
On Regions and Linear Types�(Preliminary Notes)David Walker and Kevin WatkinsCarnegie Mellon UniversityAbstratWe explore how two di�erent mehanisms for reasoning about state, linear typing and the type,region and e�et disipline, omplement one another in the design of a strongly typed funtionalprogramming language. The basis for our language is a simple lambda alulus ontaining �rst-lassregions, whih are expliitly passed as arguments to funtions, returned as results and stored inuser-de�ned data strutures. In order to ensure appropriate memory safety properties, we drawupon the literature on linear type systems to help ontrol aess to and dealloation of regions.In fat, we use two di�erent interpretations of linear types, one in whih multiple-use values arefreely opied and disarded and one in whih multiple-use values are expliitly referene-ounted,and show that both interpretations give rise to interesting invariants for manipulating regions. Wealso explore new programming paradigms that arise by mixing �rst-lass regions and onventionallinear data strutures.1 IntrodutionOne of the lassi hallenges in programming languages researh is to design mehanisms that helpprogrammers reason about the behavior of their ode in the presene of imperative operations suh asupdate and dealloation of memory. Over the past 15 years, three tehniques for solving this problemhave repeatedly found suess, partiularly for the domain of funtional programming languages:1. Girard's linear logi [12℄ and related work on linear type systems [17, 1, 35℄ and syntati ontrolof interferene [27℄ ontrol sharing and/or the number of uses of important omputer resouressuh as memory. These systems make it possible to dealloate and reuse storage safely.2. Moggi's omputational lambda alulus [21℄ separates pure values from e�etfull omputationsthrough the use of monads. This idea forms the basis for adding imperative features to purefuntional languages suh as Haskell [24℄.�This researh was sponsored in part by the Advaned Researh Projets Ageny CSTO under the title \The FoxProjet: Advaned Languages for System Software," ARPA Order No. C533, issued by ESC/ENS under Contrat No.F19628-95-C-0050. the views and onlusions ontained in this doument are those of the authors and should not beinterpreted as representing oÆial poliies, either expressed or implied, of the Defense Advaned Researh Projets Agenyor the U.S. government.



3. Finally, the type and e�et disipline developed by Gi�ord and Luassen [11℄ and re�ned byJouvelot, Talpin and Tofte [15, 30, 32℄ uses a type system and type inferene tehniques to trakaesses to resoures. In order to make their analysis feasible, resoures are normally groupedinto regions. Tofte and others [31℄ use regions and e�ets to perform all memory managementoperations in their ML ompiler.More reently, researhers have begun to investigate the relationships between these three funda-mental mehanisms. For example, Chen and Hudak [5℄ have disovered a onnetion between lineartypes and monads and Wadler [36℄ has reently presented a orrespondene between monads and e�etsystems. In this paper, we �ll in the third side of the triangle by exploring the synergy between lineartypes and region, type and e�et systems, spei�ally for the purpose of exploring new tehniques insafe, stati memory management.1.1 A New Type System for Safe Stati Memory ManagementThe starting point for our development is a simple funtional programming language that ontainsexpliit programmer-ontrolled regions. A region is simply an unbounded area of memory or \addressspae" where values suh as funtion losures, lists or pairs may be alloated. The sole purpose of theseregions is to group objets with similar lifetimes. When no objet in a region is needed to ompletethe rest of the omputation, the region (and all of the objets ontained therein) may be dealloated.Experimental results indiate that this bath-style dealloation an be very eÆient in pratie, rivalingthe best implementations of mallo and free [10℄.Unlike previous approahes to region-based memory management, our regions are ordinary pro-gramming objets with no speial status. In partiular, like ordinary objets, referenes to regionsare �rst-lass: they may be stored in data strutures and they may be passed expliitly to and fromproedures. Sine regions have no speial status, we may immediately apply known tehniques fromlinear type systems to trak the number of uses of regions, just as we an use linear types to trak thenumber of uses of funtions or pairs.This \number of uses" information an be used in a variety of ways [34℄, but we will onentrateon appliations to memory management here. The main idea is that one any programming objethas been used for the last time, that objet may safely be dealloated and its memory may be reusedwithout a�eting the rest of the omputation. Furthermore, if using an objet within a region impliesusing the region itself, then in the ase a region is used for the last time, both the region and its ontentsmay safely be dealloated. The main ontribution of this paper is to explore further the many waysin whih regions and linear types an be used together to speify and enfore a wide range of memorymanagement invariants.Our main tehnial results arise from two further observations. First, by varying our operationalinterpretation of linear types, it is possible to develop radially di�erent region-based type systems.More spei�ally, we ontrast a language based on the use types of Turner and others [34, 40℄ wherereferenes to multiple-use objets may be freely opied or disarded with Chirimar, Gunter and Rieke'sinterpretation of intuitionisti linear types [7℄ where referenes to multiple-use objets are refereneounted. The �rst interpretation gives rise to a purely stati mehanism for ensuring memory safety.We believe the resulting language an be used to enode Tofte and Talpin's original region-based typesystem. The seond interpretation gives rise to a new, more dynami memory management system. Wederived this new system diretly from the work of Chirimar et al. and our novel ore language of regions.Independently, Makholm, Niss and Henglein [19℄ have developed a related referene-ounting system



from �rst priniples and they are urrently working on type inferene tehniques for the language. Wedo not address the issue of type inferene in this paper, leaving this topi and other soure-languagequestions to future work.The seond key observation is that beause we treat regions as ordinary objets and apply a lin-ear typing disipline uniformly aross the entire language, we are free to develop new programmingparadigms that mix linear regions with other linear data strutures. For example, when we freely mixregions with linear types, we an easily de�ne a linear list of regions, where eah region ontains someother omplex data struture, suh as a binary tree. In this ase, all the nodes in any partiular treeare managed as a unit (and all suh nodes may alias one another) whereas eah tree is managed inde-pendently of the others (but no tree may alias any other { unless the trees are referene ounted). Noexisting type system gives programmers the exibility to alternate between the oarse-grained memorymanagement used on the nodes of the trees and the �ne-grained memory management used on the treesthemselves. In traditional linear type systems, aliasing is disallowed and in traditional region-basedtype systems all objets in the same ontainer data struture must inhabit the same region. Similarlimitations arise when programming with mutable data strutures: in traditional region-based typesystems all objets stored in a mutable data struture must inhabit the same region, even if they havewildly di�erent lifetimes. We have developed related tehniques to handle this problem as well.In the remainder of this artile, we present a language of regions and linear types in more detail.Setion 2 desribes a ore alulus inluding features for alloating and dealloating linear regions, pairsand funtions. The linear types in this language are based on use types whih are in turn derived fromGirard's Logi of Unity. Although use types are the orret starting point for our exploration of thistopi, they are not quite exible for our purposes. Therefore we add a onstrut to our language derivedfrom Wadler's let ! operator [35℄. With this new operator, we an enode Tofte and Talpin's originaltype system. Setion 3 desribes the abstrat mahine that exeutes programs in our language. Itspei�es the evaluation relation for the abstrat mahine and the stati semantis for abstrat mahinestates. Setion 4 extends the language with referene-ounted regions. One again, Wadler's let !omes in handy, as it permits us to de�ne a form of deferred referene ounting. We give both statiand operational semantis for these extensions. Setion 5 extends the language again, this time withlists. Our main goal in this setion is to demonstrate how programmers an safely mix linear types,regions, and referene ounting in the implementation of omplex data strutures. Setion 6 introduesmutable data strutures and shows how they interat with with regions and linear types. Finally, setion7 disusses related work and setion 8 onludes.2 The Core LanguageOur ore language arises from the synthesis of a partiular linear type system, the use types of Turneret al.[34℄, and a somewhat new variant of Tofte and Talpin's region type system.2.1 The TypesWe �rst explain our hoie of linear type system and then proeed to augment the language of typeswith types for regions.



