e|az;E|/\[A]:ﬂ:T£>6atE|E[A] ¢ ejat ey | z[A] ¢ Eate|x1[A] ¢ zyat E
¢ ® ¢
|Exeatey|zxFEatel|xz; Xx2at E

@ ®
|letz x y = Fat e;iney | letz x y = zat Eine
| pack[p, E] as 3p.7 | unpack p,x = Eine | alloc E | free [p|E
| letz = Eine | let (y =!E)x = e; iney

The operational semantics for the language is given by a mapping from machine states to machine
states. This mapping is presented in figure 9. In general, an introduction form is evaluated by choosing
a fresh address® and extending the store with the appropriate value allocated at that address. When
allocating in a region, the operational semantics verifies that there exists a live region with that name.
An elimination form such as a projection or function call is evaluated by looking the pair or function up
in the store, ensuring that the region inhabited by the pair or function is still alive and finally taking the
appropriate action. The only unusual evaluation rule is the one for the second let form. Evaluation
under one of these 1let forms has the effect of adding the local heap to the global store for evaluation
of the subterm.

3.2 Properties of the Core Language

We intend to prove a type soundness result for our language. Recent research [37, 13, 3] indicates that
we should be to obtain our result using syntactic techniques. In fact, we have intentionally organized
our operational semantics so that the hierarchical nature of the region store is implicit, following the
insights of Calcagno, Helsen and Thiemann [13, 3] and we believe this decision will make the proof
quite straightforward. We are currently investigating the possibility of formalizing the result in a linear
logical framework [4].

4 Reference Counting

So far, our implementation of the intuitionistic linear type system allows objects of intuitionistic type
to be shared (i.e.there may be many pointers to these objects). Objects of linear type, on the other
hand, are always unshared and therefore they may be collected immediately after they are used. These
decisions lead to a completely static memory management discipline. Unfortunately, the lack of aliasing
for reusable (linear) objects has its disadvantages: it is necessary to copy linear objects in some situ-
ations to preserve the single pointer invariant and this copying can lead to unnecessary memory use.

8By fresh address, we mean an address that does not already appear in the domain of the store. The freshness
constraint is implicit in the formal rules.

(A; S5 E[()]) — (A; 8,2 = (); Elx])
(4; S; Elz;e]) — (A;8;Ele]) if: S(z) =()

(A; S; E[ANA" 2T % eat y)) — (A3 S,z = (A[A]z % e),; E[z]) if: S(y) = rgn(p)

(NS B[] ¢ zat aa)) — (AiS Do E]) i 9@) = AMmT Se
S(x3) = rgn(p)

[[
(A;S; E[z1 X @2 at x3]) — (A; S,y = (x1 X ©2),; Ely]) if: S(zs) = rgn(p)
(A;S; E[let xy i Ty =y at xzine]) — (A;S 2 y; Ele]) if: g(y) = (01

(A; 8; Elpacklp, 2] as 3p.7]) — (A; 5,y - pack(p,z] as 3p.7; E[y)
(A;S; Elunpack p,y = zine]) — (A;S 2w E[e]) it S(x) = pack[p,y] as Ip.r
(A3 S; Efalloc a]) — (A, p; S,y = rgn(p); Elpacklp,y] as Ip. ign () if: S(z) = ()
(A; 8; Bltree []) — (A8 2w B[O i S(x) = rgn(p)

(A;S;E[letx = xine]) — (A;S; Ele])

(A; S,y =z, H; Esler]) — (A 8",y =z, H' €))
A; S; Ey[let (y =z, H)x = Eyle;] iney)) — (A'; S'; Ei[let (y =!2, H)x = e iney
1

(A;S; E[let (y =ly,H)x = xine]) — (A; S, H; Ele])

Figure 9: Operational Semantics

#
types T u= - |rgn (p)

linear types L = - |7’Etn (p)
#
expressions e u= ---|alloce]| inc[p]e |dec[ple
#
contexts E == ...]alloc E | inc[p|E | dec[p|E
regions R = | Ryx — (n,rgn(p)), z1 — #x, ..., xn — #o

Figure 10: Syntax for Reference Counting Constructs

Alternatively, it is necessary to convert linear regions into intuitionistic regions for significant portions
of a program and to delay region deallocation beyond the point at which a region is semantically dead.

