
On Regions and Linear Types�(Preliminary Notes)David Walker and Kevin WatkinsCarnegie Mellon UniversityAbstra
tWe explore how two di�erent me
hanisms for reasoning about state, linear typing and the type,region and e�e
t dis
ipline,
omplement one another in the design of a strongly typed fun
tionalprogramming language. The basis for our language is a simple lambda
al
ulus
ontaining �rst-
lassregions, whi
h are expli
itly passed as arguments to fun
tions, returned as results and stored inuser-de�ned data stru
tures. In order to ensure appropriate memory safety properties, we drawupon the literature on linear type systems to help
ontrol a

ess to and deallo
ation of regions.In fa
t, we use two di�erent interpretations of linear types, one in whi
h multiple-use values arefreely
opied and dis
arded and one in whi
h multiple-use values are expli
itly referen
e-
ounted,and show that both interpretations give rise to interesting invariants for manipulating regions. Wealso explore new programming paradigms that arise by mixing �rst-
lass regions and
onventionallinear data stru
tures.1 Introdu
tionOne of the
lassi

hallenges in programming languages resear
h is to design me
hanisms that helpprogrammers reason about the behavior of their
ode in the presen
e of imperative operations su
h asupdate and deallo
ation of memory. Over the past 15 years, three te
hniques for solving this problemhave repeatedly found su

ess, parti
ularly for the domain of fun
tional programming languages:1. Girard's linear logi
 [12℄ and related work on linear type systems [17, 1, 35℄ and synta
ti

ontrolof interferen
e [27℄
ontrol sharing and/or the number of uses of important
omputer resour
essu
h as memory. These systems make it possible to deallo
ate and reuse storage safely.2. Moggi's
omputational lambda
al
ulus [21℄ separates pure values from e�e
tfull
omputationsthrough the use of monads. This idea forms the basis for adding imperative features to purefun
tional languages su
h as Haskell [24℄.�This resear
h was sponsored in part by the Advan
ed Resear
h Proje
ts Agen
y CSTO under the title \The FoxProje
t: Advan
ed Languages for System Software," ARPA Order No. C533, issued by ESC/ENS under Contra
t No.F19628-95-C-0050. the views and
on
lusions
ontained in this do
ument are those of the authors and should not beinterpreted as representing oÆ
ial poli
ies, either expressed or implied, of the Defense Advan
ed Resear
h Proje
ts Agen
yor the U.S. government.

3. Finally, the type and e�e
t dis
ipline developed by Gi�ord and Lu
assen [11℄ and re�ned byJouvelot, Talpin and Tofte [15, 30, 32℄ uses a type system and type inferen
e te
hniques to tra
ka

esses to resour
es. In order to make their analysis feasible, resour
es are normally groupedinto regions. Tofte and others [31℄ use regions and e�e
ts to perform all memory managementoperations in their ML
ompiler.More re
ently, resear
hers have begun to investigate the relationships between these three funda-mental me
hanisms. For example, Chen and Hudak [5℄ have dis
overed a
onne
tion between lineartypes and monads and Wadler [36℄ has re
ently presented a
orresponden
e between monads and e�e
tsystems. In this paper, we �ll in the third side of the triangle by exploring the synergy between lineartypes and region, type and e�e
t systems, spe
i�
ally for the purpose of exploring new te
hniques insafe, stati
 memory management.1.1 A New Type System for Safe Stati
 Memory ManagementThe starting point for our development is a simple fun
tional programming language that
ontainsexpli
it programmer-
ontrolled regions. A region is simply an unbounded area of memory or \addressspa
e" where values su
h as fun
tion
losures, lists or pairs may be allo
ated. The sole purpose of theseregions is to group obje
ts with similar lifetimes. When no obje
t in a region is needed to
ompletethe rest of the
omputation, the region (and all of the obje
ts
ontained therein) may be deallo
ated.Experimental results indi
ate that this bat
h-style deallo
ation
an be very eÆ
ient in pra
ti
e, rivalingthe best implementations of mallo
 and free [10℄.Unlike previous approa
hes to region-based memory management, our regions are ordinary pro-gramming obje
ts with no spe
ial status. In parti
ular, like ordinary obje
ts, referen
es to regionsare �rst-
lass: they may be stored in data stru
tures and they may be passed expli
itly to and frompro
edures. Sin
e regions have no spe
ial status, we may immediately apply known te
hniques fromlinear type systems to tra
k the number of uses of regions, just as we
an use linear types to tra
k thenumber of uses of fun
tions or pairs.This \number of uses" information
an be used in a variety of ways [34℄, but we will
on
entrateon appli
ations to memory management here. The main idea is that on
e any programming obje
thas been used for the last time, that obje
t may safely be deallo
ated and its memory may be reusedwithout a�e
ting the rest of the
omputation. Furthermore, if using an obje
t within a region impliesusing the region itself, then in the
ase a region is used for the last time, both the region and its
ontentsmay safely be deallo
ated. The main
ontribution of this paper is to explore further the many waysin whi
h regions and linear types
an be used together to spe
ify and enfor
e a wide range of memorymanagement invariants.Our main te
hni
al results arise from two further observations. First, by varying our operationalinterpretation of linear types, it is possible to develop radi
ally di�erent region-based type systems.More spe
i�
ally, we
ontrast a language based on the use types of Turner and others [34, 40℄ wherereferen
es to multiple-use obje
ts may be freely
opied or dis
arded with Chirimar, Gunter and Rie
ke'sinterpretation of intuitionisti
 linear types [7℄ where referen
es to multiple-use obje
ts are referen
e
ounted. The �rst interpretation gives rise to a purely stati
 me
hanism for ensuring memory safety.We believe the resulting language
an be used to en
ode Tofte and Talpin's original region-based typesystem. The se
ond interpretation gives rise to a new, more dynami
 memory management system. Wederived this new system dire
tly from the work of Chirimar et al. and our novel
ore language of regions.Independently, Makholm, Niss and Henglein [19℄ have developed a related referen
e-
ounting system

from �rst prin
iples and they are
urrently working on type inferen
e te
hniques for the language. Wedo not address the issue of type inferen
e in this paper, leaving this topi
 and other sour
e-languagequestions to future work.The se
ond key observation is that be
ause we treat regions as ordinary obje
ts and apply a lin-ear typing dis
ipline uniformly a
ross the entire language, we are free to develop new programmingparadigms that mix linear regions with other linear data stru
tures. For example, when we freely mixregions with linear types, we
an easily de�ne a linear list of regions, where ea
h region
ontains someother
omplex data stru
ture, su
h as a binary tree. In this
ase, all the nodes in any parti
ular treeare managed as a unit (and all su
h nodes may alias one another) whereas ea
h tree is managed inde-pendently of the others (but no tree may alias any other { unless the trees are referen
e
ounted). Noexisting type system gives programmers the
exibility to alternate between the
oarse-grained memorymanagement used on the nodes of the trees and the �ne-grained memory management used on the treesthemselves. In traditional linear type systems, aliasing is disallowed and in traditional region-basedtype systems all obje
ts in the same
ontainer data stru
ture must inhabit the same region. Similarlimitations arise when programming with mutable data stru
tures: in traditional region-based typesystems all obje
ts stored in a mutable data stru
ture must inhabit the same region, even if they havewildly di�erent lifetimes. We have developed related te
hniques to handle this problem as well.In the remainder of this arti
le, we present a language of regions and linear types in more detail.Se
tion 2 des
ribes a
ore
al
ulus in
luding features for allo
ating and deallo
ating linear regions, pairsand fun
tions. The linear types in this language are based on use types whi
h are in turn derived fromGirard's Logi
 of Unity. Although use types are the
orre
t starting point for our exploration of thistopi
, they are not quite
exible for our purposes. Therefore we add a
onstru
t to our language derivedfrom Wadler's let ! operator [35℄. With this new operator, we
an en
ode Tofte and Talpin's originaltype system. Se
tion 3 des
ribes the abstra
t ma
hine that exe
utes programs in our language. Itspe
i�es the evaluation relation for the abstra
t ma
hine and the stati
 semanti
s for abstra
t ma
hinestates. Se
tion 4 extends the language with referen
e-
ounted regions. On
e again, Wadler's let !
omes in handy, as it permits us to de�ne a form of deferred referen
e
ounting. We give both stati
and operational semanti
s for these extensions. Se
tion 5 extends the language again, this time withlists. Our main goal in this se
tion is to demonstrate how programmers
an safely mix linear types,regions, and referen
e
ounting in the implementation of
omplex data stru
tures. Se
tion 6 introdu
esmutable data stru
tures and shows how they intera
t with with regions and linear types. Finally, se
tion7 dis
usses related work and se
tion 8
on
ludes.2 The Core LanguageOur
ore language arises from the synthesis of a parti
ular linear type system, the use types of Turneret al.[34℄, and a somewhat new variant of Tofte and Talpin's region type system.2.1 The TypesWe �rst explain our
hoi
e of linear type system and then pro
eed to augment the language of typeswith types for regions.