2.1.1 Use TypesThere are many subtly di�erent type systems that, to a �rst approximation, might be alled \linear."Although the di�erenes may appear small they an result in signi�antly di�erent memory managementproperties. True linear type systems, those type systems pulled along the Curry-Howard isomorphismfrom Girard's linear logi [12℄, suh as Abramsky's intuitionisti linear type system [1℄ ontain a ol-letion of multipliatives, inluding �1 ( �2, a funtion type that requires its argument to be usedexatly one, and �1 
 �2, a pair in whih eah omponent is used exatly one. In order to retain theexpressiveness of an ordinary intuitionisti alulus, a single operator (!) is used to make it possible todupliate arguments to a funtion or omponents of a pair.Unfortunately, it appears that this type system annot be given an operational semantis withsatisfying memory management properties. Turner and Wadler [33℄ demonstrate that when workingwithin this type system, one must make a hoie: in order to do useful work on an intuitionisti objet,one must either make a omplete opy of the objet in whih ase the language admits no e�etive wayto share objets, or, if one does not make opy of an intuitionisti objet eah time it is used, then thereis no way to guarantee that it is safe to dealloate objets of linear type.For our appliation, we must allow sharing; regions an ontain an unbounded number of objets soopying them is muh too expensive. Type system support for expliit dealloation is equally important.Consequently, a true linear type system will not work here. Instead, we use a slightly di�erent systemin whih the types of storable objets, suh as funtions and pairs, have two variants: The \linear"variant1 lassi�es objets that are referened by exatly one pointer and must be used exatly one.The intuitionisti variant lassi�es objets that an be used an unlimited number of times (inludingnot at all). Sine we have two sorts of funtions and two sorts of pairs, we do not need the modality\!."We write �1 �! �2 for generi funtions where the quali�er � is either �, indiating an intuitionistifuntion that may be used many times, or ^, indiating a linear funtion that must be used exatlyone.2 After its single use, the losure ontaining the funtion's free variables will be dealloated.Likewise, we write �1 �� �2 for generi pair types. A linear pair is dealloated after its omponents havebeen projeted. Normally, we will suppress the \�" annotation above the intuitionisti types. Hene,we write int� int for an intuitionisti pair of integers.In our formal work, we will use ( ) as a based type and assume it may be used many times. Weould have introdued two variants of ( ) just as we have two variants of the other types, but insteadwe will assume that there is no ost to using ( ) (an implementation need not alloate it in the store)and therefore no need to de�ne the linear variant. In our examples, we will freely use other base types,suh as integers.For simpliity, we did not inlude multi-argument funtions in our language. However, we ansimulate them easily using single-argument funtions that aept linear pairs as arguments. Therefore,in our examples, rather than write int �̂ int! intwe will often write1We ontinue to use the terms \linear" and \intuitionisti" despite loose onnetions with intuitionisti linear logi.2Notie that the funtion is used one or many times. Unlike type systems based diretly on linear logi, these funtiontypes say nothing about how often their arguments are used. The number of uses of an argument is determined exlusivelyby the argument's type.



(int; int)! intIn order to preserve the single-use invariant of linear objets, it is neessary to ensure that intu-itionisti objets do not ontain linear objets. The term formation rules help maintain this invariantby preventing linear assumptions from being aptured in intuitionisti losures. These rules are dis-ussed in more detail in the following setion. In addition, we onsider intuitionisti pairs with linearomponent types, suh as (�1 �̂ �2)� �3 to be syntatially ill-formed.2.1.2 RegionsRegions are unbounded extents of memory that hold groups of objets. Every region has a uniquename, denoted using the meta-variable �, that an be used to identify the region and the objets itontains. For most purposes, regions are just like any other storage objets. A region with name � hasa type that may be quali�ed as either linear or intuitionisti: �rgn (�). When a region has linear type,it may be dealloated.When a value is alloated in a region with name �, the type of the value is tagged with �. Forexample, a losure in � has type �1 �! �2 at � and similarly with pairs. For the sake of uniformity inour formal language we will assume that all stored objets are alloated in some region and thereforethat all funtion and produt types are annotated \at �," for some region �. However, in our exampleswe will assume there is some global top-level region named \ " that is never dealloated and we willnormally omit the \at " annotations.In order to use funtions in many ontexts, they must be polymorphi with respet to the names oftheir region arguments3. A polymorphi funtion is onsidered linear (intuitionisti), if the underlyingmonomorphi funtion is linear (intuitionisti). For example, the intuitionisti funtion pair, whihalloates a pair of integers in its argument region �, ould be given the type8[�℄:(int; rgn(�))! (int� int at �)Sometimes, we will wish to de�ne funtions that return new regions they have alloated. For thispurpose, we will use an existential type. The simplest suh funtion takes no argument and returnssome new region �: ( )!9�: ^rgn (�)Traditional region-based type systems disallow objets of existential type as existentials allow regions toesape the sope of their de�nition, and, normally, dealloation is linked to the sope of region de�nition.Our system is similar in that if we want to be able to dealloate intuitionisti regions, we must plaesome onstraints on the way they ow through programs. However, we do not have to restrit the owof linear regions, we must simply ensure referenes to linear regions are not dupliated. Therefore, anexistential type is permitted to hide the name of a linear region but is not permitted to hide the nameof an intuitionisti region. Moreover, existential types are themselves linear, meaning that they may beopened exatly one. We will explain the rules for manipulating existentials in more detail in setion2.2.2.3It is fairly straightforward to make our funtions polymorphi over types as well as regions, but for simpliity we omitthis degree of freedom in this paper.