Chirimar, Gunter and Riecke [7] proposed an entirely different model of linear logic. They used
reference counting to keep track of the number of pointers to an object. The linear type system ensures
that reference counts are maintained accurately. Reference counts add a dynamic component to the
memory management system that complements a purely static approach. Rather than having to copy
objects or convert linear regions into intuitionistic regions, it is possible to manipulate reference counts.

In general, one can augment the calculus of previous sections with a third qualifier (#) and manage
regions, pairs, closures or other heap-allocated objects by reference counting.® Here, for simplicity, we
concentrate exclusively on reference-counted regions. The new language constructs are presented in
Figure 10. The new type of reference-counted regions is considered linear — assumptions with this type
may not be implicitly duplicated or discarded. The reference counts are explicitly duplicated using the
inc function and explicitly decremented and freed when the count reaches zero using the dec function.
Figure 11 defines additional rules for the well-formed types and expressions.

In the previous sections, the le operator made it possible to temporarily treat linear regions as
intuitionistic ones to avoid costly copying. Here, we can use the same construct to temporarily increase
reference counts without the runtime cost of having to do the actual increment operation. In other
words, we use the more conventional interpretation of intuitionistic types in conjunction with reference
counting to obtain a form of deferred reference counting. This trick also conveniently allows us to reuse
all the allocation and access rules for pairs and closures for both reference-counted regions and other
sorts of regions.

4.1 Operational Semantics

The operational semantics for the reference counting expressions is presented in the figure 12. Notice
that the semantics for increment and decrement operations relies upon two auxiliary functions. These
auxiliary functions are undefined if the store does not have the proper form.

The other operations in the language remain essentially unchanged. In order to allow access to
reference counted regions, we need only extend the store access function slightly:

90mne does have to be careful to ensure that reference-counted objects contain intuitionistic objects only, not linear
objects or other reference counted objects. This may be accomplished using identical techniques to those of previous
sections which ensure that only intuitionistic objects appear inside of intuitionistic objects. Alternatively, one could allow
linear or reference counted objects inside other reference counted objects at the expense of a more complex run-time
system that recursively deallocates subcomponents of a reference-counted data structure.

AFT

" (peA)
A krgn (p)
AT Re:()

#
A;T Falloce: dp. rzén (p)

A;T ke :rzén (p)

m A2 (pei)
A;T F inc[ple :rgn (p) xrgn (p) at p

A;T ke :rztn (p)
A;T F decfple: ()

(pe€A)

F:F11><1F21><]F3 A;F1|-61 CT‘#H (p)
#
A;Dy,yimgn(p) bex i 7o A;Ds,y:rgn (p),v:m2 €3 1 73

losed
ATF let (y =le1)s — ez ines : 73 (closed,y(72))

AFR:T

AF R,z (n,rgn(p)),v1 — #x, ..., ¢n = #x : T aq: rgén (p),. - ap: rgén (p)

Figure 11: Well-Formed Reference Counting Constructs

#
(A; S5 Elallocy]) — (A, p; S,z = (1,1gn(p)), ©1 — #x; E[pack[p, z1] as Ip. rgn V2))

N

(A; S; Elinc[p]z]) — (A;inc(S;x5y),2 = (T X y),; E[2])

where: inc(S,z — (n,rgn(p)),v1 = #x, ..., vy = #x,S" ;15 Tpe1)
=S,z (n+1,rgn(p)), 1 — #z,...,Tpy1 — #z,5'

(4;5; Eldec[plz]) — (A;dec(S;x); E[()])

where: dec(S,x — (n,rgn(p)), x1 — #x,. .., xy — #x,5;x;)

=S, e (n—1,1rgn(p)),x1 — #x,...,xi—1 — #x,Tiv1 = H#x,... 0, — Fa
dec(S,xz — (1,rgn(p)), z1 — #x,5';21)
=55

Figure 12: Reference Counting Constructs: Operational Semantics

(va = <n7 rgn(p)),xl = #I, -y Ty #.Z',Sl)(l'@) = rgn(p)

We must also extend the definition of region-closed:

closedp(rgn (p")) = true

5 Container Data Structures

One of the primary weaknesses of region based memory management on its own is that all container
data structures are homogeneous with respect to the regions that their elements inhabit. In other
words, all elements of a list, tree, or other recursive datatype are required to inhabit the same region.
Consequently, all elements of any given list or tree must have the same lifetime. For long-lived containers
for which both insertions and deletions are common, this strategy can incur quite a cost as none of the
objects that are removed from the collection can be deallocated until the entire collection is deallocated.