2.1.1 Use TypesThere are many subtly di�erent type systems that, to a �rst approximation, might be
alled \linear."Although the di�eren
es may appear small they
an result in signi�
antly di�erent memory managementproperties. True linear type systems, those type systems pulled along the Curry-Howard isomorphismfrom Girard's linear logi
 [12℄, su
h as Abramsky's intuitionisti
 linear type system [1℄
ontain a
ol-le
tion of multipli
atives, in
luding �1 (�2, a fun
tion type that requires its argument to be usedexa
tly on
e, and �1
 �2, a pair in whi
h ea
h
omponent is used exa
tly on
e. In order to retain theexpressiveness of an ordinary intuitionisti

al
ulus, a single operator (!) is used to make it possible todupli
ate arguments to a fun
tion or
omponents of a pair.Unfortunately, it appears that this type system
annot be given an operational semanti
s withsatisfying memory management properties. Turner and Wadler [33℄ demonstrate that when workingwithin this type system, one must make a
hoi
e: in order to do useful work on an intuitionisti
 obje
t,one must either make a
omplete
opy of the obje
t in whi
h
ase the language admits no e�e
tive wayto share obje
ts, or, if one does not make
opy of an intuitionisti
 obje
t ea
h time it is used, then thereis no way to guarantee that it is safe to deallo
ate obje
ts of linear type.For our appli
ation, we must allow sharing; regions
an
ontain an unbounded number of obje
ts so
opying them is mu
h too expensive. Type system support for expli
it deallo
ation is equally important.Consequently, a true linear type system will not work here. Instead, we use a slightly di�erent systemin whi
h the types of storable obje
ts, su
h as fun
tions and pairs, have two variants: The \linear"variant1
lassi�es obje
ts that are referen
ed by exa
tly one pointer and must be used exa
tly on
e.The intuitionisti
 variant
lassi�es obje
ts that
an be used an unlimited number of times (in
ludingnot at all). Sin
e we have two sorts of fun
tions and two sorts of pairs, we do not need the modality\!."We write �1 �! �2 for generi
 fun
tions where the quali�er � is either �, indi
ating an intuitionisti
fun
tion that may be used many times, or ^, indi
ating a linear fun
tion that must be used exa
tlyon
e.2 After its single use, the
losure
ontaining the fun
tion's free variables will be deallo
ated.Likewise, we write �1 �� �2 for generi
 pair types. A linear pair is deallo
ated after its
omponents havebeen proje
ted. Normally, we will suppress the \�" annotation above the intuitionisti
 types. Hen
e,we write int� int for an intuitionisti
 pair of integers.In our formal work, we will use () as a based type and assume it may be used many times. We
ould have introdu
ed two variants of () just as we have two variants of the other types, but insteadwe will assume that there is no
ost to using () (an implementation need not allo
ate it in the store)and therefore no need to de�ne the linear variant. In our examples, we will freely use other base types,su
h as integers.For simpli
ity, we did not in
lude multi-argument fun
tions in our language. However, we
ansimulate them easily using single-argument fun
tions that a

ept linear pairs as arguments. Therefore,in our examples, rather than write int �̂ int! intwe will often write1We
ontinue to use the terms \linear" and \intuitionisti
" despite loose
onne
tions with intuitionisti
 linear logi
.2Noti
e that the fun
tion is used on
e or many times. Unlike type systems based dire
tly on linear logi
, these fun
tiontypes say nothing about how often their arguments are used. The number of uses of an argument is determined ex
lusivelyby the argument's type.

(int; int)! intIn order to preserve the single-use invariant of linear obje
ts, it is ne
essary to ensure that intu-itionisti
 obje
ts do not
ontain linear obje
ts. The term formation rules help maintain this invariantby preventing linear assumptions from being
aptured in intuitionisti

losures. These rules are dis-
ussed in more detail in the following se
tion. In addition, we
onsider intuitionisti
 pairs with linear
omponent types, su
h as (�1 �̂ �2)� �3 to be synta
ti
ally ill-formed.2.1.2 RegionsRegions are unbounded extents of memory that hold groups of obje
ts. Every region has a uniquename, denoted using the meta-variable �, that
an be used to identify the region and the obje
ts it
ontains. For most purposes, regions are just like any other storage obje
ts. A region with name � hasa type that may be quali�ed as either linear or intuitionisti
: �rgn (�). When a region has linear type,it may be deallo
ated.When a value is allo
ated in a region with name �, the type of the value is tagged with �. Forexample, a
losure in � has type �1 �! �2 at � and similarly with pairs. For the sake of uniformity inour formal language we will assume that all stored obje
ts are allo
ated in some region and thereforethat all fun
tion and produ
t types are annotated \at �," for some region �. However, in our exampleswe will assume there is some global top-level region named \ " that is never deallo
ated and we willnormally omit the \at " annotations.In order to use fun
tions in many
ontexts, they must be polymorphi
 with respe
t to the names oftheir region arguments3. A polymorphi
 fun
tion is
onsidered linear (intuitionisti
), if the underlyingmonomorphi
 fun
tion is linear (intuitionisti
). For example, the intuitionisti
 fun
tion pair, whi
hallo
ates a pair of integers in its argument region �,
ould be given the type8[�℄:(int; rgn(�))! (int� int at �)Sometimes, we will wish to de�ne fun
tions that return new regions they have allo
ated. For thispurpose, we will use an existential type. The simplest su
h fun
tion takes no argument and returnssome new region �: ()!9�: ^rgn (�)Traditional region-based type systems disallow obje
ts of existential type as existentials allow regions toes
ape the s
ope of their de�nition, and, normally, deallo
ation is linked to the s
ope of region de�nition.Our system is similar in that if we want to be able to deallo
ate intuitionisti
 regions, we must pla
esome
onstraints on the way they
ow through programs. However, we do not have to restri
t the
owof linear regions, we must simply ensure referen
es to linear regions are not dupli
ated. Therefore, anexistential type is permitted to hide the name of a linear region but is not permitted to hide the nameof an intuitionisti
 region. Moreover, existential types are themselves linear, meaning that they may beopened exa
tly on
e. We will explain the rules for manipulating existentials in more detail in se
tion2.2.2.3It is fairly straightforward to make our fun
tions polymorphi
 over types as well as regions, but for simpli
ity we omitthis degree of freedom in this paper.

type
ontexts � ::= � j �; �qualifiers � ::= � j ^types � ::= () j �rgn (�) j 8[�℄:�1 �! �2 at � j �1 �� �2 at � j 9�:�intuitionisti
 types I ::= () j rgn(�) j 8[�℄:�1 ! �2 at � j I1 � I2 at �linear types L ::= ^rgn (�) j 8[�℄:�1 !̂ �2 at � j �1 �̂ �2 at � j 9�:�Figure 1: Syntax: Types2.1.3 Summary of Type SyntaxFigure 1 summarizes the syntax of the type language. It also do
uments a subset of the types, rangedover by the meta-variable I , that we refer to as "intuitionisti
" and a disjoint subset, the linear types,ranged over by the meta-variable L. Types (and later terms) are
onsidered equivalent up to renamingof bound variables. We impli
itly assume that type
ontexts, �,
ontain no repeated region names. We
on
atenate two type
ontexts using the notation ��0. If � and �0 have any region names in
ommonthen the notation is unde�ned.Figure 2 summarizes the well-formedness
onditions on types. These
onditions are given by ajudgment with the form � ` � .2.2 ExpressionsFigure 3 presents the expression syntax. As usual, the syntax in
ludes variables as well as introdu
tionand elimination forms for ea
h type of obje
t. We also in
lude two forms of let-expression. The �rst isstandard, but the se
ond is spe
ial and will be explained later. The expressions are best explained in
onjun
tion with their typing rules, but before we
an pro
eed with the typing rules we must present afew auxiliary de�nitions.2.2.1 Type Che
king ContextsThe typing rules for expressions have the form �;� ` e : � where � is a list of assumptions
on
erningthe free type variables in e. We assume that no variable is repeated in �. Rather than using the expli
itstru
tural rules ex
hange,
ontra
tion and weakening to
ontrol reordering, dupli
ation and dis
ardingof assumptions, our type system relies upon a nondeterministi
 operation (./) that splits the linearassumptions in � between the
ontexts �1 and �2. The splitting operation is de�ned below. We willoften write � = �1 ./ �2 ./ �3 as an abbreviation for � = �1 ./ �0 and �0 = �2 ./ �3.� = � ./ �� = �0 ./ �00�; x:I = (�0; x:I) ./ (�00; x:I)� = �0 ./ �00�; x:L = (�0; x:L) ./ �00

