A Foundation for Space-Safe Transformations of Call-by-Need Programs

Jorgen Gustavsson and David Sands

Chalmers*

Abstract

We introduce a space-improvement relation on programs
which guarantees that whenever M is improved by NV, re-
placement of M by N in a program can never lead to
asymptotically worse space (heap or stack) behaviour, for
a particular model of garbage collection. This study takes
place in the context of a call-by-need programming language.
For languages implemented using call-by-need, e.g, Haskell,
space behaviour is notoriously difficult to predict and anal-
yse, and even innocent-looking equivalences like z+y = y+x
can change the asymptotic space requirements of some pro-
grams. Despite this, we establish a fairly rich collection of
improvement laws, with the help of a context lemma for a
finer-grained improvement relation. We briefly consider an
application of the theory; we prove that inlining of affine-
linear bindings (as introduced by a certain class of “used-
once” type-systems) is work- and space-safe. We also show
that certain weaker type systems for usage do not provide
sufficient conditions for space-safe inlining.

1 Introduction

The space-usage of lazy functional programs is perhaps the
most thorny problem facing programmers using languages
such as Haskell. Almost all programmers unable to predict
or control the space behaviour of their lazy programs. Even
the most advanced programmers, who are able to visualise
the space use of their programs, complain that the “state-of-
the-art” compilers introduce space-leaks into programs that
they believe ought to be space-efficient.

In recent years a successful line of research into pro-
filing tools for lazy functional languages [RW93, RR96]
has greatly improved a programmer’s chances of locat-
ing sources of space leaks. But apart from a few high-
level operational semantics which claim to model space be-
haviour, to the best of our knowledge there have been no
formal/theoretical /semantics-based approaches to reasoning
about space behaviour of programs.

Rather than tackling the problem of determining the ab-
solute space behaviour of a program, in this paper we study

*Chalmers University of Technology and Goéteborg University,
Sweden. {gustavss,dave}@cs.chalmers.se

Draft of 2 July; submitted for review to HOOTS’99

notions of relative space efficiency. We pose the question:
when it is space-safe to replace one program fragment by
another? To this end we introduce a space-improvement
relation on terms, which guarantees that whenever M is
improved by N, replacement of M by N in a program can
never lead to asymptotically worse space (heap or stack) be-
haviour, for a particular model of computation and garbage
collection.

The fact that we only aim to prevent asymptotic worsen-
ing might seem rather weak. One reason is that we (wish to)
work with high-level semantic models of space behaviour, so
it is not meaningful for us to make stronger claims. Another
reason is that asymptotic changes in space behaviour are not
at all unusual. (We consider such an example below.)

Why is the space behaviour of lazy functional programs
difficult to predict? One reason is of course that all mem-
ory management is automatic, coupled with the fact that the
heap allocation rate of functional programs is very high; just
about everything lives in the heap. A second reason is that
the non-strict evaluation order that is required by the lan-
guage specification means that computation-order bears no
obvious relation to textual structure of code. The third, and
perhaps most subtle reason is that all realistic implemen-
tations of lazy languages use a call-by-need. Call-by-need
optimises call-by-name by ensuring that when evaluating a
given function application, arguments are evaluated at most
once. The effect of sharing is to reduce — often dramatically
— the time required to execute a program. But the effect of
this additional sharing on the space behaviour is to prolong
the lifetime of data, and this is often at the cost of space.

As an illustration of some of these problems, consider one
of the most innocent of the extensional equivalences that
functional programming languages enjoy: =z +y = y + .
Now consider the following Haskell program:

let zs = [1..n]
z = head zs
y = last s

inz+y

This program runs in O(n) time and in constant space. First
z is evaluated' to obtain 1, then y is evaluated, which in-
volves constructing and traversing the entire list [1..n]. For-
tunately, the cocktail of lazy evaluation, tail recursion and
garbage collection guarantees that as this list is constructed

LEvaluation order is intentionally left unspecified in the Haskell
language definition, but at the time of writing the main implemen-
tations coincidentally evaluate the arguments to such primitive func-
tions from left to right.

and traversed it can also be garbage collected, and thus re-
quiring only constant space.

Now consider what happens when x + y is replaced by
y + x. In this case the time complexity is the same, but
now the space required is O(n). This is because when y
builds and traverses the list [1..n], the elements cannot be
garbage-collected because the whole list is still referenced by
the variable x.

So we can conclude that replacing x + y by y + z can
give an asymptotic change in space behaviour — i.e., there is
no constant which bounds the potential worsening in space
when this law is applied in an arbitrary context. So our
theory of improvement will not relate this particular pair of
terms.

But expressions that fall outside our improvement theory
are easy to find (see e.g., [PJ87] for more tricky examples).
Are there any improvements which are guaranteed to hold in
absolutely any program context? In this article we show that
there are indeed many valid space-improvement laws, and
thus we lay the foundations for a theory of space behaviour
of call-by-need programs.