Tofte and others have developed clever programming techniques to avoid this problem in many cases.
In essence, they manually mimic the action of the copying garbage collector. More specifically, they
periodically copy the container data structure from one region to another. After the copy, they cease
to use the data in the old region so it may safely be deallocated. Dan Wang and Andrew Appel [39]
have exploited similar ideas to write a complete copying garbage collector in a type safe language that
uses the regions.

Although copying is highly effective solution in many situations, it is not without its own overhead.
If the container data structure is large, the extra space and time required to copy the live data from
one region to another may not be acceptable. In our language, programmers have many more choices.

¢
types T u= .| 7 listatp

expressions e = ---|[] ate |co¢ns (e1,e2) at e3 |ca¢se er at ex ([] = e3 | (z,y) = e4)

Figure 13: Lists

On the one hand, they may employ the copying solution that we have just discussed. On the other
hand, programmers can mix linear types with regions to solve this problem in new ways. In particular,
programmers can define heterogeneous data structures. In other words, containers may hold elements
stored in different regions and therefore individual objects may be deallocated independently of the
other objects in the container.

Figure 13 presents the syntax of an extension to our language with lists. Like other data structures
such as pairs and closures, intuitionistic lists are constrained so that they do not contain linear objects.
Figure 14 presents the well-formedness rules for list types.

?
There are three lists expressions. The []_at e expression introduces an empty list with type 7 in

the region designated by e and co¢ns (e1,e2)at es prepends e; to the list ey, in the region designated by
e3. The case construct follows the first branch if e is the empty list and the second branch otherwise.
The typing rules for these constructs extend the typing rules for the core language specified in previous
sections in the natural way. Figure 14 also presents the well-formedness rules for list expressions.

These typing rules (in particular, the rule for cons) require that the spine of the list inhabits a single
region.'® However, the elements of the list may inhabit different regions. For example, a linear list of
lists might be given the following type.

A A : A
3p. rgn (p) x (() list at p) list

In this case, each element of the list is an existential package containing a pair of a reference to a
region and a list inhabiting that region. Each of these inner lists may be processed and deallocated
independently of any of the other inner lists. However, since the regions are linear they do not alias
one other. If a programmer requires a data structure that involves aliasing between the lists then a
reference counting solution could be used:

A N A
p. rgn (p) x (() list at p) list

The dynamic nature of the reference counts makes it unnecessary to copy the elements of the outer
list.

6 Mutable Data Structures

Mutable data structures pose many of the same problems for traditional region-based memory manage-
ment schemes as containers like lists do. Any object that is stored in a reference must live in the same

101f the language revealed the structure of the implementation of lists in terms of sum types and recursive types, then
we could choose how to implement the spine — either as a homogenous or a heterogeneous data structure.

AFT

_AkFT (peA)

Al T list atp

AFIT
A& T list atp

(p€A)

¢
A;TFe:rgn(p) AbF T listatp

¢ ¢
A;TE[] at e:7 list atp

¢
=TI <y =<3 A;Fll_eliT A;Fgl‘@gZTﬁStatp A;F3|—63:rgn(p)

?
AT Fedns (e1,e2) at ez : 7 list atp

I‘:Fl D'<1F2[><1F3I><IF4
@
A;Ty ey 7 listatp ATy F ey :rgn (p)
[
Alskes:T ATy, oy listheq i 7

A;Fl—ce{bse epr at ex ([] = es|(z,y) = eq): 7T

Figure 14: Well-Formed List Constructs

types T u= ---| T option ref at p
expressions e = ---|refsome(e;)at ey |deref e; at es (Null = e3 | Some x = ey)
| store e; ;= ez at ez (Null = ey | Some © = e5)