� ` ()� ` �rgn (�) (� 2 �)��0 ` �1 ��0 ` �2� ` 8[�0℄:�1 �! �2 at � (� 2 �)� ` �1 � ` �2� ` �1 �̂ �2 at � (� 2 �)� ` I1 � ` I2� ` I1 � I2 at � (� 2 �)�; � ` �� ` 9�:�Figure 2: Well-formed Types
value
ontexts � ::= � j �; x:�expressions e ::= x j () j e1; e2 j �[�℄x:� �! e1 at e2 j e1[�℄ � e2 at e3j e1 �� e2 at e3 j letx �� y = e1 at e2 in e3j pa
k[�; e℄ as 9�:� j unpa
k �; x = e1 in e2j allo
 e j free [�℄ej letx = e1 in e2 j let (y =!e1)x = e2 in e3Figure 3: Syntax: Expressions

� = �0 ./ �00�; x:L = �0 ./ (�00; x:L)We also use the notation ��. When � is �, then all the types in � must be intuitionisti
. When � is^ then � is unrestri
ted. This notation is used to prevent intuitionisti
 obje
t from
ontaining linearobje
ts.2.2.2 Typing Rules for ExpressionsThe typing rules for expressions are derived from
onsideration of three main invariants:1. An obje
t of linear type must be "used" exa
tly on
e.2. Any a

ess to a region (i .e. allo
ation within a region or use of an obje
t within a region) mustbe a

ompanied by proof that the region is still live.3. Referen
es to intuitionisti
 regions must not es
ape the s
ope in whi
h the intuitionisti
 region isintrodu
ed.The �rst invariant is enfor
ed mainly through
areful manipulation of the type
he
king
ontextand the use of the nondeterministi
 splitting operator. The se
ond invariant is enfor
ed by requiringthat the program present a referen
e to a region every time the region is a

essed. We subsequentlyensure that there is a referen
e to a region if and only if the region is still live. The third invariant isenfor
ed by ensuring that intuitionisti
 regions always appear in the type of the data stru
ture that
ontains them. This �nal invariant ensures it is possible to perform a type-based analysis to preventstored intuitionisti
 regions from es
aping the s
ope of their de�nitions.Figures 4 and 5 present the typing rules for expressions. The �rst three rules do not involve regionsso they are normal natural dedu
tion-style typing rules from the linear lambda
al
ulus. The rule forvariables requires that the
ontexts �1 and �2
ontain the only intuitionisti
 variables { we must not letlinear variables go unused. The rule for unit is similar. The last of the three is the rule for sequen
ing.It uses the splitting operator to divide the linear variables between the �rst and se
ond expressions inthe sequen
e.The rules for pairs and fun
tions are more
omplex sin
e we must worry about a

essing regions.Pairs are the simpler of the two so we will explain them �rst. Pairs are allo
ated using the expressione1 �� e2 at e3 where e1 and e2
ompute values that form the
omponents of the pair. The pair isallo
ated into the region denoted by expression e3. As in the typing rule for sequen
ing, the splittingoperator divides the linear variables between the three expressions. There are two further details tonoti
e in this rule. First, the third expression should have type rgn(�), the type of an intuitionisti
region. We do not allow allo
ation into linear region be
ause we do not want an allo
ation to be thesingle use of a linear region. What would be the point of allo
ating an obje
t in a region that
ould notbe used in the future? It would be impossible to use the obje
t itself.4 In a moment, we will de�ne an4There are other ways we
ould organize our language so that a

ess to linear regions is allowed and yet a

ess doesnot
onstitute the single use of a linear region. For example, an allo
ation operation
ould return a pair of the allo
atedobje
t and the referen
e to the region. However, this solution and others we have
onsidered lead to a more
ompli
atedoperational semanti
s.

operation that temporarily
onverts linear regions into intuitionisti
 regions in order to allow a

ess tolinear regions without having to deallo
ate them.A se
ond subtle but important aspe
t to this rule is that it expli
itly maintains the invariant thatintuitionisti
 obje
ts (in this
ase intuitionisti
 pairs) do not
ontain linear obje
ts. It does so throughthe well-formedness judgment on the result type of the expression. If the pair's quali�er � is � then this
onstraint spe
i�es that the
omponent types must not be linear.The elimination form for pairs, letx1 �� x2 = e1 at e2 in e3, proje
ts of the two
omponents of thepair e1 and binds them to x1 and x2 before
ontinuing with the expression e3. The pair must inhabitthe region
omputed by expression e2. This region is not needed at run time to implement proje
tionfun
tion. However, at
ompile time, it serves as a witness to the
ontinued existen
e of the region andthe pair
ontained therein. An implementation
an optimize away the runtime overhead of passingaround these region referen
es using the \ignore region" optimization proposed by Birkedal et al.[2℄,but we will not
on
ern ourselves with su
h details here. As in the introdu
tion form for pairs, the typeof the a

essed region is required to be intuitionisti
.2.2.3 Es
aping Regions, Fun
tion Closures and Existential Pa
kagesBefore we
an explain the typing rules for fun
tions or existentials, we must
larify the invariants thatgovern intuitionisti
 and linear regions. In a typi
al intuitionisti
 linear lambda
al
ulus, it is impossibleto re
laim the resour
es used to
onstru
t intuitionisti
 obje
ts, unless one resorts to meta-linguisti
tools su
h as a garbage
olle
tor. In our language, it is possible to re
laim intuitionisti
 fun
tions andpairs if we pla
e them in linear regions. However, if we would like to ensure that all data stru
tures areeventually
olle
ted, we must also �nd some way to
olle
t intuitionisti
 regions.In prin
iple, our solution is very similar to the original solution proposed by Tofte and Talpin. Thekey idea is to prevent usable referen
es to intuitionisti
 regions from es
aping a parti
ular programs
ope by for
ing every data stru
ture that
ontains a referen
e to a region to de
lare the names ofthese regions in its type. When all region referen
es appear in the types of the data stru
tures that
ontain them, it is possible to dete
t es
aping referen
es by analyzing the type of the data stru
ture.Moreover, if we
an guarantee that no referen
e to a region es
ape a parti
ular s
ope then it will besafe to deallo
ate the region when
ontrol exits that s
ope { we have
onstru
ted the language so thatevery region a

ess requires a referen
e to the region as proof that the region is still live.Unless we are
areful, fun
tion
losures will be able to
apture referen
es to intuitionisti
 regionswithout revealing these referen
es in the type of the
losure. Tofte and Talpin solve this problem byisolating regions in a separate synta
ti

lass from other values and annotating fun
tions with a \latente�e
t" that in
ludes regions stored in the fun
tion
losure. Our approa
h is similar ex
ept that wedo not de�ne a separate synta
ti

lass of regions. Instead, we require all fun
tions to be
losed withrespe
t to intuitionisti
 regions. Therefore, if a fun
tion wants to a

ess a value in an intuitionisti
region, that region must be expli
itly passed as an argument to the fun
tion. Hen
e, the \latent e�e
t"of the fun
tion is represented as part of the type of the fun
tion argument. Sin
e regions are ordinary�rst-
lass values, this is a natural and elegant design. The
losure requirement is enfor
ed by thepredi
ate
losed�(�) (pronoun
ed \� is region-
losed with respe
t to �"), de�ned below.