The remainder of the article is organised as follows. Sec-
tion 2 describes related work. Section 3 gives the syntax
and operational semantics of our language. Section 4 de-
fines what we mean by the space-use of programs, in terms of
a definition of garbage collection for abstract-machine con-
figurations. We informally argue the ways in which this def-
inition agrees with lower-level models, and mention a num-
ber of subtle choices and variations in actual implementation
methods. Section 5 defines the main improvement relation,
weak improvement, and presents the basic laws and proper-
ties of this relation. Section 6 describes a finer-grained
improvement relation, strong improvement, which is used to
establish the weak improvement laws via a contexrt lemma.
Section 7 considers an application of the theory; we prove
that inlining of affine-linear bindings (as introduced by a cer-
tain class of “used-once” type-systems) is work- and space-
safe. Section 8 concludes.

2 Related Work

Improvement theory was originally developed in the call-
by-name setting [San95, San91, San96] for the purpose of
reasoning about running-times of programs. Moran and
Sands [MS99] developed a call-by-need time-improvement
theory, together with a number of induction principles, and
essentially all the laws that we prove here are also time-
improvements.

A number of operational semantics have been proposed
which are intended to model the space requirements of call-
by-need programs. Launchbury suggested adding a garbage
collection rule to his natural semantics [Lau93]; instead, our
notion of computation and memory usage is based on Ses-
toft’s mark-1 abstract machine[Ses97], which makes stack-
usage explicit (and thereby shortcuts some space-leaks and
anomalies in Launchbury’s proposal). Rose [Ros96] uses a
graph reduction model based on explicit substitutions in
which the correct modelling of space is emphasised, and in
[BLR96] a sketch of the space-safety of aspects of the STG-
machine implementation with respect to the model is given.

Morrisett and Harper [MH98] use a similar style of ab-
stract machine description to that used here in order to in-
vestigate the semantics of memory management in an ML-
like language (see also [MFH95]). They give abstract speci-

fications of garbage collection, and prove the correctness of
a particular type-based collection scheme.

3 Operational Semantics

Our language is an untyped lambda calculus with recursive
lets, structured data, case expressions, integers (ranged over
by n and m) with addition and a zero test. We work with a
restricted syntax in which arguments to functions (including
constructors) are always variables:

L, M,N =z | e.M | Mz |cZ
| n|M+ N |add,M |iszero M
| let {Z=DM}inN
| case M of {c; % — N;}

The syntactic restriction is now rather standard, following
its use in core language of the Glasgow Haskell compiler,
e.g., [PJPS96, PJS98], and in [Lau93, Ses97].

All constructors have a fixed arity, and are assumed
to be saturated. By c¢Z we mean cxy --- ,. The only
values are lambda expressions and fully-applied construc-
tors. Throughout, z,y,z, and w will range over vari-
ables, ¢ over constructor names, and V' and W over values
(Az.M | cZ | n). We will write

let {Z=M}in N

as a shorthand for let {1 = Mi,... ,xn, = M, } in N where
the & are distinct, the order of bindings is not syntactically
significant, and the & are considered bound in N and the M
(so our lets are recursive). Similarly we write

case M of {¢; @ » N;}
for
case M of {c1T1 = Ni| - |em Tm = N }.

where each #; is a vector of distinct variables, and the ¢; are
distinct constructors. In addition, we will sometimes write
alts as an abbreviation for case alternatives {c; #; > N;}.

The functions add,, are included for convenience in the
definition of the abstract machine, and represent an inter-
mediate step in the addition of n to a term.

The only kind of substitution that we consider is vari-
able for wvariable, with o ranging over such substitutions.
The simultaneous substitution of one vector of variables for
another will be written M [Y/z], where the & are assumed to
be distinct (but the § need not be).

3.1 The Abstract Machine

The semantics presented in this section is essentially Ses-
toft’s “mark 1”7 abstract machine for laziness [Ses97]. Tran-
sitions are over configurations consisting of a heap, contain-
ing bindings, the expression currently being evaluated, and
a stack. We write (I';, M, S) for the abstract machine con-
figuration with heap I', expression M, and stack S. A heap
is a set of bindings; we denote the empty heap by 0, and
the addition of a group of fresh bindings & = M to a heap
I by juxtaposition: ['{# = M}. The stack written b : S will
denote the stack S with b pushed on the top. The empty
stack is denoted by €, and the concatenation of two stacks
S and T by ST (where S is on top of T').
Stack elements are either:

e a reduction context, or

e an update marker #x, indicating that the result of the
current computation should be bound to the variable
z in the heap.

The reduction contexts on the stack are shallow contexts
containing a single hole in a “reduction” position - i.e. in a
position where the current computation is being performed.
They are defined as:

R:=[]x | case [] of {ci & » N;} |
[]+ M | add,[] | iszero[]

We will refer to the set of variables bound by I' as domT,
and to the set of variables marked for update in a stack §
as dom S. Update markers should be thought of as binding
occurrences of variables. A configuration is well-formed if
domI" and dom S are disjoint. We write dom(I",.S) for their
union. For a configuration (I', M, S') to be closed, any free
variables in I', M, and S must be contained in dom(T', S).
For sets of variables P and () we will write P 4 Q to
mean that P and @ are disjoint, i.e., PNQ = 0. The free
variables of a term M will be denoted FV(M); for a vector

of terms M, we will write FV(JM).

The abstract machine semantics is presented in figure 1;
we implicitly restrict the definition to well-formed closed
configurations.