Figure 15: Mutable Data

AFT

AL
A & L option ref at p

(pel)

F=Ty =y A;Tyber:m AjToFer:rgn(p)
A;T F refsome(e;) at ey : 7 option ref at p

F=T1 =y xlyxaly A;T; ey : 7 option ref at p A;To ey : rgn(p)
A;Tsbe3: 7 A;Ty,mrhey: 7

A;T F deref e; at ey (Null = e3 | Some z = e4) : 7'

F=T 1=y xl3xly =Dy A;Ty Fey : 7 option ref at p Ao bFey: T
A;Ts Fes:rgn(p) A;Tybes: 7 A5, etk es: 7

A;'F storee; :=ey at e3 (Null = eq | Some x = 65)

Figure 16: Well-formedness for Mutable Data Structures

region as all other objects that are ever stored in that region. Once again, objects and their resources
may not be reused on individual basis and again, linear invariants can help.

In this section, we define a new sort of reference that may be pointed to by many objects, but which
holds the lone pointer to the object it contains. We use a dynamic check to ensure that a linear object
is not extracted from such a reference multiple times. More precisely, the object stored in the reference
may be null or an address. The dereference operation extracts the object, be it null or an address, and
continues with one of two branches depending on the result. If the extracted object is an address then
the second branch is executed and the address is bound to x. The assignment operator stores an object
into the reference. If the reference contained null before the store operation was attempted then control
continues with the first branch and otherwise control continues with the second branch.

The new reference type (7 option ref at p) belongs to the set of intuitionistic types (I) but unlike
other intuitionistic objects, it may contain objects of linear type. Figure 16 contains the well-formedness
rules for the new types and expressions.

There is a significant cost to using this mechanism. At compile time, there is no way to distinguish
between a reference that contains null and a reference that contains an object. Consequently, although
the extended type system is safe in the sense that it prevents access to dangling pointers, it does not
ensure that all data structures are eventually collected. Since references are intuitionistic, it is possible
to forget all pointers to a reference cell and thereby to lose access to any linear object it may contain.
If the linear object in question is a region then there is the potential to leak an unbounded amount of
space. It may be possible to pursue a dynamic solution to this memory leak problem, but we will leave
it for future work.

7 Related and Future Work

This paper draws together two different branches of type theory designed for managing computer
resources. Research on linear types originated with Girard’s linear logic [12] and Reynolds’ syntactic
control of interference [27]. Linear type systems were later studied by many researchers [17, 35, 1, 18,
6, 34, 40]. Type and effect systems were introduced by Gifford and Lucassen [11] and they too have
been explored by many others [15, 30, 32, 22].

More recently, a number of new linear type systems, or more generally, “substructural type theories,”
have been developed. For example, Kobayashi’s quasi-linear types [16], Polakow and Pfenning’s ordered
type theory [25, 26], O’Hearn’s bunched typing [23], and Smith, Walker and Morrisett’s alias types
[29, 38] fall into this category. There is also renewed interest in developing new logics that facilitate
Hoare-style reasoning about heap-allocated data structures. Reynolds [28] and Ishtiaq and O’Hearn [14]
have developed substructural logics for just this purpose. An interesting line of research is to investigate
how these other systems for alias control interact with region-based memory management. We suspect
that the grouping aspect of regions is largely orthogonal to the reasoning principles used in these logics
and type theories, and we hope that further study of combined systems will lead to interesting new
programming invariants.

The initial inspiration for this work comes from Walker, Crary and Morrisett’s capability calculus [8,
37]. The capability calculus uses a notion of “static capability” to control access to regions. Capability
aliasing was controlled through a combination of bounded quantification and a form of syntactic control
of interference. Our current work has the advantage of being both conceptually simpler and more
expressive in a number of ways (although there are also certain continuation-passing style programs that
can be written in the capability calculus, but not here). The principal reason for these improvements
is that we have taken standard linear type systems and applied them uniformly across a language in
which regions are ordinary first-class objects rather than special, second-class constructs.