type ontexts � ::= � j �; �qualifiers � ::= � j ^types � ::= ( ) j �rgn (�) j 8[�℄:�1 �! �2 at � j �1 �� �2 at � j 9�:�intuitionisti types I ::= ( ) j rgn(�) j 8[�℄:�1 ! �2 at � j I1 � I2 at �linear types L ::= ^rgn (�) j 8[�℄:�1 !̂ �2 at � j �1 �̂ �2 at � j 9�:�Figure 1: Syntax: Types2.1.3 Summary of Type SyntaxFigure 1 summarizes the syntax of the type language. It also douments a subset of the types, rangedover by the meta-variable I , that we refer to as "intuitionisti" and a disjoint subset, the linear types,ranged over by the meta-variable L. Types (and later terms) are onsidered equivalent up to renamingof bound variables. We impliitly assume that type ontexts, �, ontain no repeated region names. Weonatenate two type ontexts using the notation ��0. If � and �0 have any region names in ommonthen the notation is unde�ned.Figure 2 summarizes the well-formedness onditions on types. These onditions are given by ajudgment with the form � ` � .2.2 ExpressionsFigure 3 presents the expression syntax. As usual, the syntax inludes variables as well as introdutionand elimination forms for eah type of objet. We also inlude two forms of let-expression. The �rst isstandard, but the seond is speial and will be explained later. The expressions are best explained inonjuntion with their typing rules, but before we an proeed with the typing rules we must present afew auxiliary de�nitions.2.2.1 Type Cheking ContextsThe typing rules for expressions have the form �;� ` e : � where � is a list of assumptions onerningthe free type variables in e. We assume that no variable is repeated in �. Rather than using the expliitstrutural rules exhange, ontration and weakening to ontrol reordering, dupliation and disardingof assumptions, our type system relies upon a nondeterministi operation (./) that splits the linearassumptions in � between the ontexts �1 and �2. The splitting operation is de�ned below. We willoften write � = �1 ./ �2 ./ �3 as an abbreviation for � = �1 ./ �0 and �0 = �2 ./ �3.� = � ./ �� = �0 ./ �00�; x:I = (�0; x:I) ./ (�00; x:I)� = �0 ./ �00�; x:L = (�0; x:L) ./ �00



� ` ( )� ` �rgn (�) (� 2 �)��0 ` �1 ��0 ` �2� ` 8[�0℄:�1 �! �2 at � (� 2 �)� ` �1 � ` �2� ` �1 �̂ �2 at � (� 2 �)� ` I1 � ` I2� ` I1 � I2 at � (� 2 �)�; � ` �� ` 9�:�Figure 2: Well-formed Types
value ontexts � ::= � j �; x:�expressions e ::= x j ( ) j e1; e2 j �[�℄x:� �! e1 at e2 j e1[�℄ � e2 at e3j e1 �� e2 at e3 j letx �� y = e1 at e2 in e3j pak[�; e℄ as 9�:� j unpak �; x = e1 in e2j allo e j free [�℄ej letx = e1 in e2 j let (y =!e1)x = e2 in e3Figure 3: Syntax: Expressions



� = �0 ./ �00�; x:L = �0 ./ (�00; x:L)We also use the notation ��. When � is �, then all the types in � must be intuitionisti. When � is^ then � is unrestrited. This notation is used to prevent intuitionisti objet from ontaining linearobjets.2.2.2 Typing Rules for ExpressionsThe typing rules for expressions are derived from onsideration of three main invariants:1. An objet of linear type must be "used" exatly one.2. Any aess to a region (i .e. alloation within a region or use of an objet within a region) mustbe aompanied by proof that the region is still live.3. Referenes to intuitionisti regions must not esape the sope in whih the intuitionisti region isintrodued.The �rst invariant is enfored mainly through areful manipulation of the type heking ontextand the use of the nondeterministi splitting operator. The seond invariant is enfored by requiringthat the program present a referene to a region every time the region is aessed. We subsequentlyensure that there is a referene to a region if and only if the region is still live. The third invariant isenfored by ensuring that intuitionisti regions always appear in the type of the data struture thatontains them. This �nal invariant ensures it is possible to perform a type-based analysis to preventstored intuitionisti regions from esaping the sope of their de�nitions.Figures 4 and 5 present the typing rules for expressions. The �rst three rules do not involve regionsso they are normal natural dedution-style typing rules from the linear lambda alulus. The rule forvariables requires that the ontexts �1 and �2 ontain the only intuitionisti variables { we must not letlinear variables go unused. The rule for unit is similar. The last of the three is the rule for sequening.It uses the splitting operator to divide the linear variables between the �rst and seond expressions inthe sequene.The rules for pairs and funtions are more omplex sine we must worry about aessing regions.Pairs are the simpler of the two so we will explain them �rst. Pairs are alloated using the expressione1 �� e2 at e3 where e1 and e2 ompute values that form the omponents of the pair. The pair isalloated into the region denoted by expression e3. As in the typing rule for sequening, the splittingoperator divides the linear variables between the three expressions. There are two further details tonotie in this rule. First, the third expression should have type rgn(�), the type of an intuitionistiregion. We do not allow alloation into linear region beause we do not want an alloation to be thesingle use of a linear region. What would be the point of alloating an objet in a region that ould notbe used in the future? It would be impossible to use the objet itself.4 In a moment, we will de�ne an4There are other ways we ould organize our language so that aess to linear regions is allowed and yet aess doesnot onstitute the single use of a linear region. For example, an alloation operation ould return a pair of the alloatedobjet and the referene to the region. However, this solution and others we have onsidered lead to a more ompliatedoperational semantis.



operation that temporarily onverts linear regions into intuitionisti regions in order to allow aess tolinear regions without having to dealloate them.A seond subtle but important aspet to this rule is that it expliitly maintains the invariant thatintuitionisti objets (in this ase intuitionisti pairs) do not ontain linear objets. It does so throughthe well-formedness judgment on the result type of the expression. If the pair's quali�er � is � then thisonstraint spei�es that the omponent types must not be linear.The elimination form for pairs, letx1 �� x2 = e1 at e2 in e3, projets of the two omponents of thepair e1 and binds them to x1 and x2 before ontinuing with the expression e3. The pair must inhabitthe region omputed by expression e2. This region is not needed at run time to implement projetionfuntion. However, at ompile time, it serves as a witness to the ontinued existene of the region andthe pair ontained therein. An implementation an optimize away the runtime overhead of passingaround these region referenes using the \ignore region" optimization proposed by Birkedal et al.[2℄,but we will not onern ourselves with suh details here. As in the introdution form for pairs, the typeof the aessed region is required to be intuitionisti.2.2.3 Esaping Regions, Funtion Closures and Existential PakagesBefore we an explain the typing rules for funtions or existentials, we must larify the invariants thatgovern intuitionisti and linear regions. In a typial intuitionisti linear lambda alulus, it is impossibleto relaim the resoures used to onstrut intuitionisti objets, unless one resorts to meta-linguistitools suh as a garbage olletor. In our language, it is possible to relaim intuitionisti funtions andpairs if we plae them in linear regions. However, if we would like to ensure that all data strutures areeventually olleted, we must also �nd some way to ollet intuitionisti regions.In priniple, our solution is very similar to the original solution proposed by Tofte and Talpin. Thekey idea is to prevent usable referenes to intuitionisti regions from esaping a partiular programsope by foring every data struture that ontains a referene to a region to delare the names ofthese regions in its type. When all region referenes appear in the types of the data strutures thatontain them, it is possible to detet esaping referenes by analyzing the type of the data struture.Moreover, if we an guarantee that no referene to a region esape a partiular sope then it will besafe to dealloate the region when ontrol exits that sope { we have onstruted the language so thatevery region aess requires a referene to the region as proof that the region is still live.Unless we are areful, funtion losures will be able to apture referenes to intuitionisti regionswithout revealing these referenes in the type of the losure. Tofte and Talpin solve this problem byisolating regions in a separate syntati lass from other values and annotating funtions with a \latente�et" that inludes regions stored in the funtion losure. Our approah is similar exept that wedo not de�ne a separate syntati lass of regions. Instead, we require all funtions to be losed withrespet to intuitionisti regions. Therefore, if a funtion wants to aess a value in an intuitionistiregion, that region must be expliitly passed as an argument to the funtion. Hene, the \latent e�et"of the funtion is represented as part of the type of the funtion argument. Sine regions are ordinary�rst-lass values, this is a natural and elegant design. The losure requirement is enfored by theprediate losed�(�) (pronouned \� is region-losed with respet to �"), de�ned below.