The first group of rules are the standard call-by-need
rules. Rules (Lookup) and (Update) concern evaluation of
variables. To begin evaluation of z, we remove the bind-
ing © = M from the heap and start evaluating M, with z,
marked for update, pushed onto the stack. Rule (Update)
applies when this evaluation is finished, and we may update
the heap with the new binding for . Rule (Letrec) adds
a set of bindings to the heap. The side condition ensures
that no inadvertent name capture occurs, and can always
be satisfied by a local a-conversion.

The basic computation rules are captured by the (Push)
and (Reduce) rules schemas. The rule (Push) allows us to
get to the heart of the evaluation by “unwinding” a shallow
reduction context. When the term to be evaluated is a value
and there is a reduction context on the stack, the (Reduce)
rule is applied.

4 Space Use and Garbage Collection

A desired property of our model of space-use is that it is
true to actual implementations. Unfortunately, different ab-
stract machines and garbage collection strategies differ in
their asymptotic space behaviour. Consider for example an
application of the function

f=Xxlety=fyiny

using some of the main Haskell implementations.? This runs
in constant space under HUGS’98 and GHC 4.01, but runs
out of stack in hbc 0.9999.5a, and in some older versions
of GHC. Given the different space behaviours of different
implementations there is no hope that we can construct a
theory which applies to all implementations. Although we
will choose a particular model of space use we believe that
most of the results and techniques developed in this paper
can be adopted to any reasonable model. We will return to
this subject shortly and discuss some of the subtle ways in
which implementations differ.

2www.haskell.org/implementations.html

4.1 Measuring space

In principle the heap and the stack can share the same mem-
ory, and thus a program transformation which trades heap
for stack, or vice versa, should be perfectly fine. However, in
practice most implementations allocate separate memory for
the heap and the stack, and we would therefore like to reject
such transformations. If a program transformation improves
the maximum required stack and heap uses respectively, it
can never worsen the maximum required total space used by
more than a factor of two — but the converse is not neces-
sarily true. Therefore we have decided to measure the heap
and the stack separately.

We measure the heap space occupied by a configuration
by counting the number of bindings in the heap and the
number of update markers on the stack. We count update
markers on the stack as also occupying heap space, since in
a typical implementation an update marker refers to a so-
called “blackhole closure” in the heap — a placeholder where
the update eventually will take place. We will count every
binding as occupying one unit of space. In practice the size
of a binding varies since a binding is typically represented
by a tag or a code pointer plus an environment with one en-
try for every free variable. However, the right hand side of
every binding is always a (possibly renamed) subexpression
of the original program (a property sometimes called semi-
compositionality®), so counting a binding as one unit gives a
measure which is within a constant factor (depending only
on the program size) of the actual space used. We measure
stack space by simply counting the number of elements on
the stack, and so an update marker will be viewed as occu-
pying both heap and stack space. In practice every element
on the stack does not occupy the same amount of space, but
again, semicompositionality of the abstract machine assures
that our measure is within a program-size-dependent con-
stant factor. We will write [(I', M, S)| for the pair (h, s)
where h and s is the amount of heap and stack respectively
occupied by the the configuration.

4.2 Garbage collection

To reason about space use we must model garbage collection,
which allows us to decrease the amount of space used by a
configuration during a computation. Garbage collection is
simply the removal of any number of bindings and update
markers from the heap and the stack respectively, providing
that the configuration remains closed.

Definition 4.1 (GC) Garbage collection can be applied to
a closed configuration (I', M, S) to obtain (I', M, S},
written (T, M, SY>(I', M, S") if and only if (T, M, S")
1s closed, and can be obtained from (T', M, S) by removing
zero or more bindings and update markers from the heap and
the stack respectively.

This is an accessibility-based definition as found in e.g., the
ge-reduction rule of [MH98]. The removal of update-markers
from the stack is not surprising given that they are viewed
as the binding occurrences of the variables in question.

4.3 Evaluation in fixed space

We are now ready to define what it means for a computation
to be possible in certain fixed amount of space.

3A term due to Neil D. Jones

(T, R[M], S

Yy —
)y —
(T, let {#=M}inN, S)—
Yy —

(0, V, SKI, V, R: S) —

o~ o~ o~~~

, M, #x:8) (Lookup)
Hz=V} V,) (Update)
I{#=M}, N, S) #4 dom(T,S) (Letrec)
L, M, R:S) (Push)
I, M,S) ifRV]~M (Reduce)

(Az. M)y ~ M[Y/y]
case ¢; y of {¢;i @i » M} ~~ Mj[:'j/fj]
m+ N ~ add,, N

add,n ~ "m +n"

. true
1Szero m ~~

ifm=0

false otherwise

Figure 1: Abstract machine semantics

Definition 4.2 (Convergence in fixed space)

M, §) =" (A, N, T)

= 39.(I, M, S) - &> (A, N, T)
and |[{A, N, T')| < (h,s)

(T,

—op(ho8) L ype refl. and trans. closure of — (9

(0, M, S = 3IA VAT, M, S) =" (A, V, €)
MY®D =0, M,)y

4.4 Some subtleties

Different implementations vary in their space behaviour in
a number of rather subtle ways. We will discuss some of
those points below and how they relate to our particular
space model. The reader who is less interested in the details
of memory management for lazy languages may safely skip
this section.