losed�(()) = true
losed�(rgn(�)) = false
losed�(rgn(�0)) = true (�0 6= �)
losed�(^rgn (�0)) = true
losed�(8[�℄:�1 �! �2 at �0) = true
losed�(�1 �� �2 at �0) =
losed�(�1) ^
losed�(�2)
losed�(9�0:�) =
losed�(�) (�0 6= �)We use the notation
losed (�) (pronoun
ed \� is region-
losed") when
losed�(�) for all regions �.We lift the de�nition of region-
losed pointwise to
ontexts �.Given these de�nitions we
an now interpret the typing rules for fun
tions (see �gure 4). As before,the splitting operator partitions the linear assumptions between the
ontext used to
he
k the fun
tionbody and the
omputation that generates the region into whi
h the
losure is allo
ated. If the
losureis an intuitionisti
 obje
t then following our rule about no linear obje
ts inside intuitionisti
 obje
ts,the
ontext used to
he
k the fun
tion body
an
ontain no linear variables. Finally, this
ontext mustalso be region-
losed. The rule for fun
tion appli
ation ensures the region name arguments (�0) mat
hthe expe
ted region name parameters5 and that the argument has the expe
ted type. As before, thepresen
e of the region e3 attests to the fa
t that the region
ontaining the fun
tion
losure has not yetbeen deallo
ated.Existential types pose similar diÆ
ulties and have similar solutions as fun
tion
losures. In fa
t, dueto Minamide, Morrisett and Harper's en
oding of fun
tion
losures as existential pa
kages [20℄,existentialtypes may be viewed as the real sour
e of the problem of es
aping regions. To ensure intuitionisti
regions
an be restri
ted to a parti
ular program s
ope, we require the type � to be
losed with respe
tto intuitionisti
 regions named � when we form an existential of type 9�:� using the pa
k expression.Well-formed existentials normally
ontain linear regions, whi
h are not restri
ted to any parti
ulars
ope. The elimination form for existentials is the standard unpa
k expression.2.2.4 Region Allo
ation and Deallo
ationWe have
overed the introdu
tion and elimination forms for all of the standard types, only regionsremain (see �gure 5 for the typing rules). The allo
 primitive generates a new linear region witha fresh name. Intuitively, it has the type ()! 9�: ^rgn (�) and formally, we
ould make it a spe
ial
onstant with this type, but for the sake of
onvenien
e6 we add allo
ation as a primitive. The freeoperation
onsumes a linear region. It naturally has the type 8[�℄: ^rgn (�)! (), but again we add it asa primitive to the language.Intuitionisti
 regions are introdu
ed and eliminated using a single synta
ti
 form, let (y =!e1)x =e2 in e3, that was inspired by Wadler's let !
onstru
t [35℄. Operationally, we evaluate e1 expe
ting alinear region named �. That region is bound to y and may be used in e2. The result of evaluating e2 isbound to x and both x and y may be used in e3. Sin
e the linear region bound to y is potentially used5In this rule, we rely on alpha-
onversion of the bound region names in the fun
tion type.6If we made it a
onstant, we would need to �nd a region to hold the fun
tion. We
ould use the " " region, but thenwe would have to add this region to our system formally. Nevertheless, this is a possibility and it is satisfying to knowthat the type stru
ture
aptures region allo
ation exa
tly.

multiple times, we must take great
are to ensure that there is no way the region
an be deallo
ated tooearly. In the �rst expression, y is given the intuitionisti
 type rgn(�) in e2. However, the typing rule
onstrains the type of e2 to be region-
losed with respe
t to � so intuitionisti
 referen
es to �
annotes
ape from e2 into e3. In e3, y is on
e again given the linear type ^rgn (�). Sin
e no referen
es to thisregion
an
ow from e2 to e3, y is the only referen
e to � in e3, justifying its linear type. The
ompletetyping rule for this
onstru
t
an be found in �gure 5.2.3 Tofte and Talpin's letregionThere are
lose
onne
tions between the let ! introdu
ed by Wadler and modi�ed here and Tofte andTalpin's letregion. Both
onstru
ts use a type-based es
ape analysis to ensure safety. When Wadler�rst introdu
ed this idea into his linear lambda
al
ulus, he had no notion of a region name, so hisanalysis was very impre
ise. Region names are a form of singleton type, a very pre
ise
lassi�er forregions that makes our modi�ed
onstru
t mu
h more e�e
tive. In fa
t, we believe it is possible to usethis idea to en
ode Tofte and Talpin's letregion
onstru
t in our
al
ulus. Informally, the translationis quite straightforward: letregion� in e =unpa
k �; x = allo
 () inlet (x =!x)y = e0 infree [�℄x; ywhere the expression e0 is the translation of e. We
onje
ture a formal translation from Tofte andTalpin's
al
ulus7 into our own will be straightforward, but we have not worked through the exer
iseyet.3 The Abstra
t Ma
hinePrograms in our language exe
ute on an abstra
t ma
hine. An abstra
t ma
hine state in
ludes theregion names that may be in use (�), a des
ription of the store (S), whi
h in
ludes a
olle
tion ofallo
ated regions (R) and a
olle
tion of values inhabiting these regions (H) and �nally, the expressionto be evaluated. The syntax of abstra
t ma
hine states is presented in Figure 6.In order to fa
ilitate the proof that our type system is sound, we extend the sour
e language typesystem to the abstra
t ma
hine, giving well-formedness
onditions for ma
hine states, the store andstored values. The inferen
e rules for the well-formed ma
hine states
an be found in �gure 8. Themain purpose of these rules is to guarantee the following simple fa
ts:� There is at most one region with a given region name.� All stored values are well-formed.� The expression to be exe
uted is well-formed with respe
t to the
urrent store.The typing rules for stored values are derived dire
tly from the
orresponding sour
e-level expres-sions. The formal rules may be found in �gure 7.

�;� ` e : � �; ��1; x:�; ��2` x : ��; ��` () : ()� = �1 ./ �2 �;�1 ` e1 : () �; �2 ` e2 : ��;� ` e1; e2 : �� = ��1./ �2 ��0 ` � �;�0; ��1; x:� ` e1 : �1 �;�2 ` e2 : rgn(�)�; � ` �[�0℄x:� �! e1 at e2 : � �! �1 at � (
losed (�1))� = �1 ./ �2 ./ �3 �;�1 ` e1 : 8[�0℄:�1 �! �2 at ��;�2 ` e2 : �1 �;�3 ` e3 : rgn(�)�; � ` e1[�0℄ � e2 at e3 : �2 (�0 � �)� = �1 ./ �2 ./ �3 �;�1 ` e1 : �1�;�2 ` e2 : �2 � ` �1 �� �2 at � �;�3 ` e3 : rgn(�)�; � ` e1 �� e2 at e3 : �1 �� �2 at �� = �1 ./ �2 ./ �3 �;�1 ` e1 : �1 �� �2 at ��;�2 ` e2 : rgn(�) �; �3; x1:�1; x2:�2 ` e3 : �3�;� ` letx1 �� x2 = e1 at e2 in e3 : �3�;� ` e : ��;� ` pa
k[�; e℄ as 9�:� (
losed�(�))(� 2 �)� = �1 ./ �2 �;�1 ` e1 : 9�:� �; �; �2; x:� ` e2 : �2�;� ` unpa
k �; x = e1 in e2 : �2 (� 62 FV(�2))Figure 4: Well-formed Expressions

�;� ` e : ()�; � ` allo
 e : 9�: ^rgn (�)�; � ` e : ^rgn (�)�; � ` free [�℄e : () (� 2 �)� = �1 ./ �2 �;�1 ` e1 : �1 �;�2; x:�1 ` e2 : �2�;� ` letx = e1 in e2 : �2� = �1 ./ �2 ./ �3 �;�1 ` e1 : ^rgn (�)�; �2; y:rgn(�) ` e2 : �2 �;�3; y: ^rgn (�); x:�2 ` e3 : �3�;� ` let (y =!e1)x = e2 in e3 : �3 (
losed�(�2))Figure 5: Well-formed Expressions,
ontinued
stored values s ::= () j h�[�℄x : � �! ei� j hx1 �� x2i� j pa
k[�; x℄ as 9�:� j!xexpressions e ::= � � � j let (y =!z;H)x = e1 in e2region heaps R ::= � j R; x 7! rgn(�)value heaps H ::= � j H; x 7! sstores S ::= R;Hma
hine states � ::= (�;S; e)Figure 6: Abstra
t Ma
hine

�;� ` s : � �; ��` () : ()��0 ` � ��0; ��; x:� ` e : � 0�; ��` h�[�0℄x:� �! ei� : 8[�0℄:� �! � 0 at � (� 2 �)� = �1 ./ �2 �;�1 ` x1 : �1 �;�2 ` x2 : �2 � ` �1 �� �2 at ��;� ` hx1 �� x2i� : �1 �� �2 at � (� 2 �)�;� ` x : ��;� ` pa
k[�; x℄ as 9�:� : 9�:� (� 2 �)�;� ` x : ^rgn (�)�; � `!x : rgn(�)Figure 7: Well-Formed Stored Values