losed�(( )) = truelosed�(rgn(�)) = falselosed�(rgn(�0)) = true (�0 6= �)losed�( ^rgn (�0)) = truelosed�(8[�℄:�1 �! �2 at �0) = truelosed�(�1 �� �2 at �0) = losed�(�1) ^ losed�(�2)losed�(9�0:�) = losed�(�) (�0 6= �)We use the notation losed (�) (pronouned \� is region-losed") when losed�(�) for all regions �.We lift the de�nition of region-losed pointwise to ontexts �.Given these de�nitions we an now interpret the typing rules for funtions (see �gure 4). As before,the splitting operator partitions the linear assumptions between the ontext used to hek the funtionbody and the omputation that generates the region into whih the losure is alloated. If the losureis an intuitionisti objet then following our rule about no linear objets inside intuitionisti objets,the ontext used to hek the funtion body an ontain no linear variables. Finally, this ontext mustalso be region-losed. The rule for funtion appliation ensures the region name arguments (�0) maththe expeted region name parameters5 and that the argument has the expeted type. As before, thepresene of the region e3 attests to the fat that the region ontaining the funtion losure has not yetbeen dealloated.Existential types pose similar diÆulties and have similar solutions as funtion losures. In fat, dueto Minamide, Morrisett and Harper's enoding of funtion losures as existential pakages [20℄,existentialtypes may be viewed as the real soure of the problem of esaping regions. To ensure intuitionistiregions an be restrited to a partiular program sope, we require the type � to be losed with respetto intuitionisti regions named � when we form an existential of type 9�:� using the pak expression.Well-formed existentials normally ontain linear regions, whih are not restrited to any partiularsope. The elimination form for existentials is the standard unpak expression.2.2.4 Region Alloation and DealloationWe have overed the introdution and elimination forms for all of the standard types, only regionsremain (see �gure 5 for the typing rules). The allo primitive generates a new linear region witha fresh name. Intuitively, it has the type ( )! 9�: ^rgn (�) and formally, we ould make it a speialonstant with this type, but for the sake of onveniene6 we add alloation as a primitive. The freeoperation onsumes a linear region. It naturally has the type 8[�℄: ^rgn (�)! ( ), but again we add it asa primitive to the language.Intuitionisti regions are introdued and eliminated using a single syntati form, let (y =!e1)x =e2 in e3, that was inspired by Wadler's let ! onstrut [35℄. Operationally, we evaluate e1 expeting alinear region named �. That region is bound to y and may be used in e2. The result of evaluating e2 isbound to x and both x and y may be used in e3. Sine the linear region bound to y is potentially used5In this rule, we rely on alpha-onversion of the bound region names in the funtion type.6If we made it a onstant, we would need to �nd a region to hold the funtion. We ould use the " " region, but thenwe would have to add this region to our system formally. Nevertheless, this is a possibility and it is satisfying to knowthat the type struture aptures region alloation exatly.



multiple times, we must take great are to ensure that there is no way the region an be dealloated tooearly. In the �rst expression, y is given the intuitionisti type rgn(�) in e2. However, the typing ruleonstrains the type of e2 to be region-losed with respet to � so intuitionisti referenes to � annotesape from e2 into e3. In e3, y is one again given the linear type ^rgn (�). Sine no referenes to thisregion an ow from e2 to e3, y is the only referene to � in e3, justifying its linear type. The ompletetyping rule for this onstrut an be found in �gure 5.2.3 Tofte and Talpin's letregionThere are lose onnetions between the let ! introdued by Wadler and modi�ed here and Tofte andTalpin's letregion. Both onstruts use a type-based esape analysis to ensure safety. When Wadler�rst introdued this idea into his linear lambda alulus, he had no notion of a region name, so hisanalysis was very impreise. Region names are a form of singleton type, a very preise lassi�er forregions that makes our modi�ed onstrut muh more e�etive. In fat, we believe it is possible to usethis idea to enode Tofte and Talpin's letregion onstrut in our alulus. Informally, the translationis quite straightforward: letregion� in e =unpak �; x = allo ( ) inlet (x =!x)y = e0 infree [�℄x; ywhere the expression e0 is the translation of e. We onjeture a formal translation from Tofte andTalpin's alulus7 into our own will be straightforward, but we have not worked through the exeriseyet.3 The Abstrat MahinePrograms in our language exeute on an abstrat mahine. An abstrat mahine state inludes theregion names that may be in use (�), a desription of the store (S), whih inludes a olletion ofalloated regions (R) and a olletion of values inhabiting these regions (H) and �nally, the expressionto be evaluated. The syntax of abstrat mahine states is presented in Figure 6.In order to failitate the proof that our type system is sound, we extend the soure language typesystem to the abstrat mahine, giving well-formedness onditions for mahine states, the store andstored values. The inferene rules for the well-formed mahine states an be found in �gure 8. Themain purpose of these rules is to guarantee the following simple fats:� There is at most one region with a given region name.� All stored values are well-formed.� The expression to be exeuted is well-formed with respet to the urrent store.The typing rules for stored values are derived diretly from the orresponding soure-level expres-sions. The formal rules may be found in �gure 7.