There are several other ongoing projects that are exploring new implementation techniques and
applications of regions. Makholm, Niss and Henglein [19] have had the same insights with respect
to reference-counted regions as we have. They are currently looking at type inference techniques for
an imperative language with (second-class) reference-counted regions. Deline and Fahndrich [9] are
developing a new type-safe variant of C called Vault. They use Walker, Crary and Morrisett’s capabilities
in innovative ways to control access to all sorts of program resources including memory regions. They are
in the process of porting device drivers written in C to Vault to verify that the drivers obey important
safety properties.

Dan Grossman, Trevor Jim and Greg Morrisett are currently developing a second type-safe variant
of C, called Cyclone, which, like Vault, gives low-level programmers control over data structure layout,
powerful mechanisms for type abstraction and strong safety guarantees. Currently, Cyclone relies upon
a conservative garbage collector. However, together with Grossman et al., we are exploring ways to
incorporate the memory management techniques described here into Cyclone. Certain features of this
advanced language, including existential polymorphism over types, abstract types and exceptions require
further thought, but none of these challenges appear to be insurmountable. We feel confident that we
will soon be able to give low-level programmers a variety of options when it comes to choosing their
own safe memory management policies.

8 Conclusions

We have developed a new framework for safe, mostly-static memory management. The framework
draws its power from the fact that it combines two well-studied paradigms for controlling computer
resources, one based on linear typing and the other based on regions. One of the important aspects of
our development is that we make a clean separation between the role played by regions and the role
played by linear typing:

e Regions group objects with related lifetimes. An operation on regions, such as deallocation,
simultaneously affects all objects within the group.

e Linear types control the number of uses of any object. Regions themselves are considered ordinary
program objects so linear types can control the number of uses of each region.

A second important component of our system is that we freely mix different interpretations of linear
types for maximum programmer flexibility. For example, when the number of uses of a particular
region is easy to determine at compile-time, it is usually possible to employ a purely static memory
management solution based on the conventional interpretation of linear types. However, if the number
of uses is unknown, then a static solution may be overly restrictive. In this case, programmers can
choose a more dynamic solution to their memory management problems involving reference counting.

Acknowledgments

Many of the ideas in this paper arose from discussions with Greg Morrisett. In particular, the mechanism
we use to handle mutable data structures was developed in collaboration with Greg. We have also
benefited from technical insights provided by Frank Pfenning.

References

[1] Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer Science,
111:3-57, 1993.

[2] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to von Neumann ma-
chines via region representation inference. In Twenty-Third ACM Symposium on Principles of
Programming Languages, pages 171-183, St. Petersburg, January 1996.

[3] Cristiano Calcagno. Stratified operational semantics for safety and correctness of region calculus.
In ACM Symposium on Principles of Programming Languages, pages 7—7, January 2001.

[4] Iliano Cervesato and Frank Pfenning. A linear logical framework. In Information and Computation,
July 2000. To appear.

[5] Chih-Ping Chen and Paul Hudak. Rolling your own mutable adt — a connection between linear
types and monads. In Twenty-Fourth ACM Symposium on Principles of Programming Languages,
pages 54—66, Paris, January 1997.

[6]

[7]

(8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Proving memory management invariants
for a language based on linear logic. In ACM Conference on Lisp and Functional Programming,
pages 139-150, April 1992.

Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Reference counting as a computational
interpretation of linear logic. Journal of Functional Programming, 6(2):195-244, March 1996.

Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a calculus of
capabilities. In Twenty-Siath ACM Symposium on Principles of Programming Languages, pages
262-275, San Antonio, January 1999.

Rob Deline and Manuel Fihndrich. the Vault project. Presented at the Carnegie Mellon principles
of programming languages seminar, November 2000.

David Gay and Alex Aiken. Memory management with explicit regions. In ACM Conference on
Programming Language Design and Implementation, pages 313 — 323, Montreal, June 1998.

D. K. Gifford and J. M. Lucassen. Integrating functional and imperative programming. In ACM
Conference on Lisp and Functional Programming, Cambridge, Massachusetts, August 1986.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

Simon Helsen and Peter Thiemann. Syntactic type soundness for the region calculus. In workshop
on higher order operational techniques in semantics, pages 1-19, September 2000.

Samin Ishtiaq and Peter O’Hearn. BI as an assertion language for mutable data structures. Pre-
liminary draft, March 2000.