` � : � program � ` S : � store �; � ` e : �` (�;S; e) : � program� ` S : � store � ` R : � �; � ` H : �0� ` R;H : �0 store� ` R : � � ` � : ��;�0 ` R : ��; �;�0 ` R; x 7! rgn(�) : �; x : ^rgn (�)�; � ` S : �0 �;� ` � : ��; � ` H : �0 �0 = �1 ./ �2 �;�1 ` s : ��;� ` H; x 7! s : �2; x : �Figure 8: Well-Formed Ma
hine States

In order to fa
ilitate our proof of type soundness, we have also added one run-time expression to thelanguage. The runtime expression let (y =!z;H)x = e2 in e3 is a natural extension of the programming
onstru
t let (y =!e1)x = e2 in e3. As indi
ated by the operational semanti
s below, on
e the abstra
tma
hine has evaluated the expression e1 and produ
ed an address z, it
ontinues with the evaluationof e2. If e2 allo
ates new obje
ts, these new obje
ts will be stored in the lo
al heap H . On
e e2 hasevaluated to a value, the lo
al heap H is promoted to the global store (or the next en
losing lo
al store).This organization fa
ilitates the proof that referen
es to y do not es
ape the
omputation e2. The typingrule for this runtime expression extends the earlier rule for the spe
ial let
onstru
t to a

ount for thelo
al heap H : � = �1 ./ �2 ./ �3 �;�1 ` y 7!!z;H : y:rgn(�);�0�;�2; y:rgn(�);�0 ` e2 : �2 �;�3; y: ^rgn (�); x:�2 ` e3 : �3�;� ` let (y =!z;H)x = e2 in e3 : �3 (
losed�(�2))3.1 Operational Semanti
sThis subse
tion de�nes the operational semanti
s of the abstra
t ma
hine. The operational semanti
s isreally quite straightforward for su
h a powerful language, but we need to de�ne a fair amount of notationto give a
on
ise spe
i�
ation of the various operations on regions as well as linear and intuitionisti
obje
ts.We use the following notation to add a binding to the store. The notation is only de�ned if x doesnot already appear in the domain of the store.(R;H); x 7! rgn(�) = (R; x 7! rgn(�); H)(R;H); x 7! s = (R;H; x 7! s)We extend this notation in the natural way to allow sequen
es of bindings to be added to the storeas in S;H whi
h extends S with H or S; S0 whi
h extends S with S0.The operation S(x) sele
ts the obje
t at address x from store S. If x does not appear in the storethen the operation is unde�ned. The operation is de�ned below.S; x 7! rgn(�); S0(x) = rgn(�)S; x 7! s ; S0(x) = s (s 6=!y)S; x 7!!y; S0(x) = S(y)When an intuitionisti
 obje
t is used, it remains in the store. However, when a linear obje
t is used,it is deallo
ated. The following two operations (�� for intuitionisti
 obje
ts and �̂ for linear obje
ts)implement this behavior. S �� x = S7If we add universal polymorphism over types to our language, we believe we
an en
ode the entire language. Withoutuniversal polymorphism over types in our language, we
annot en
ode the polymorphism over types or e�e
ts in the Tofteand Talpin
al
ulus, but all the other
onstru
ts appear straightforward.

S; x 7! rgn(�); S0 �̂ x = S; S0S; x 7! s ; S0 �̂ x = S; S0Finally, before we
an de�ne the operational semanti
s, we need to de�ne the evaluation
ontexts.This de�nition is mostly standard. Noti
e, however, that there is no evaluation
ontext of the formlet (y =!z;H)x = E in e. The operational semanti
s makes use of this fa
t.E ::= [℄ j E; e j x;E j �[�℄x:� �! e at E j E[�℄ � e1 at e2 j x[�℄ � E at e j x1[�℄ � x2 at Ej E �� e1 at e2 j x �� E at e j x1 �� x2 at Ej letx �� y = E at e1 in e2 j letx �� y = z at E in ej pa
k[�;E℄ as 9�:� j unpa
k �; x = E in e j allo
 E j free [�℄Ej letx = E in e j let (y =!E)x = e1 in e2The operational semanti
s for the language is given by a mapping from ma
hine states to ma
hinestates. This mapping is presented in �gure 9. In general, an introdu
tion form is evaluated by
hoosinga fresh address8 and extending the store with the appropriate value allo
ated at that address. Whenallo
ating in a region, the operational semanti
s veri�es that there exists a live region with that name.An elimination form su
h as a proje
tion or fun
tion
all is evaluated by looking the pair or fun
tion upin the store, ensuring that the region inhabited by the pair or fun
tion is still alive and �nally taking theappropriate a
tion. The only unusual evaluation rule is the one for the se
ond let form. Evaluationunder one of these let forms has the e�e
t of adding the lo
al heap to the global store for evaluationof the subterm.3.2 Properties of the Core LanguageWe intend to prove a type soundness result for our language. Re
ent resear
h [37, 13, 3℄ indi
ates thatwe should be to obtain our result using synta
ti
 te
hniques. In fa
t, we have intentionally organizedour operational semanti
s so that the hierar
hi
al nature of the region store is impli
it, following theinsights of Cal
agno, Helsen and Thiemann [13, 3℄ and we believe this de
ision will make the proofquite straightforward. We are
urrently investigating the possibility of formalizing the result in a linearlogi
al framework [4℄.4 Referen
e CountingSo far, our implementation of the intuitionisti
 linear type system allows obje
ts of intuitionisti
 typeto be shared (i .e. there may be many pointers to these obje
ts). Obje
ts of linear type, on the otherhand, are always unshared and therefore they may be
olle
ted immediately after they are used. Thesede
isions lead to a
ompletely stati
 memory management dis
ipline. Unfortunately, the la
k of aliasingfor reusable (linear) obje
ts has its disadvantages: it is ne
essary to
opy linear obje
ts in some situ-ations to preserve the single pointer invariant and this
opying
an lead to unne
essary memory use.8By fresh address, we mean an address that does not already appear in the domain of the store. The freshness
onstraint is impli
it in the formal rules.

� �! �0 (�;S;E[()℄) �! (�;S; x 7! ();E[x℄)(�;S;E[x; e℄) �! (�;S;E[e℄) if: S(x) = ()(�;S;E[�[�0℄x:� �! e at y℄) �! (�;S; z 7! h�[�0℄x:� �! ei�;E[z℄) if: S(y) = rgn(�)(�;S;E[x1[�0℄ � x2 at x3℄) �! (�;S �� x1;E[e℄) if: S(x1) = �[�0℄x2:� �! eS(x3) = rgn(�)(�;S;E[x1 �� x2 at x3℄) �! (�;S; y 7! hx1 �� x2i�;E[y℄) if: S(x3) = rgn(�)(�;S;E[letx1 �� x2 = y at x3 in e℄) �! (�;S �� y;E[e℄) if: S(y) = hx1 �� x2i�S(x3) = rgn(�)(�;S;E[pa
k[�; x℄ as 9�:� ℄) �! (�;S; y 7! pa
k[�; x℄ as 9�:� ;E[y℄)(�;S;E[unpa
k �; y = x in e℄) �! (�;S �� x;E[e℄) if: S(x) = pa
k[�; y℄ as 9�:�(�;S;E[allo
 x℄) �! (�; �;S; y 7! rgn(�);E[pa
k[�; y℄ as 9�: ^rgn (�)℄) if: S(x) = ()(�;S;E[free [�℄x℄) �! (�;S �̂ x;E[()℄) if: S(x) = rgn(�)(�;S;E[letx = x in e℄) �! (�;S;E[e℄)(�;S; y 7!!z;H ;E2[e1℄) �! (�0;S0; y 7!!z;H 0; e01)(�;S;E1[let (y =!z;H)x = E2[e1℄ in e2℄) �! (�0;S0;E1[let (y =!z;H 0)x = e01 in e2℄)(�;S;E[let (y =!y;H)x = x in e℄) �! (�;S;H ;E[e℄)Figure 9: Operational Semanti
s