�;� ` e : � �; ��1; x:�; ��2` x : ��; ��` ( ) : ( )� = �1 ./ �2 �;�1 ` e1 : ( ) �; �2 ` e2 : ��;� ` e1; e2 : �� = ��1./ �2 ��0 ` � �;�0; ��1; x:� ` e1 : �1 �;�2 ` e2 : rgn(�)�; � ` �[�0℄x:� �! e1 at e2 : � �! �1 at � (losed (�1))� = �1 ./ �2 ./ �3 �;�1 ` e1 : 8[�0℄:�1 �! �2 at ��;�2 ` e2 : �1 �;�3 ` e3 : rgn(�)�; � ` e1[�0℄ � e2 at e3 : �2 (�0 � �)� = �1 ./ �2 ./ �3 �;�1 ` e1 : �1�;�2 ` e2 : �2 � ` �1 �� �2 at � �;�3 ` e3 : rgn(�)�; � ` e1 �� e2 at e3 : �1 �� �2 at �� = �1 ./ �2 ./ �3 �;�1 ` e1 : �1 �� �2 at ��;�2 ` e2 : rgn(�) �; �3; x1:�1; x2:�2 ` e3 : �3�;� ` letx1 �� x2 = e1 at e2 in e3 : �3�;� ` e : ��;� ` pak[�; e℄ as 9�:� (losed�(�))(� 2 �)� = �1 ./ �2 �;�1 ` e1 : 9�:� �; �; �2; x:� ` e2 : �2�;� ` unpak �; x = e1 in e2 : �2 (� 62 FV(�2))Figure 4: Well-formed Expressions



�;� ` e : ( )�; � ` allo e : 9�: ^rgn (�)�; � ` e : ^rgn (�)�; � ` free [�℄e : ( ) (� 2 �)� = �1 ./ �2 �;�1 ` e1 : �1 �;�2; x:�1 ` e2 : �2�;� ` letx = e1 in e2 : �2� = �1 ./ �2 ./ �3 �;�1 ` e1 : ^rgn (�)�; �2; y:rgn(�) ` e2 : �2 �;�3; y: ^rgn (�); x:�2 ` e3 : �3�;� ` let (y =!e1)x = e2 in e3 : �3 (losed�(�2))Figure 5: Well-formed Expressions, ontinued
stored values s ::= ( ) j h�[�℄x : � �! ei� j hx1 �� x2i� j pak[�; x℄ as 9�:� j!xexpressions e ::= � � � j let (y =!z;H)x = e1 in e2region heaps R ::= � j R; x 7! rgn(�)value heaps H ::= � j H; x 7! sstores S ::= R;Hmahine states � ::= (�;S; e)Figure 6: Abstrat Mahine



�;� ` s : � �; ��` ( ) : ( )��0 ` � ��0; ��; x:� ` e : � 0�; ��` h�[�0℄x:� �! ei� : 8[�0℄:� �! � 0 at � (� 2 �)� = �1 ./ �2 �;�1 ` x1 : �1 �;�2 ` x2 : �2 � ` �1 �� �2 at ��;� ` hx1 �� x2i� : �1 �� �2 at � (� 2 �)�;� ` x : ��;� ` pak[�; x℄ as 9�:� : 9�:� (� 2 �)�;� ` x : ^rgn (�)�; � `!x : rgn(�)Figure 7: Well-Formed Stored Values



` � : � program � ` S : � store �; � ` e : �` (�;S; e) : � program� ` S : � store � ` R : � �; � ` H : �0� ` R;H : �0 store� ` R : � � ` � : ��;�0 ` R : ��; �;�0 ` R; x 7! rgn(�) : �; x : ^rgn (�)�; � ` S : �0 �;� ` � : ��; � ` H : �0 �0 = �1 ./ �2 �;�1 ` s : ��;� ` H; x 7! s : �2; x : �Figure 8: Well-Formed Mahine States



In order to failitate our proof of type soundness, we have also added one run-time expression to thelanguage. The runtime expression let (y =!z;H)x = e2 in e3 is a natural extension of the programmingonstrut let (y =!e1)x = e2 in e3. As indiated by the operational semantis below, one the abstratmahine has evaluated the expression e1 and produed an address z, it ontinues with the evaluationof e2. If e2 alloates new objets, these new objets will be stored in the loal heap H . One e2 hasevaluated to a value, the loal heap H is promoted to the global store (or the next enlosing loal store).This organization failitates the proof that referenes to y do not esape the omputation e2. The typingrule for this runtime expression extends the earlier rule for the speial let onstrut to aount for theloal heap H : � = �1 ./ �2 ./ �3 �;�1 ` y 7!!z;H : y:rgn(�);�0�;�2; y:rgn(�);�0 ` e2 : �2 �;�3; y: ^rgn (�); x:�2 ` e3 : �3�;� ` let (y =!z;H)x = e2 in e3 : �3 (losed�(�2))3.1 Operational SemantisThis subsetion de�nes the operational semantis of the abstrat mahine. The operational semantis isreally quite straightforward for suh a powerful language, but we need to de�ne a fair amount of notationto give a onise spei�ation of the various operations on regions as well as linear and intuitionistiobjets.We use the following notation to add a binding to the store. The notation is only de�ned if x doesnot already appear in the domain of the store.(R;H); x 7! rgn(�) = (R; x 7! rgn(�); H)(R;H); x 7! s = (R;H; x 7! s)We extend this notation in the natural way to allow sequenes of bindings to be added to the storeas in S;H whih extends S with H or S; S0 whih extends S with S0.The operation S(x) selets the objet at address x from store S. If x does not appear in the storethen the operation is unde�ned. The operation is de�ned below.S; x 7! rgn(�); S0(x) = rgn(�)S; x 7! s ; S0(x) = s (s 6=!y)S; x 7!!y; S0(x) = S(y)When an intuitionisti objet is used, it remains in the store. However, when a linear objet is used,it is dealloated. The following two operations ( �� for intuitionisti objets and �̂ for linear objets)implement this behavior. S �� x = S7If we add universal polymorphism over types to our language, we believe we an enode the entire language. Withoutuniversal polymorphism over types in our language, we annot enode the polymorphism over types or e�ets in the Tofteand Talpin alulus, but all the other onstruts appear straightforward.