Environment trimming Our abstract machine is based
on substitution of variables for variables, but lower level ab-
stract machines are usually based on environments [Ses97].
To avoid space leaks in environment-based machines it is
crucial to remove redundant bindings from environments on
the stack. This is sometimes called environment trimming
[Ses97] or stack stubbing [PJ92]. Some implementations do
not properly trim environments and programs like

fxy = case gz of

can lead to space leaks when compiled with the nhc com-
piler, since a reference to z is kept on the stack during the
evaluation of gz [R6j95]. Our definition of space is con-
sistent with an environment machine which does perform
environment trimming.

Blackholing In our abstract machine, the lookup rule re-
moves the binding from the heap while it is being evaluated.

This corresponds to so called “black holing” in real imple-
mentations where the closure is overwritten with a special
“black hole closure” without free variables [PJ92]. In some
early implementations the closure was instead left untouched
in the heap [RW93, Jon92]. This has the effect that the
garbage collector can not reclaim space that the free vari-
ables of the closure hangs on to.

Garbage collection of update markers In our model
we allow for the garbage collection of update markers which
allows an application of f

f=Xelety=fyiny

to run in constant space — as it does in HUGS’98 and GHC
4.01, but not in hbc 0.9999.5a, or in some older versions of
GHC.

Avoiding value copying and shortcutting indirec-
tions When running

letz =14+2,y=idxiny+ M

in our abstract machine we will end up with both x and y
bound to 3 in the heap. Some implementations would in-
stead bind z to 3 and create an indirection y = z from y to x
(or vice versa). If this is combined with a garbage collector
which can shortcut indirections (by in this case replacing all
occurrences of y with x and removing y = z) then space
can be saved. This can only reduce the total space used
by a constant factor, but it can have a quite dramatic ef-
fect in practice [RW93]. However since our space model is
only adequate up to constant factors anyway, this is not a
serious drawback of our space model. For implementations
that create indirections in this way it is important that the
garbage collector can shortcut indirections. Otherwise not
much would be gained, and in our example, the space for z
cannot be reclaimed before y = z is reclaimed, thus possi-
bly increasing the space used. Since our abstract machine
do not create indirections we have not included shortcutting
of indirections in our garbage collector. This has the effect

that programs which contains indirections in the source code
(that is, subterms of the form let y = z in M) may use up
more space than necessary, but otherwise the model is well-
behaved.

Shortcutting update marker chains Sometimes two
or more update markers, say #x and #y, end up on top
of each other on the stack. Then both x and y will even-
tually be updated with the same value or, in implementa-
tions which introduce indirections, one will be indirected to
the other. Some implementations preclude this situation by
never pushing update markers on top of each other: if #x is
already on the stack, an indirection y = z is created instead
of pushing #y. When this is combined with garbage collec-
tion of indirections, the effect is similar to the combined ef-
fect of garbage collection of update markers, avoiding value
copying and garbage collecting indirections. As far as we
know this trick has not been documented, but it is used in
the GHC compiler®.

Lazy patterns Lazy patterns in let bindings like
let (z,y) =M in N

are an important feature of real lazy languages such as
Haskell. They might be encoded in our language in the
following manner

let p= M,z =fstp,y =sndpin N

This encoding seems to be used in, for example HUGS’98,
but can lead to space leaks (unless special consideration is
taken in the garbage collector which essentially amounts to
letting the garbage collector do a restricted form of compu-
tation [Wad87]). Instead, as suggested by Sparud [Spa93]
one can extend the core language to cope with lazy patterns
directly. We have left out lazy patterns to keep things simple
but there should be no problem with adding them.

5 Weak Space Improvement

In the previous section we defined a notion of space which
we believe is realistic in the sense that an actual implemen-
tation (using our reasonably aggressive garbage collection)
will require space within a constant factor of our abstract
measure, where the constant depends on the size of the pro-
gram to be executed.

In this section we define space improvement within a con-
stant factor — what we will simply refer to as Weak Improve-
ment — which says that if M is improved by N, replacing M
by N in any program context will never lead to more than
a constant factor worsening in space behaviour, where the
constant factor is independent of the context.

The starting point for an operational theory is usually an
approximation and an equivalence defined in terms of pro-
gram contexts. Program contexts are usually introduced as
“programs with holes”, the intention being that an expres-
sion is to be “plugged into” all of the holes in the context.
The central idea is that to compare the behaviour of two
terms one should compare their behaviour in all program
contexts.

We will use contexts such that holes may not occur in
argument positions of an application or a constructor, for

4Simon Peyton Jones, Personal communication, June 1999.

if this were the case, then filling a hole (with a non vari-
able) would violate the syntax. Contexts may contain zero
or more occurrences of the hole, and as usual the opera-
tion of filling a hole with a term can cause variables in the
term to become captured. For the technical development we
work with the second order syntax for contexts as in e.g.,
[San98a][MS99], although we elide these technicalities in the
present abstract.

Definition 5.1 (Weak Improvement) We say that M is
weakly improved by N, written M = N, if there exists a

linear function f € N — N such that for all C such that
C[M] and C[N] are closed,

C[M]U(h’s) _— (D[N]U(f(h)’f(s)).