types � ::= � � � j #rgn (�)linear types L ::= � � � j #rgn (�)expressions e ::= � � � j #allo
 e j in
[�℄e j de
[�℄e
ontexts E ::= � � � j #allo
 E j in
[�℄E j de
[�℄Eregions R ::= � � � j R; x 7! hn; rgn(�)i; x1 7! #x; : : : ; xn 7! #xFigure 10: Syntax for Referen
e Counting Constru
tsAlternatively, it is ne
essary to
onvert linear regions into intuitionisti
 regions for signi�
ant portionsof a program and to delay region deallo
ation beyond the point at whi
h a region is semanti
ally dead.Chirimar, Gunter and Rie
ke [7℄ proposed an entirely di�erent model of linear logi
. They usedreferen
e
ounting to keep tra
k of the number of pointers to an obje
t. The linear type system ensuresthat referen
e
ounts are maintained a

urately. Referen
e
ounts add a dynami

omponent to thememory management system that
omplements a purely stati
 approa
h. Rather than having to
opyobje
ts or
onvert linear regions into intuitionisti
 regions, it is possible to manipulate referen
e
ounts.In general, one
an augment the
al
ulus of previous se
tions with a third quali�er (#) and manageregions, pairs,
losures or other heap-allo
ated obje
ts by referen
e
ounting.9 Here, for simpli
ity, we
on
entrate ex
lusively on referen
e-
ounted regions. The new language
onstru
ts are presented inFigure 10. The new type of referen
e-
ounted regions is
onsidered linear { assumptions with this typemay not be impli
itly dupli
ated or dis
arded. The referen
e
ounts are expli
itly dupli
ated using thein
 fun
tion and expli
itly de
remented and freed when the
ount rea
hes zero using the de
 fun
tion.Figure 11 de�nes additional rules for the well-formed types and expressions.In the previous se
tions, the !e operator made it possible to temporarily treat linear regions asintuitionisti
 ones to avoid
ostly
opying. Here, we
an use the same
onstru
t to temporarily in
reasereferen
e
ounts without the runtime
ost of having to do the a
tual in
rement operation. In otherwords, we use the more
onventional interpretation of intuitionisti
 types in
onjun
tion with referen
e
ounting to obtain a form of deferred referen
e
ounting. This tri
k also
onveniently allows us to reuseall the allo
ation and a

ess rules for pairs and
losures for both referen
e-
ounted regions and othersorts of regions.4.1 Operational Semanti
sThe operational semanti
s for the referen
e
ounting expressions is presented in the �gure 12. Noti
ethat the semanti
s for in
rement and de
rement operations relies upon two auxiliary fun
tions. Theseauxiliary fun
tions are unde�ned if the store does not have the proper form.The other operations in the language remain essentially un
hanged. In order to allow a

ess toreferen
e
ounted regions, we need only extend the store a

ess fun
tion slightly:9One does have to be
areful to ensure that referen
e-
ounted obje
ts
ontain intuitionisti
 obje
ts only, not linearobje
ts or other referen
e
ounted obje
ts. This may be a

omplished using identi
al te
hniques to those of previousse
tions whi
h ensure that only intuitionisti
 obje
ts appear inside of intuitionisti
 obje
ts. Alternatively, one
ould allowlinear or referen
e
ounted obje
ts inside other referen
e
ounted obje
ts at the expense of a more
omplex run-timesystem that re
ursively deallo
ates sub
omponents of a referen
e-
ounted data stru
ture.

� ` � � ` #rgn (�) (� 2 �)�;� ` e : � �;� ` e : ()�; � ` #allo
 e : 9�: #rgn (�)�; � ` e : #rgn (�)�; � ` in
[�℄e : #rgn (�) �̂ #rgn (�) at � (� 2 �)�;� ` e : #rgn (�)�; � ` de
[�℄e : () (� 2 �)� = �1 ./ �2 ./ �3 �;�1 ` e1 : #rgn (�)�; �2; y:rgn(�) ` e2 : �2 �;�3; y: #rgn (�); x:�2 ` e3 : �3�;� ` let (y =!e1)x = e2 in e3 : �3 (
losed�(�2))� ` R : �� ` R; x 7! hn; rgn(�)i; x1 7! #x; : : : ; xn 7! #x : �; x1: #rgn (�); : : : ; xn: #rgn (�)Figure 11: Well-Formed Referen
e Counting Constru
ts

(�;S;E[#allo
 y℄) �! (�; �;S; x 7! h1; rgn(�)i; x1 7! #x;E[pa
k[�; x1℄ as 9�: #rgn (�)℄)(�;S;E[in
[�℄x℄) �! (�; in
(S;x; y); z 7! hx �̂ yi�;E[z℄)where: in
(S; x 7! hn; rgn(�)i; x1 7! #x; : : : ; xn 7! #x; S0;xi;xn+1)= S; x 7! hn+ 1; rgn(�)i; x1 7! #x; : : : ; xn+1 7! #x; S0(�;S;E[de
[�℄x℄) �! (�; de
(S;x);E[()℄)where: de
(S; x 7! hn; rgn(�)i; x1 7! #x; : : : ; xn 7! #x; S0;xi)= S; x 7! hn� 1; rgn(�)i; x1 7! #x; : : : ; xi�1 7! #x; xi+1 7! #x; : : : ; xn 7! #xde
(S; x 7! h1; rgn(�)i; x1 7! #x; S0;x1)= S; S0Figure 12: Referen
e Counting Constru
ts: Operational Semanti
s(S; x 7! hn; rgn(�)i; x1 7! #x; : : : ; xn 7! #x; S0)(xi) = rgn(�)We must also extend the de�nition of region-
losed:
losed�(#rgn (�0)) = true5 Container Data Stru
turesOne of the primary weaknesses of region based memory management on its own is that all
ontainerdata stru
tures are homogeneous with respe
t to the regions that their elements inhabit. In otherwords, all elements of a list, tree, or other re
ursive datatype are required to inhabit the same region.Consequently, all elements of any given list or tree must have the same lifetime. For long-lived
ontainersfor whi
h both insertions and deletions are
ommon, this strategy
an in
ur quite a
ost as none of theobje
ts that are removed from the
olle
tion
an be deallo
ated until the entire
olle
tion is deallo
ated.Tofte and others have developed
lever programming te
hniques to avoid this problem in many
ases.In essen
e, they manually mimi
 the a
tion of the
opying garbage
olle
tor. More spe
i�
ally, theyperiodi
ally
opy the
ontainer data stru
ture from one region to another. After the
opy, they
easeto use the data in the old region so it may safely be deallo
ated. Dan Wang and Andrew Appel [39℄have exploited similar ideas to write a
omplete
opying garbage
olle
tor in a type safe language thatuses the regions.Although
opying is highly e�e
tive solution in many situations, it is not without its own overhead.If the
ontainer data stru
ture is large, the extra spa
e and time required to
opy the live data fromone region to another may not be a

eptable. In our language, programmers have many more
hoi
es.

types � ::= � � � j � �list at �expressions e ::= � � � j �[℄� at e j �
ons (e1; e2) at e3 j �
ase e1 at e2 ([℄) e3 j (x; y)) e4)Figure 13: ListsOn the one hand, they may employ the
opying solution that we have just dis
ussed. On the otherhand, programmers
an mix linear types with regions to solve this problem in new ways. In parti
ular,programmers
an de�ne heterogeneous data stru
tures. In other words,
ontainers may hold elementsstored in di�erent regions and therefore individual obje
ts may be deallo
ated independently of theother obje
ts in the
ontainer.Figure 13 presents the syntax of an extension to our language with lists. Like other data stru
turessu
h as pairs and
losures, intuitionisti
 lists are
onstrained so that they do not
ontain linear obje
ts.Figure 14 presents the well-formedness rules for list types.There are three lists expressions. The �[℄� at e expression introdu
es an empty list with type � inthe region designated by e and �
ons (e1; e2)at e3 prepends e1 to the list e2, in the region designated bye3. The
ase
onstru
t follows the �rst bran
h if e is the empty list and the se
ond bran
h otherwise.The typing rules for these
onstru
ts extend the typing rules for the
ore language spe
i�ed in previousse
tions in the natural way. Figure 14 also presents the well-formedness rules for list expressions.These typing rules (in parti
ular, the rule for
ons) require that the spine of the list inhabits a singleregion.10 However, the elements of the list may inhabit di�erent regions. For example, a linear list oflists might be given the following type.9�: ^rgn (�) �̂ (() �list at �) ^listIn this
ase, ea
h element of the list is an existential pa
kage
ontaining a pair of a referen
e to aregion and a list inhabiting that region. Ea
h of these inner lists may be pro
essed and deallo
atedindependently of any of the other inner lists. However, sin
e the regions are linear they do not aliasone other. If a programmer requires a data stru
ture that involves aliasing between the lists then areferen
e
ounting solution
ould be used:9�: #rgn (�) �̂ (() �list at �) ^listThe dynami
 nature of the referen
e
ounts makes it unne
essary to
opy the elements of the outerlist.6 Mutable Data Stru
turesMutable data stru
tures pose many of the same problems for traditional region-based memory manage-ment s
hemes as
ontainers like lists do. Any obje
t that is stored in a referen
e must live in the same10If the language revealed the stru
ture of the implementation of lists in terms of sum types and re
ursive types, thenwe
ould
hoose how to implement the spine { either as a homogenous or a heterogeneous data stru
ture.