Pierre Jouvelot and D. K. Gifford. Algebraic reconstruction of types and effects. In FEighteenth
ACM Symposium on Principles of Programming Languages, pages 303-310, January 1991.

Naoki Kobayashi. Quasi-linear types. In Twenty-Sizth ACM Symposium on Principles of Program-
ming Languages, pages 29-42, San Antonio, January 1999.

Yves Lafont. The linear abstract machine. Theoretical Computer Science, 59:157-180, 1988.

Patrick Lincoln and John Mitchell. Operational aspects of linear lambda calculus. In IEEE Sym-
posium on Logic in Computer Science. IEEE Computer Society, 1992.

Henning Makholm, Henning Niss, and Fritz Henglein. Towards a more flexible region type sys-
tem. Presented at Carnegie Mellon University Principals of Programming Languages Seminar,
September 2000.

Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion. In Twenty-Third ACM
Symposium on Principles of Programming Languages, pages 271-283, St. Petersburg, January
1996.

Eugenio Moggi. Notions of computation and monads. Information and Computation, 93:55-92,
1991.

[22] Hanne Riis Nielson and Flemming Nielson. Higher-order concurrent programs with finite commu-
nication topology. In Twenty-First ACM Symposium on Principles of Programming Languages,
pages 84-97, January 1994.

[23] Peter O’Hearn. On bunched typing. Unpublished manuscript, July 2000.

[24] Simon Peyton Jones and John Hughes (ed.). Report on the programming language Haskell 98, a
non-strict purely functional language. Technical Report YALEU/DCS/RR-1106, Yale University,
Department of Computer Science, February 1999.

[25] Jeff Polakow. Logic programming with an ordered context. In Conference on Principles and
Practice of Declarative Programming, Montreal, September 2000.

[26] Jeff Polakow and Frank Pfenning. Properties of terms in continuation-passing style in an ordered
logical framework. In Workshop on Logical Frameworks and Meta-Languages, Santa Barbara, June
2000.

[27] John C. Reynolds. Syntactic control of interference. In Fifth ACM Symposium on Principles of
Programming Languages, pages 39—46, Tucson, 1978.

[28] John C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In Symposium in
Celebration of the Work of C. A. R. Hoare, 2000. To appear.

[29] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In European Symposium on
Programming, pages 366-381, Berlin, March 2000.

[30] J.-P. Talpin and P. Jouvelot. Polymorphic type, region, and effect inference. Journal of Functional
Programming, 2(3):245-271, July 1992.

[31] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Hgjfeld Olesen, Peter Sestoft,
and Peter Bertelsen. Programming with regions in the ML Kit (for version 3). Technical Report
98/25, Computer Science Department, University of Copenhagen, 1998.

[32] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information and Com-
putation, 132(2):109-176, 1997.

[33] David N. Turner and Philip Wadler. Operational interpretations of linear logic. Theoretical Com-
puter Science, 227:231-248, 1999. Special issue on linear logic.

[34] David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In ACM International
Conference on Functional Programming and Computer Architecture, San Diego, CA, June 1995.

[35] Philip Wadler. Linear types can change the world! In M. Broy and C. Jones, editors, Progarmming
Concepts and Methods, Sea of Galilee, Israel, April 1990. North Holland. IFIP TC 2 Working
Conference.

[36] Philip Wadler. The marriage of effects and monads. In ACM International Conference on Func-
tional Programming, pages 63—74, Baltimore, September 1998.

[37] David Walker, Karl Crary, and Greg Morrisett. Typed memory management in a calculus of
capabilities. ACM Transactions on Programming Languages and Systems, 2000. To appear.

[38] David Walker and Greg Morrisett. Alias types for recursive data structures. In Workshop on Types
in Compilation, Montreal, September 2000.

[39] Daniel C. Wang and Andrew Appel. Garbage collection = regions + intensional types. Unpublished
manuscript., October 1999.

[40] Keith Wansbrough and Simon Peyton Jones. Once upon a polymorphic type. In Twenty-Sizth
ACM Symposium on Principles of Programming Languages, pages 15-28, San Antonio, January
1999.