So M % N means that N never takes up more than a con-

stant factor more space than M (but it might still use non-
constant factor less space). We write M <L N to mean that

MP> Nand N> M.

Proposition 5.1 (Precongruence) £ is a precongru-

ence — i.e., it is a transitive and reflerive relation which
is preserved by contexts.

PrOOF. The proof of all but transitivity is immediate.
Transitivity follows from the fact that the composition of
any two linear functions is linear. O

The improvement relations in this article also imply possibly
improved termination properties, although this choice is not
a particularly significant, and all laws, excepting those in-
volving explicitly nonterminating terms, are also operational
equivalences.

5.1 Weak Improvement Laws

Here we summarise a collection of laws for weak improve-
ment. The laws are established using a strong version of
improvement, and a contezt lemma that is described in the
next section. The first property is fundamental, and high-
lights the significance of free variables in this theory:

Theorem 5.2 (Free Variable Property) If M & N
then FV(M) D FV(N).

PrROOF. Suppose that M % N. Then there exits a linear
function f which bounds the extra space required to com-
pute with N instead of M. Assume, towards a contradic-
tion, that there exists a variable z such that x € FV(INV) but
x & FV(M). Without loss of generality we can assume that
FV(N) = {z} and FV(M) = 0 (since by congruence of &
we can wrap a context around M and N which ensures this
property). Now consider the context C:

let traverse = Axs.case zs of
nil -1
h :t — traverset
count = An. case iszero n of
true — nil
false > let a=n-—1
r = count a
in n:r
r = count k
z=]
in traverse x + (A\y.1)z

where : is an infix cons constructor. It can be seen (we omit a
formal proof, which would be somewhat tedious) that C[M]
evaluates with some constant space, independent of k. This
is because the list count k can be garbage collected as it is
traversed. However C[N] requires space proportional to k,
since there is a (dead code) reference to x which prevents
any of the list from being collected until it has been com-
pletely constructed. Since we can make k arbitrarily large
we cannot have M % N. O

The sketch proof above relies on unbounded integers. A
similar example can be constructed using just a finite set of
constructors and a logarithmic-space encoding of k.

In figure 2 we collect some weak improvement laws. Like
any other contextual program ordering, it is not a recursively
enumerable, so any such collection is inevitably somewhat
ad hoc.

In presenting laws, we will follow two conventions. The
first is the standard free-variable convention [Bar81] that all
bound variables in the statement of a law are distinct, and
that they are disjoint from the free variables. The second is
that in any instance of a law, the free variable property is
respected. When we state a cost-equivalence, it should be
taken as a pair of improvement laws. For example, from the
cost-equivalence law

(Az. M)y T M[Y/,]

we can conclude that (Az.z)y & y and (Az.3)y B 3, but
not that 3 2 (Az.3) y.

5.2 On divergent terms

There is no bottom element in the space-ordering relation.
By Theorem 5.2, it follows that divergent terms containing
different numbers of free variables are not cost equivalent
— simply because when placed in a program context, their
free variables can affect the amount of garbage. Thus the
more free variables a divergent term contains, the lower in
the improvement ordering it sits.

Proposition 5.3 Let Q1 and Q2 denote an arbitrary terms
which are operationally equivalent (with respect to observing
termination behaviour) to the divergent term let x = x in z.
Then Q1 B Qs if and only if FV(Q1) D FV(Q2).

Let Qx denote an arbitrary divergent term with FV(Q2x) =
X (such terms, by the above proposition, will all be cost
equivalent).

6 Strong Improvement

The weak improvement laws are established with the use of
a finer-grained notion of improvement which we call strong
improvement. This section describes the properties of strong
improvement.

Definition 6.1 (Strong improvement) We say that M
ts strongly improved by N, written M > N, if for all C
such that C[M] and C[N] are closed,

M) = SN,

We write M < N to mean that M > N and N > M.

For strong improvement we have established a context
lemma [Mil77]: to prove that M is strongly improved by N,
one only needs to compare their behaviour with respect to
a much smaller set of contexts, namely the context which
immediately need to evaluate their holes.

Lemma 6.1 (Context Lemma) For all terms M and N
such that FV(M) D FV(N), if for allT and S,

(0, M, S = (I, N, SH"
then M ,[Z N.

The configuration contexts of the form (I', [], S) cor-
respond to the notion of evaluation conterts described in
[MS99].

6.1 Spikes and ballast

To prove, for example, (restricted) beta-reduction
(Az.M)y & M[Y,] we will show the stronger prop-
erty: (Az.M)y > M[Y/;]. The context lemma makes this
property very easy to establish. The converse direction also
holds within a constant factor (under the assumption that
y occurs free in M[Y/,]). The only difference when going
from the right-hand side to the left is that the left hand
side will momentarily use up one stack unit more than the
right-hand side.

In order to express the latter property using the more
precise improvement theory, we need some space analogue
of the time-tick from [MS99]. In fact, we will use four kinds
of “tick”, two of which are minor language extensions.