� ` � � ` �� ` � ^list at � (� 2 �)� ` I� ` I �list at � (� 2 �)�;� ` e : � �;� ` e : rgn(�) � ` � �list at ��;� ` �[℄� at e : � �list at �� = �1 ./ �2 ./ �3 �;�1 ` e1 : � �;�2 ` e2 : � �list at � �;�3 ` e3 : rgn(�)�; � ` �
ons (e1; e2) at e3 : � �list at �� = �1 ./ �2 ./ �3 ./ �4�;�1 ` e1 : � 0 �list at � �;�2 ` e2 : �rgn (�)�; �3 ` e3 : � �;�4; x:� 0; y:� 0 �list` e4 : ��;� ` �
ase e1 at e2 ([℄) e3 j (x; y)) e4) : �Figure 14: Well-Formed List Constru
ts
types � ::= � � � j � option ref at �expressions e ::= � � � j refsome(e1) at e2 j deref e1 at e2 (Null) e3 j Some x) e4)j store e1 := e2 at e3 (Null) e4 j Some x) e5)Figure 15: Mutable Data

� ` � � ` L� ` L option ref at � (� 2 �)�;� ` e : � � = �1 ./ �2 �;�1 ` e1 : � �;�2 ` e2 : rgn(�)�; � ` refsome(e1) at e2 : � option ref at �� = �1 ./ �2 ./ �3 ./ �4 �;�1 ` e1 : � option ref at � �;�2 ` e2 : rgn(�)�; �3 ` e3 : � 0 �;�4; x:� ` e4 : � 0�;� ` deref e1 at e2 (Null) e3 j Some x) e4) : � 0� = �1 ./ �2 ./ �3 ./ �4 ./ �5 �;�1 ` e1 : � option ref at � �;�2 ` e2 : ��;�3 ` e3 : rgn(�) �; �4 ` e4 : � 0 �;�5; x:� ` e5 : � 0�;� ` store e1 := e2 at e3 (Null) e4 j Some x) e5)Figure 16: Well-formedness for Mutable Data Stru
turesregion as all other obje
ts that are ever stored in that region. On
e again, obje
ts and their resour
esmay not be reused on individual basis and again, linear invariants
an help.In this se
tion, we de�ne a new sort of referen
e that may be pointed to by many obje
ts, but whi
hholds the lone pointer to the obje
t it
ontains. We use a dynami

he
k to ensure that a linear obje
tis not extra
ted from su
h a referen
e multiple times. More pre
isely, the obje
t stored in the referen
emay be null or an address. The dereferen
e operation extra
ts the obje
t, be it null or an address, and
ontinues with one of two bran
hes depending on the result. If the extra
ted obje
t is an address thenthe se
ond bran
h is exe
uted and the address is bound to x. The assignment operator stores an obje
tinto the referen
e. If the referen
e
ontained null before the store operation was attempted then
ontrol
ontinues with the �rst bran
h and otherwise
ontrol
ontinues with the se
ond bran
h.The new referen
e type (� option ref at �) belongs to the set of intuitionisti
 types (I) but unlikeother intuitionisti
 obje
ts, it may
ontain obje
ts of linear type. Figure 16
ontains the well-formednessrules for the new types and expressions.There is a signi�
ant
ost to using this me
hanism. At
ompile time, there is no way to distinguishbetween a referen
e that
ontains null and a referen
e that
ontains an obje
t. Consequently, althoughthe extended type system is safe in the sense that it prevents a

ess to dangling pointers, it does notensure that all data stru
tures are eventually
olle
ted. Sin
e referen
es are intuitionisti
, it is possibleto forget all pointers to a referen
e
ell and thereby to lose a

ess to any linear obje
t it may
ontain.If the linear obje
t in question is a region then there is the potential to leak an unbounded amount ofspa
e. It may be possible to pursue a dynami
 solution to this memory leak problem, but we will leaveit for future work.

7 Related and Future WorkThis paper draws together two di�erent bran
hes of type theory designed for managing
omputerresour
es. Resear
h on linear types originated with Girard's linear logi
 [12℄ and Reynolds' synta
ti

ontrol of interferen
e [27℄. Linear type systems were later studied by many resear
hers [17, 35, 1, 18,6, 34, 40℄. Type and e�e
t systems were introdu
ed by Gi�ord and Lu
assen [11℄ and they too havebeen explored by many others [15, 30, 32, 22℄.More re
ently, a number of new linear type systems, or more generally, \substru
tural type theories,"have been developed. For example, Kobayashi's quasi-linear types [16℄, Polakow and Pfenning's orderedtype theory [25, 26℄, O'Hearn's bun
hed typing [23℄, and Smith, Walker and Morrisett's alias types[29, 38℄ fall into this
ategory. There is also renewed interest in developing new logi
s that fa
ilitateHoare-style reasoning about heap-allo
ated data stru
tures. Reynolds [28℄ and Ishtiaq and O'Hearn [14℄have developed substru
tural logi
s for just this purpose. An interesting line of resear
h is to investigatehow these other systems for alias
ontrol intera
t with region-based memory management. We suspe
tthat the grouping aspe
t of regions is largely orthogonal to the reasoning prin
iples used in these logi
sand type theories, and we hope that further study of
ombined systems will lead to interesting newprogramming invariants.The initial inspiration for this work
omes from Walker, Crary and Morrisett's
apability
al
ulus [8,37℄. The
apability
al
ulus uses a notion of \stati

apability" to
ontrol a

ess to regions. Capabilityaliasing was
ontrolled through a
ombination of bounded quanti�
ation and a form of synta
ti

ontrolof interferen
e. Our
urrent work has the advantage of being both
on
eptually simpler and moreexpressive in a number of ways (although there are also
ertain
ontinuation-passing style programs that
an be written in the
apability
al
ulus, but not here). The prin
ipal reason for these improvementsis that we have taken standard linear type systems and applied them uniformly a
ross a language inwhi
h regions are ordinary �rst-
lass obje
ts rather than spe
ial, se
ond-
lass
onstru
ts.There are several other ongoing proje
ts that are exploring new implementation te
hniques andappli
ations of regions. Makholm, Niss and Henglein [19℄ have had the same insights with respe
tto referen
e-
ounted regions as we have. They are
urrently looking at type inferen
e te
hniques foran imperative language with (se
ond-
lass) referen
e-
ounted regions. Deline and F�ahndri
h [9℄ aredeveloping a new type-safe variant of C
alled Vault. They useWalker, Crary andMorrisett's
apabilitiesin innovative ways to
ontrol a

ess to all sorts of program resour
es in
luding memory regions. They arein the pro
ess of porting devi
e drivers written in C to Vault to verify that the drivers obey importantsafety properties.Dan Grossman, Trevor Jim and Greg Morrisett are
urrently developing a se
ond type-safe variantof C,
alled Cy
lone, whi
h, like Vault, gives low-level programmers
ontrol over data stru
ture layout,powerful me
hanisms for type abstra
tion and strong safety guarantees. Currently, Cy
lone relies upona
onservative garbage
olle
tor. However, together with Grossman et al., we are exploring ways toin
orporate the memory management te
hniques des
ribed here into Cy
lone. Certain features of thisadvan
ed language, in
luding existential polymorphism over types, abstra
t types and ex
eptions requirefurther thought, but none of these
hallenges appear to be insurmountable. We feel
on�dent that wewill soon be able to give low-level programmers a variety of options when it
omes to
hoosing theirown safe memory management poli
ies.