S; x 7! rgn(�); S0 �̂ x = S; S0S; x 7! s ; S0 �̂ x = S; S0Finally, before we an de�ne the operational semantis, we need to de�ne the evaluation ontexts.This de�nition is mostly standard. Notie, however, that there is no evaluation ontext of the formlet (y =!z;H)x = E in e. The operational semantis makes use of this fat.E ::= [ ℄ j E; e j x;E j �[�℄x:� �! e at E j E[�℄ � e1 at e2 j x[�℄ � E at e j x1[�℄ � x2 at Ej E �� e1 at e2 j x �� E at e j x1 �� x2 at Ej letx �� y = E at e1 in e2 j letx �� y = z at E in ej pak[�;E℄ as 9�:� j unpak �; x = E in e j allo E j free [�℄Ej letx = E in e j let (y =!E)x = e1 in e2The operational semantis for the language is given by a mapping from mahine states to mahinestates. This mapping is presented in �gure 9. In general, an introdution form is evaluated by hoosinga fresh address8 and extending the store with the appropriate value alloated at that address. Whenalloating in a region, the operational semantis veri�es that there exists a live region with that name.An elimination form suh as a projetion or funtion all is evaluated by looking the pair or funtion upin the store, ensuring that the region inhabited by the pair or funtion is still alive and �nally taking theappropriate ation. The only unusual evaluation rule is the one for the seond let form. Evaluationunder one of these let forms has the e�et of adding the loal heap to the global store for evaluationof the subterm.3.2 Properties of the Core LanguageWe intend to prove a type soundness result for our language. Reent researh [37, 13, 3℄ indiates thatwe should be to obtain our result using syntati tehniques. In fat, we have intentionally organizedour operational semantis so that the hierarhial nature of the region store is impliit, following theinsights of Calagno, Helsen and Thiemann [13, 3℄ and we believe this deision will make the proofquite straightforward. We are urrently investigating the possibility of formalizing the result in a linearlogial framework [4℄.4 Referene CountingSo far, our implementation of the intuitionisti linear type system allows objets of intuitionisti typeto be shared (i .e. there may be many pointers to these objets). Objets of linear type, on the otherhand, are always unshared and therefore they may be olleted immediately after they are used. Thesedeisions lead to a ompletely stati memory management disipline. Unfortunately, the lak of aliasingfor reusable (linear) objets has its disadvantages: it is neessary to opy linear objets in some situ-ations to preserve the single pointer invariant and this opying an lead to unneessary memory use.8By fresh address, we mean an address that does not already appear in the domain of the store. The freshnessonstraint is impliit in the formal rules.



� �! �0 (�;S;E[( )℄) �! (�;S; x 7! ( );E[x℄)(�;S;E[x; e℄) �! (�;S;E[e℄) if: S(x) = ( )(�;S;E[�[�0℄x:� �! e at y℄) �! (�;S; z 7! h�[�0℄x:� �! ei�;E[z℄) if: S(y) = rgn(�)(�;S;E[x1[�0℄ � x2 at x3℄) �! (�;S �� x1;E[e℄) if: S(x1) = �[�0℄x2:� �! eS(x3) = rgn(�)(�;S;E[x1 �� x2 at x3℄) �! (�;S; y 7! hx1 �� x2i�;E[y℄) if: S(x3) = rgn(�)(�;S;E[letx1 �� x2 = y at x3 in e℄) �! (�;S �� y;E[e℄) if: S(y) = hx1 �� x2i�S(x3) = rgn(�)(�;S;E[pak[�; x℄ as 9�:� ℄) �! (�;S; y 7! pak[�; x℄ as 9�:� ;E[y℄)(�;S;E[unpak �; y = x in e℄) �! (�;S �� x;E[e℄) if: S(x) = pak[�; y℄ as 9�:�(�;S;E[allo x℄) �! (�; �;S; y 7! rgn(�);E[pak[�; y℄ as 9�: ^rgn (�)℄) if: S(x) = ( )(�;S;E[free [�℄x℄) �! (�;S �̂ x;E[( )℄) if: S(x) = rgn(�)(�;S;E[letx = x in e℄) �! (�;S;E[e℄)(�;S; y 7!!z;H ;E2[e1℄) �! (�0;S0; y 7!!z;H 0; e01)(�;S;E1[let (y =!z;H)x = E2[e1℄ in e2℄) �! (�0;S0;E1[let (y =!z;H 0)x = e01 in e2℄)(�;S;E[let (y =!y;H)x = x in e℄) �! (�;S;H ;E[e℄)Figure 9: Operational Semantis



types � ::= � � � j #rgn (�)linear types L ::= � � � j #rgn (�)expressions e ::= � � � j #allo e j in[�℄e j de[�℄eontexts E ::= � � � j #allo E j in[�℄E j de[�℄Eregions R ::= � � � j R; x 7! hn; rgn(�)i; x1 7! #x; : : : ; xn 7! #xFigure 10: Syntax for Referene Counting ConstrutsAlternatively, it is neessary to onvert linear regions into intuitionisti regions for signi�ant portionsof a program and to delay region dealloation beyond the point at whih a region is semantially dead.Chirimar, Gunter and Rieke [7℄ proposed an entirely di�erent model of linear logi. They usedreferene ounting to keep trak of the number of pointers to an objet. The linear type system ensuresthat referene ounts are maintained aurately. Referene ounts add a dynami omponent to thememory management system that omplements a purely stati approah. Rather than having to opyobjets or onvert linear regions into intuitionisti regions, it is possible to manipulate referene ounts.In general, one an augment the alulus of previous setions with a third quali�er (#) and manageregions, pairs, losures or other heap-alloated objets by referene ounting.9 Here, for simpliity, weonentrate exlusively on referene-ounted regions. The new language onstruts are presented inFigure 10. The new type of referene-ounted regions is onsidered linear { assumptions with this typemay not be impliitly dupliated or disarded. The referene ounts are expliitly dupliated using thein funtion and expliitly deremented and freed when the ount reahes zero using the de funtion.Figure 11 de�nes additional rules for the well-formed types and expressions.In the previous setions, the !e operator made it possible to temporarily treat linear regions asintuitionisti ones to avoid ostly opying. Here, we an use the same onstrut to temporarily inreasereferene ounts without the runtime ost of having to do the atual inrement operation. In otherwords, we use the more onventional interpretation of intuitionisti types in onjuntion with refereneounting to obtain a form of deferred referene ounting. This trik also onveniently allows us to reuseall the alloation and aess rules for pairs and losures for both referene-ounted regions and othersorts of regions.4.1 Operational SemantisThe operational semantis for the referene ounting expressions is presented in the �gure 12. Notiethat the semantis for inrement and derement operations relies upon two auxiliary funtions. Theseauxiliary funtions are unde�ned if the store does not have the proper form.The other operations in the language remain essentially unhanged. In order to allow aess toreferene ounted regions, we need only extend the store aess funtion slightly:9One does have to be areful to ensure that referene-ounted objets ontain intuitionisti objets only, not linearobjets or other referene ounted objets. This may be aomplished using idential tehniques to those of previoussetions whih ensure that only intuitionisti objets appear inside of intuitionisti objets. Alternatively, one ould allowlinear or referene ounted objets inside other referene ounted objets at the expense of a more omplex run-timesystem that reursively dealloates subomponents of a referene-ounted data struture.