The first two devices, the stack spike and the heap spike,
are (like the time-tick) representable in the language. The
stack spike is defined thus

"M = case true of {true - M}

It has the short-lived effect of increasing the stack usage by
one unit, at the moment that M is about to be evaluated.
The improvement above can now be made more precise by
noting that:
Az M)y & "M[Yy] ify € FV(M[Y/]).

The heap spike is the heap analogue of the stack spike; it
momentarily increases the size of the heap at the point in
time when the term is ready to be evaluated.

def

*M=letz=Minz z & FV(M)

Now we come to two constructs which involve minor lan-
guage extensions which affect the definition of space but do
not otherwise change the definition of evaluation. The first
is stack ballast, which corresponds to adding extra space to
a stack-element. We now assume that every reduction con-
text is labelled with a natural number, "R — which we call
stack ballast. A ballast-free reduction context will now be
taken as shorthand for a reduction context with ballast of
0. The following modifications are made to the definitions:

e Ballast is transparent from the point of view of the
computation rules, so R[V] ~» N = "R[V] ~ N;

e the stack consumption of a reduction context with bal-
last is given by: |"R| =n+ 1.

Thus ballast holds on to n additional units of stack space,
for the length of time that the reduction context remains on
the stack.

Dually, heap ballast adds some n units of heap consump-
tion to a binding. Heap ballast remains attached to the
binding for its lifetime, but is otherwise transparent from
the point of view of computation. When a binding is sub-
ject of evaluation, that is when there is an update marker
for the binding on the stack the heap ballast attaches to the
update marker and adds to the heap consumption of the
marker.

e The heap consumption of a binding with ballast:
M|=n+1.

| n

xr =

e The heap consumption of an update marker with bal-
last: |#"z| =n+ 1.

e The stack consumption of an update marker with bal-
last: |#"z| = 1.

With the help of ballasts we can increase the size of the
stack and heap spikes.

nY M mcase true of {true » M}

z ¢ FV(M)

def

"M=let"r=Minz

Of course, spikes and ballast have no intrinsic interest for
programmers — they are a bookkeeping mechanism which we
use to syntactically account for different types of space us-
age. The crucial property of stack and heap ballast, and the
respective spikes is that they do not change space behaviour
by more than a constant factor:

Lemma 6.2 (Spike and Ballast Introduction)
1. M = "M
2. M < "M
3. "R[M] & "*R[M]

4olet {'v =L, =M}in N g let {{*"z = L,"j =
M} in N
The proof for ballast is straightforward, by showing that
the largest ballast contained in a configuration can never
increase during computation. The proof for heap and stack
spikes is analogous to that for time ticks in [MS99].
Although ballast is a seemingly small language extension
we suspect that it is not a conservative extension with re-
spect to the space improvement theory. Thus we cannot,
a priori, expect that every law that holds in the language
without ballast can be established via the language with
ballasts.

6.2 Strong Improvement Laws

In figure 3 we have collected a number of laws for strong
improvement. The laws are related to the laws for weak
improvement by careful addition spikes and ballast to each
side. The laws for weak improvement thus follows imme-
diately by an appeal to the spike and ballast introduction.
Proving these laws amounts to establishing the premise of
the context lemma. For this we use the notion of uniform
computation from [San98a] which, with a very careful treat-
ment of garbage, can be adapted to reasoning about space.

The individual proofs are very much reminiscent of the proof
of the corresponding laws for time improvement [MS99], (ex-
cept that we cannot use an “open” version of uniform com-
putation as used there).

6.3 Strong improvement and induction principles

In this paper we have used strong improvement merely as
a vehicle for establishing properties of weak improvement.
Although it remains as future work, we believe that we can
establish some principles, such as improvement induction
[San98b, MS99], for reasoning about recursive functions.
We believe that these induction principles would then have
premises involving strong improvement (rather than weak
improvement). If so, the role of strong improvement would
go beyond the present and would involve equational reason-
ing about terms with spikes and ballast. The fact that we
have established a rich spike and ballast algebra (given in
figure 4) which permits spikes to be introduced, moved and
eliminated suggests that such equational reasoning is possi-
ble.

7 Work and Space-Safe Inlining

In this section we briefly consider an application of the
theory to the problem determining when it is safe to in-
line a definition. Inlining is a standard compiler optimiza-
tion, but one which is potentially dangerous in the con-
text of a lazy language. The improvement relation guaran-
tees in a certain sense that a local transformation is space-
safe. As we have seen from the preceding sections, inlining
of values is space safe, since from weak-value-3 have that
let z =V in Clz] & let « = V in C[V]. Another form of
inlining which is validated is let z = M in R[z] B R[M]
(weak-inline,weak-let-R). The same observations also hold
for time-improvement [MS99]. But what if = is bound to a
non-value or C is not an reduction context? To inline a non
value in a non reduction context:

let {x = M} in Clz] = let {x = M} in C[M]

can sometimes be very worthwhile [PJS98]. In more ad-
vanced transformations such as higher-order deforestation
[Wad90, Mar95] it is crucial. However, as is well-known,
the transformation risks duplicating computation, and this
can lead to an asymptotically worse program — in both space
and time. The time issue is discussed in [PJS98], where they
illustrate that the naive “solution” of ensuring that there is
only one syntactic occurrence of does not guarantee work-
safe inlining.