8 Con
lusionsWe have developed a new framework for safe, mostly-stati
 memory management. The frameworkdraws its power from the fa
t that it
ombines two well-studied paradigms for
ontrolling
omputerresour
es, one based on linear typing and the other based on regions. One of the important aspe
ts ofour development is that we make a
lean separation between the role played by regions and the roleplayed by linear typing:� Regions group obje
ts with related lifetimes. An operation on regions, su
h as deallo
ation,simultaneously a�e
ts all obje
ts within the group.� Linear types
ontrol the number of uses of any obje
t. Regions themselves are
onsidered ordinaryprogram obje
ts so linear types
an
ontrol the number of uses of ea
h region.A se
ond important
omponent of our system is that we freely mix di�erent interpretations of lineartypes for maximum programmer
exibility. For example, when the number of uses of a parti
ularregion is easy to determine at
ompile-time, it is usually possible to employ a purely stati
 memorymanagement solution based on the
onventional interpretation of linear types. However, if the numberof uses is unknown, then a stati
 solution may be overly restri
tive. In this
ase, programmers
an
hoose a more dynami
 solution to their memory management problems involving referen
e
ounting.A
knowledgmentsMany of the ideas in this paper arose from dis
ussions with Greg Morrisett. In parti
ular, the me
hanismwe use to handle mutable data stru
tures was developed in
ollaboration with Greg. We have alsobene�ted from te
hni
al insights provided by Frank Pfenning.Referen
es[1℄ Samson Abramsky. Computational interpretations of linear logi
. Theoreti
al Computer S
ien
e,111:3{57, 1993.[2℄ Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inferen
e to von Neumann ma-
hines via region representation inferen
e. In Twenty-Third ACM Symposium on Prin
iples ofProgramming Languages, pages 171{183, St. Petersburg, January 1996.[3℄ Cristiano Cal
agno. Strati�ed operational semanti
s for safety and
orre
tness of region
al
ulus.In ACM Symposium on Prin
iples of Programming Languages, pages ?{?, January 2001.[4℄ Iliano Cervesato and Frank Pfenning. A linear logi
al framework. In Information and Computation,July 2000. To appear.[5℄ Chih-Ping Chen and Paul Hudak. Rolling your own mutable adt { a
onne
tion between lineartypes and monads. In Twenty-Fourth ACM Symposium on Prin
iples of Programming Languages,pages 54{66, Paris, January 1997.

[6℄ Jawahar Chirimar, Carl A. Gunter, and Jon G. Rie
ke. Proving memory management invariantsfor a language based on linear logi
. In ACM Conferen
e on Lisp and Fun
tional Programming,pages 139{150, April 1992.[7℄ Jawahar Chirimar, Carl A. Gunter, and Jon G. Rie
ke. Referen
e
ounting as a
omputationalinterpretation of linear logi
. Journal of Fun
tional Programming, 6(2):195{244, Mar
h 1996.[8℄ Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a
al
ulus of
apabilities. In Twenty-Sixth ACM Symposium on Prin
iples of Programming Languages, pages262{275, San Antonio, January 1999.[9℄ Rob Deline and Manuel F�ahndri
h. the Vault proje
t. Presented at the Carnegie Mellon prin
iplesof programming languages seminar, November 2000.[10℄ David Gay and Alex Aiken. Memory management with expli
it regions. In ACM Conferen
e onProgramming Language Design and Implementation, pages 313 { 323, Montreal, June 1998.[11℄ D. K. Gi�ord and J. M. Lu
assen. Integrating fun
tional and imperative programming. In ACMConferen
e on Lisp and Fun
tional Programming, Cambridge, Massa
husetts, August 1986.[12℄ Jean-Yves Girard. Linear logi
. Theoreti
al Computer S
ien
e, 50:1{102, 1987.[13℄ Simon Helsen and Peter Thiemann. Synta
ti
 type soundness for the region
al
ulus. In workshopon higher order operational te
hniques in semanti
s, pages 1{19, September 2000.[14℄ Samin Ishtiaq and Peter O'Hearn. BI as an assertion language for mutable data stru
tures. Pre-liminary draft, Mar
h 2000.[15℄ Pierre Jouvelot and D. K. Gi�ord. Algebrai
 re
onstru
tion of types and e�e
ts. In EighteenthACM Symposium on Prin
iples of Programming Languages, pages 303{310, January 1991.[16℄ Naoki Kobayashi. Quasi-linear types. In Twenty-Sixth ACM Symposium on Prin
iples of Program-ming Languages, pages 29{42, San Antonio, January 1999.[17℄ Yves Lafont. The linear abstra
t ma
hine. Theoreti
al Computer S
ien
e, 59:157{180, 1988.[18℄ Patri
k Lin
oln and John Mit
hell. Operational aspe
ts of linear lambda
al
ulus. In IEEE Sym-posium on Logi
 in Computer S
ien
e. IEEE Computer So
iety, 1992.[19℄ Henning Makholm, Henning Niss, and Fritz Henglein. Towards a more
exible region type sys-tem. Presented at Carnegie Mellon University Prin
ipals of Programming Languages Seminar,September 2000.[20℄ Y. Minamide, G. Morrisett, and R. Harper. Typed
losure
onversion. In Twenty-Third ACMSymposium on Prin
iples of Programming Languages, pages 271{283, St. Petersburg, January1996.[21℄ Eugenio Moggi. Notions of
omputation and monads. Information and Computation, 93:55{92,1991.

[22℄ Hanne Riis Nielson and Flemming Nielson. Higher-order
on
urrent programs with �nite
ommu-ni
ation topology. In Twenty-First ACM Symposium on Prin
iples of Programming Languages,pages 84{97, January 1994.[23℄ Peter O'Hearn. On bun
hed typing. Unpublished manus
ript, July 2000.[24℄ Simon Peyton Jones and John Hughes (ed.). Report on the programming language Haskell 98, anon-stri
t purely fun
tional language. Te
hni
al Report YALEU/DCS/RR-1106, Yale University,Department of Computer S
ien
e, February 1999.[25℄ Je� Polakow. Logi
 programming with an ordered
ontext. In Conferen
e on Prin
iples andPra
ti
e of De
larative Programming, Montreal, September 2000.[26℄ Je� Polakow and Frank Pfenning. Properties of terms in
ontinuation-passing style in an orderedlogi
al framework. In Workshop on Logi
al Frameworks and Meta-Languages, Santa Barbara, June2000.[27℄ John C. Reynolds. Synta
ti

ontrol of interferen
e. In Fifth ACM Symposium on Prin
iples ofProgramming Languages, pages 39{46, Tu
son, 1978.[28℄ John C. Reynolds. Intuitionisti
 reasoning about shared mutable data stru
ture. In Symposium inCelebration of the Work of C. A. R. Hoare, 2000. To appear.[29℄ Frederi
k Smith, David Walker, and Greg Morrisett. Alias types. In European Symposium onProgramming, pages 366{381, Berlin, Mar
h 2000.[30℄ J.-P. Talpin and P. Jouvelot. Polymorphi
 type, region, and e�e
t inferen
e. Journal of Fun
tionalProgramming, 2(3):245{271, July 1992.[31℄ Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy H�jfeld Olesen, Peter Sestoft,and Peter Bertelsen. Programming with regions in the ML Kit (for version 3). Te
hni
al Report98/25, Computer S
ien
e Department, University of Copenhagen, 1998.[32℄ Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information and Com-putation, 132(2):109{176, 1997.[33℄ David N. Turner and Philip Wadler. Operational interpretations of linear logi
. Theoreti
al Com-puter S
ien
e, 227:231{248, 1999. Spe
ial issue on linear logi
.[34℄ David N. Turner, Philip Wadler, and Christian Mossin. On
e upon a type. In ACM InternationalConferen
e on Fun
tional Programming and Computer Ar
hite
ture, San Diego, CA, June 1995.[35℄ Philip Wadler. Linear types
an
hange the world! In M. Broy and C. Jones, editors, ProgarmmingCon
epts and Methods, Sea of Galilee, Israel, April 1990. North Holland. IFIP TC 2 WorkingConferen
e.[36℄ Philip Wadler. The marriage of e�e
ts and monads. In ACM International Conferen
e on Fun
-tional Programming, pages 63{74, Baltimore, September 1998.[37℄ David Walker, Karl Crary, and Greg Morrisett. Typed memory management in a
al
ulus of
apabilities. ACM Transa
tions on Programming Languages and Systems, 2000. To appear.

[38℄ David Walker and Greg Morrisett. Alias types for re
ursive data stru
tures. In Workshop on Typesin Compilation, Montreal, September 2000.[39℄ Daniel C. Wang and Andrew Appel. Garbage
olle
tion = regions + intensional types. Unpublishedmanus
ript., O
tober 1999.[40℄ Keith Wansbrough and Simon Peyton Jones. On
e upon a polymorphi
 type. In Twenty-SixthACM Symposium on Prin
iples of Programming Languages, pages 15{28, San Antonio, January1999.