� ` � � ` #rgn (�) (� 2 �)�;� ` e : � �;� ` e : ( )�; � ` #allo e : 9�: #rgn (�)�; � ` e : #rgn (�)�; � ` in[�℄e : #rgn (�) �̂ #rgn (�) at � (� 2 �)�;� ` e : #rgn (�)�; � ` de[�℄e : ( ) (� 2 �)� = �1 ./ �2 ./ �3 �;�1 ` e1 : #rgn (�)�; �2; y:rgn(�) ` e2 : �2 �;�3; y: #rgn (�); x:�2 ` e3 : �3�;� ` let (y =!e1)x = e2 in e3 : �3 (losed�(�2))� ` R : �� ` R; x 7! hn; rgn(�)i; x1 7! #x; : : : ; xn 7! #x : �; x1: #rgn (�); : : : ; xn: #rgn (�)Figure 11: Well-Formed Referene Counting Construts



(�;S;E[ #allo y℄) �! (�; �;S; x 7! h1; rgn(�)i; x1 7! #x;E[pak[�; x1℄ as 9�: #rgn (�)℄)(�;S;E[in[�℄x℄) �! (�; in(S;x; y); z 7! hx �̂ yi�;E[z℄)where: in(S; x 7! hn; rgn(�)i; x1 7! #x; : : : ; xn 7! #x; S0;xi;xn+1)= S; x 7! hn+ 1; rgn(�)i; x1 7! #x; : : : ; xn+1 7! #x; S0(�;S;E[de[�℄x℄) �! (�; de(S;x);E[( )℄)where: de(S; x 7! hn; rgn(�)i; x1 7! #x; : : : ; xn 7! #x; S0;xi)= S; x 7! hn� 1; rgn(�)i; x1 7! #x; : : : ; xi�1 7! #x; xi+1 7! #x; : : : ; xn 7! #xde(S; x 7! h1; rgn(�)i; x1 7! #x; S0;x1)= S; S0Figure 12: Referene Counting Construts: Operational Semantis(S; x 7! hn; rgn(�)i; x1 7! #x; : : : ; xn 7! #x; S0)(xi) = rgn(�)We must also extend the de�nition of region-losed:losed�( #rgn (�0)) = true5 Container Data StruturesOne of the primary weaknesses of region based memory management on its own is that all ontainerdata strutures are homogeneous with respet to the regions that their elements inhabit. In otherwords, all elements of a list, tree, or other reursive datatype are required to inhabit the same region.Consequently, all elements of any given list or tree must have the same lifetime. For long-lived ontainersfor whih both insertions and deletions are ommon, this strategy an inur quite a ost as none of theobjets that are removed from the olletion an be dealloated until the entire olletion is dealloated.Tofte and others have developed lever programming tehniques to avoid this problem in many ases.In essene, they manually mimi the ation of the opying garbage olletor. More spei�ally, theyperiodially opy the ontainer data struture from one region to another. After the opy, they easeto use the data in the old region so it may safely be dealloated. Dan Wang and Andrew Appel [39℄have exploited similar ideas to write a omplete opying garbage olletor in a type safe language thatuses the regions.Although opying is highly e�etive solution in many situations, it is not without its own overhead.If the ontainer data struture is large, the extra spae and time required to opy the live data fromone region to another may not be aeptable. In our language, programmers have many more hoies.



types � ::= � � � j � �list at �expressions e ::= � � � j �[ ℄� at e j �ons (e1; e2) at e3 j �ase e1 at e2 ([ ℄ ) e3 j (x; y) ) e4)Figure 13: ListsOn the one hand, they may employ the opying solution that we have just disussed. On the otherhand, programmers an mix linear types with regions to solve this problem in new ways. In partiular,programmers an de�ne heterogeneous data strutures. In other words, ontainers may hold elementsstored in di�erent regions and therefore individual objets may be dealloated independently of theother objets in the ontainer.Figure 13 presents the syntax of an extension to our language with lists. Like other data struturessuh as pairs and losures, intuitionisti lists are onstrained so that they do not ontain linear objets.Figure 14 presents the well-formedness rules for list types.There are three lists expressions. The �[ ℄� at e expression introdues an empty list with type � inthe region designated by e and �ons (e1; e2)at e3 prepends e1 to the list e2, in the region designated bye3. The ase onstrut follows the �rst branh if e is the empty list and the seond branh otherwise.The typing rules for these onstruts extend the typing rules for the ore language spei�ed in previoussetions in the natural way. Figure 14 also presents the well-formedness rules for list expressions.These typing rules (in partiular, the rule for ons) require that the spine of the list inhabits a singleregion.10 However, the elements of the list may inhabit di�erent regions. For example, a linear list oflists might be given the following type.9�: ^rgn (�) �̂ (( ) �list at �) ^listIn this ase, eah element of the list is an existential pakage ontaining a pair of a referene to aregion and a list inhabiting that region. Eah of these inner lists may be proessed and dealloatedindependently of any of the other inner lists. However, sine the regions are linear they do not aliasone other. If a programmer requires a data struture that involves aliasing between the lists then areferene ounting solution ould be used:9�: #rgn (�) �̂ (( ) �list at �) ^listThe dynami nature of the referene ounts makes it unneessary to opy the elements of the outerlist.6 Mutable Data StruturesMutable data strutures pose many of the same problems for traditional region-based memory manage-ment shemes as ontainers like lists do. Any objet that is stored in a referene must live in the same10If the language revealed the struture of the implementation of lists in terms of sum types and reursive types, thenwe ould hoose how to implement the spine { either as a homogenous or a heterogeneous data struture.



� ` � � ` �� ` � ^list at � (� 2 �)� ` I� ` I �list at � (� 2 �)�;� ` e : � �;� ` e : rgn(�) � ` � �list at ��;� ` �[ ℄� at e : � �list at �� = �1 ./ �2 ./ �3 �;�1 ` e1 : � �;�2 ` e2 : � �list at � �;�3 ` e3 : rgn(�)�; � ` �ons (e1; e2) at e3 : � �list at �� = �1 ./ �2 ./ �3 ./ �4�;�1 ` e1 : � 0 �list at � �;�2 ` e2 : �rgn (�)�; �3 ` e3 : � �;�4; x:� 0; y:� 0 �list` e4 : ��;� ` �ase e1 at e2 ([ ℄ ) e3 j (x; y) ) e4) : �Figure 14: Well-Formed List Construts
types � ::= � � � j � option ref at �expressions e ::= � � � j refsome(e1) at e2 j deref e1 at e2 (Null) e3 j Some x) e4)j store e1 := e2 at e3 (Null) e4 j Some x) e5)Figure 15: Mutable Data