A number of researchers have sought to find criteria for
when such transformations are work-safe, based on linear
type systems and notions of “used at most once” [TWM95,
Gus98, WJ99, Gus99]. Despite the fact that Turner et al
discuss inlining of “used-one” bindings in some detail, as far
as we are aware, it remains an open problem to actually
prove that these criteria actually do guarantee work-safety.
Another question (one which to our knowledge has not even
been posed) is whether the “used at most once” criteria
might also guarantee space safety.

In the remainder of this section we outline answers to
these questions. One problem is that time and space safety
do not go hand in hand. Sometimes inlining can lead to

Weak Improvement Laws

MEN if M ~ N (weak-red-eq)

let {x = V[z], 7 = D[z]} in Clz] & let {z = V[V[z]], § = D[V[z]]} in C[V[z]] (weak-value-0)

Rlcase M of {pat; - N;}| & case M of {pat; - R[N;]} (weak-case-R)

Rllet {Z = M} in N| < let {Z = M} in R[V] (weak-let-R)

let {r =M} inz <l;> M, ifzx¢FV(M) (weak-inline)

let {# =M}in NN, ifdsFV(N) (weak-gc)

let {Z=L}inlet {f=M}inN Clet{Z=L,j=M}inN (let-flatten)

let {z =let {f=L,Z=DM}in N}in N Zlet {x=let {Z=M}in N,j=L} in N' (let-let-1)
let {z =let {Z=M}inN,j=L}in N Zlet {z =let {f=1L,Z=M}inN}in N ifijC FV(IV, A1) (let-let-2)
Qx B M ©)

Figure 2: Weak Improvement Laws

Strong Improvement Laws

"RV] <& "YN if "R[V] ~ N (reduction-eq)

let {"z = V[z],"] = D[]} in Clz] = let {"z = V[V[z]], " = D[V[z]]} in C[V[z]] (value-3)

"R[*case M of {pat, » N;}] © ™+"*'case M of {pat, » "R[N;]} (case-R)

"Rllet {*# = M} in N] < ™"let {*Z = M} in "R[N] (let-R)

let {"c =M}inz<""M, ifcdgFV(M) (inline)

let {f=M}inN< N, ifZ}FV(N (g¢)

SO et {7 = L} in let {7 = M} in N & % et {i& = [,"j= M} in N (let-flatten)

let {+30" 0y = let {"§ =L,"7= M} in N} in N' > let {'z =let {"Z= M} in N,"j=1L} in N’ (let-let-1)
let {'z = let {"§=L,"Z=DM}in N}in N Jlet {'z =let {"Z=M}in N,"j=1L}in N (let-let-2)

if € FV(let {"Z = M} in N)

Figure 3: Strong improvement laws.

mARANL g AT ()
mARANL > AN ifm < (2)

mAet {F#=M}inN<let {"z=M}inN ifm+1<3(ii+1)andZ e FV(N) (3)
mASEED Aot f37 = M} in N < let {"z = M} in ™*N if Z € FV(N) (4)
" RIM] & R[™" M] (%)

Y AL g Y (©)

YA "M ifm<n (7)

mRIM] © "R[M] if m <n (8)

mImERIM] & "R[™TM] (9)

™et {"F=M}in N < let {"Z =M} in™"N if&ecFV(N) (10)
AR g mYmA N (1)

Figure 4: Spike and ballast algebra.

asymptotically worse space behaviour even when it is work-
safe. For example,

let = = countk

y = head x
in y+ traversex + (Az.1)y
=
let x = countk
y = head x

in head T + traverse v + (A\z.1)y

where count is the function from Section 5 which produces
the list of integers counting down from its argument to zero.
The inlining above is work-safe but not space safe: the left
hand side can run in constant space but the right hand
side requires heap space proportional to k. This example
is enough to show that the “used at most once” criteria
alone is not enough to guarantee space safety (although it
does, as expected, guarantee work-safety).

In the remainder of this section we will strengthen the
use-once criteria so that it is enough to guarantee both work
and space safety, and outline our approach to establishing
these results.

The program analysis by Gustavsson [Gus98, Gus99] has
already been proven to satisfy the stronger criteria and we
believe that the analyses by Turner et al [TWM95] and
Wansbrough and Peyton-Jones [WJ99] do so as well. How-
ever the “used at most once” analyses by Sestoft [Ses91],
Marlow [Mar93] and Mogensen [Mog97] do not satisfy the
additional criteria, and we believe that as a result their anal-
yses do not provide conditions for space-safe inlining.

7.1 Affine-linear bindings

Our approach is to extend the language with affine-linear
“use-once” bindings, equipped with a direct operational in-
terpretation. Such a binding will be written z = M and we
will write M for the term obtained by removing the linear
annotations from bindings in M. Linear bindings are trans-
parent to all computation rules except Lookup. We now
have two lookup rules, one for ordinary bindings, and one
for linear bindings:
(M{e=M}, z, Sy > (D, M, #x:85) (Lookup)
(T{x =M}, z, S) = (I, M, S) ifx¢gFV(I,M,S)
(Lookup-e)

The rule for linear bindings looks up the binding without
pushing an update marker. Without the side condition
x ¢ FV(T, M, S) this could lead to an open configuration,
which in a lower-level implementation would correspond to
the creation of a dangling pointer — something which could
crash an unwary garbage collector. The side condition pre-
vents such a situation, and instead the computation gets
stuck. Note then that with this semantics the computation
may get stuck due to a linear binding even though the bind-
ing is not used more than once. For example,

let {fz =142} inz+ (\yl)z

gets stuck since when z is going to be used there is a re-
maining (semantically dead) occurrence of z in (Ay.1) z. If
a term do not get stuck due to a linear binding then its time
and space behaviour is closely coupled to the term obtained
by removing the linear annotations.