� ` � � ` L� ` L option ref at � (� 2 �)�;� ` e : � � = �1 ./ �2 �;�1 ` e1 : � �;�2 ` e2 : rgn(�)�; � ` refsome(e1) at e2 : � option ref at �� = �1 ./ �2 ./ �3 ./ �4 �;�1 ` e1 : � option ref at � �;�2 ` e2 : rgn(�)�; �3 ` e3 : � 0 �;�4; x:� ` e4 : � 0�;� ` deref e1 at e2 (Null) e3 j Some x ) e4) : � 0� = �1 ./ �2 ./ �3 ./ �4 ./ �5 �;�1 ` e1 : � option ref at � �;�2 ` e2 : ��;�3 ` e3 : rgn(�) �; �4 ` e4 : � 0 �;�5; x:� ` e5 : � 0�;� ` store e1 := e2 at e3 (Null) e4 j Some x) e5)Figure 16: Well-formedness for Mutable Data Struturesregion as all other objets that are ever stored in that region. One again, objets and their resouresmay not be reused on individual basis and again, linear invariants an help.In this setion, we de�ne a new sort of referene that may be pointed to by many objets, but whihholds the lone pointer to the objet it ontains. We use a dynami hek to ensure that a linear objetis not extrated from suh a referene multiple times. More preisely, the objet stored in the referenemay be null or an address. The dereferene operation extrats the objet, be it null or an address, andontinues with one of two branhes depending on the result. If the extrated objet is an address thenthe seond branh is exeuted and the address is bound to x. The assignment operator stores an objetinto the referene. If the referene ontained null before the store operation was attempted then ontrolontinues with the �rst branh and otherwise ontrol ontinues with the seond branh.The new referene type (� option ref at �) belongs to the set of intuitionisti types (I) but unlikeother intuitionisti objets, it may ontain objets of linear type. Figure 16 ontains the well-formednessrules for the new types and expressions.There is a signi�ant ost to using this mehanism. At ompile time, there is no way to distinguishbetween a referene that ontains null and a referene that ontains an objet. Consequently, althoughthe extended type system is safe in the sense that it prevents aess to dangling pointers, it does notensure that all data strutures are eventually olleted. Sine referenes are intuitionisti, it is possibleto forget all pointers to a referene ell and thereby to lose aess to any linear objet it may ontain.If the linear objet in question is a region then there is the potential to leak an unbounded amount ofspae. It may be possible to pursue a dynami solution to this memory leak problem, but we will leaveit for future work.



7 Related and Future WorkThis paper draws together two di�erent branhes of type theory designed for managing omputerresoures. Researh on linear types originated with Girard's linear logi [12℄ and Reynolds' syntationtrol of interferene [27℄. Linear type systems were later studied by many researhers [17, 35, 1, 18,6, 34, 40℄. Type and e�et systems were introdued by Gi�ord and Luassen [11℄ and they too havebeen explored by many others [15, 30, 32, 22℄.More reently, a number of new linear type systems, or more generally, \substrutural type theories,"have been developed. For example, Kobayashi's quasi-linear types [16℄, Polakow and Pfenning's orderedtype theory [25, 26℄, O'Hearn's bunhed typing [23℄, and Smith, Walker and Morrisett's alias types[29, 38℄ fall into this ategory. There is also renewed interest in developing new logis that failitateHoare-style reasoning about heap-alloated data strutures. Reynolds [28℄ and Ishtiaq and O'Hearn [14℄have developed substrutural logis for just this purpose. An interesting line of researh is to investigatehow these other systems for alias ontrol interat with region-based memory management. We suspetthat the grouping aspet of regions is largely orthogonal to the reasoning priniples used in these logisand type theories, and we hope that further study of ombined systems will lead to interesting newprogramming invariants.The initial inspiration for this work omes from Walker, Crary and Morrisett's apability alulus [8,37℄. The apability alulus uses a notion of \stati apability" to ontrol aess to regions. Capabilityaliasing was ontrolled through a ombination of bounded quanti�ation and a form of syntati ontrolof interferene. Our urrent work has the advantage of being both oneptually simpler and moreexpressive in a number of ways (although there are also ertain ontinuation-passing style programs thatan be written in the apability alulus, but not here). The prinipal reason for these improvementsis that we have taken standard linear type systems and applied them uniformly aross a language inwhih regions are ordinary �rst-lass objets rather than speial, seond-lass onstruts.There are several other ongoing projets that are exploring new implementation tehniques andappliations of regions. Makholm, Niss and Henglein [19℄ have had the same insights with respetto referene-ounted regions as we have. They are urrently looking at type inferene tehniques foran imperative language with (seond-lass) referene-ounted regions. Deline and F�ahndrih [9℄ aredeveloping a new type-safe variant of C alled Vault. They useWalker, Crary andMorrisett's apabilitiesin innovative ways to ontrol aess to all sorts of program resoures inluding memory regions. They arein the proess of porting devie drivers written in C to Vault to verify that the drivers obey importantsafety properties.Dan Grossman, Trevor Jim and Greg Morrisett are urrently developing a seond type-safe variantof C, alled Cylone, whih, like Vault, gives low-level programmers ontrol over data struture layout,powerful mehanisms for type abstration and strong safety guarantees. Currently, Cylone relies upona onservative garbage olletor. However, together with Grossman et al., we are exploring ways toinorporate the memory management tehniques desribed here into Cylone. Certain features of thisadvaned language, inluding existential polymorphism over types, abstrat types and exeptions requirefurther thought, but none of these hallenges appear to be insurmountable. We feel on�dent that wewill soon be able to give low-level programmers a variety of options when it omes to hoosing theirown safe memory management poliies.



8 ConlusionsWe have developed a new framework for safe, mostly-stati memory management. The frameworkdraws its power from the fat that it ombines two well-studied paradigms for ontrolling omputerresoures, one based on linear typing and the other based on regions. One of the important aspets ofour development is that we make a lean separation between the role played by regions and the roleplayed by linear typing:� Regions group objets with related lifetimes. An operation on regions, suh as dealloation,simultaneously a�ets all objets within the group.� Linear types ontrol the number of uses of any objet. Regions themselves are onsidered ordinaryprogram objets so linear types an ontrol the number of uses of eah region.A seond important omponent of our system is that we freely mix di�erent interpretations of lineartypes for maximum programmer exibility. For example, when the number of uses of a partiularregion is easy to determine at ompile-time, it is usually possible to employ a purely stati memorymanagement solution based on the onventional interpretation of linear types. However, if the numberof uses is unknown, then a stati solution may be overly restritive. In this ase, programmers anhoose a more dynami solution to their memory management problems involving referene ounting.AknowledgmentsMany of the ideas in this paper arose from disussions with Greg Morrisett. In partiular, the mehanismwe use to handle mutable data strutures was developed in ollaboration with Greg. We have alsobene�ted from tehnial insights provided by Frank Pfenning.Referenes[1℄ Samson Abramsky. Computational interpretations of linear logi. Theoretial Computer Siene,111:3{57, 1993.[2℄ Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inferene to von Neumann ma-hines via region representation inferene. In Twenty-Third ACM Symposium on Priniples ofProgramming Languages, pages 171{183, St. Petersburg, January 1996.[3℄ Cristiano Calagno. Strati�ed operational semantis for safety and orretness of region alulus.In ACM Symposium on Priniples of Programming Languages, pages ?{?, January 2001.[4℄ Iliano Cervesato and Frank Pfenning. A linear logial framework. In Information and Computation,July 2000. To appear.[5℄ Chih-Ping Chen and Paul Hudak. Rolling your own mutable adt { a onnetion between lineartypes and monads. In Twenty-Fourth ACM Symposium on Priniples of Programming Languages,pages 54{66, Paris, January 1997.
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