Proposition 7.1 If M|} then,

MY™®) in ¢ steps = MU in < t steps
MU in t steps => MU"™) in t steps

The proof is straightforward since the computations are
lockstep, and whenever the computation of M applies a
linear-lookup step, the fact that M does not become stuck
implies that in the corresponding lookup step in M , the up-
date marker can be immediately garbage collected.

7.2 Inlining linear bindings

This crucial strengthening of the “used at most once” cri-
teria will allow us to establish space safety. We have the
following strong improvements (where Ework is the improve-

ment relation for time as defined in [MS99]).

Theorem 7.2
let {2z = M,"j = D[z]} in C[z]
> let {"z = M,"j = D[M]} in C[M]

let {2z = M,"j = D[z]} in Clz]
> let {"z = M,"§ = D[M]} in C[M]

The reason that we include the time-improvement law here
is that once we add linear bindings to the language, even
the time-improvement theory must be free-variable aware,
and thus the proofs for space and time become very closely
related. The theorem is proved in a manner similar to the
value-B, and does not present any particular difficulties.

It is easy to show that adding linear bindings to the lan-
guage is not a conservative extension and thus the space
improvement laws from section 5 and 6 do not, a priori,
hold in the extended language. However, in anticipation of
this application, we have established all the laws in the lan-
guage with both linear bindings and ballast. This allows us
to reason about the space safety of transformations entirely
in the language with linear bindings. For the same reason
the time improvement laws of [MS99] do not, a priori, hold.
We have not yet determined which of the time-improvement
laws carry over, but we believe that those which are space
improvements will be time improvements in the extended
language. The intuition behind this is again that both space
and (our form of) linear bindings are sensitive to free vari-
ables.

7.3 Work and Space-Safety of Linear Type Systems

It is perhaps not immediately apparent how the untyped no-
tion of linear binding and Theorem 7.2 can be used to argue
the work and space safety of linear type systems. Linear
type systems are global program analyses; they can take the
context in which a term occurs into account. Not surpris-
ingly the established results for these type systems involve
the whole program.

Proposition 7.3 If P is a program (a closed term with no
linear bindings) and P’ is obtained from P by replacing bind-
ings with linear bindings whenever one of the linear type sys-
tems of [TWM95, Gus98, Gus99, WJ99] claims the variable
has linear type, then

P}l = P'|

The proof of this claim is essentially the subject reduction
property of the respective type systems, which implies that
well-typed programs cannot become stuck due to the con-
figuration becoming open. [The latter point is only proved
explicitly in [Gus98, Gus99]. In [TWM95] and [WJ99] the
result is established for the weaker notion of “used at most
once” but we believe it is straightforward to strengthen their
results.]

The property that we wish to prove is a similarly global
property, rather than a context-insensitive improvement re-
lation:

Theorem 7.4 If P is a program (a closed term with no
linear bindings), such that

P in t steps,

and @ is obtained from P by inlining some of the bindings
which are linear according to one of the linear type systems,
then

QUM in < t steps,

PROOF. Suppose that PJ"*)in ¢ steps, and that P’ is the
result of replacing all bindings which have linear type (ac-
cording to one of the type systems) with actual linear bind-
ings. Suppose further that Q" is the result of inlining some
linear bindings in P’ and that @ is the result of removing all
linear annotations from Q’. From Proposition 7.3 we know
that P'|} so by proposition 7.1

P in < ¢ steps.

Now since Q' is obtained from P’ by inlining linear bindings,
from Theorem 7.2 and the definitions of improvement, it
follows that

Q' 1" in < t steps.

Finally, since Q’ = (@, by proposition 7.1 we have
QU"™in < t steps as required. a

8 Conclusions and Future Work

We have presented a surprisingly® rich operational theory
for the space use of call-by-need programs, based on a space
improvement ordering on programs. The theory allows one
to argue that transforming a program fragment M into N
is space safe in the sense that replacing M by N in any
program can never lead to asymptotically worse space (heap
or stack) behaviour.

As a first application of the theory, we have proved that
inlining of affine-linear bindings (as introduced by a certain
class of “used-once” type-systems) is work- and space-safe.

A key problem which remains to be solved is to estab-
lish some principles for reasoning about recursive functions.
We have briefly considered whether we can establish the im-
provement theorem or improvement induction and we have
good reasons to believe that it should be possible.

Another item on our work list is to add lazy patterns
and strict lets to our language since these features seem
to be crucial when defining space efficient versions of some
functions.

5At least, suprising to us!

10

An important piece of future work is to try to apply the
space improvement laws to larger examples. This will surely
reveal the need for more laws, for example laws concerning
strictness and evaluation order.

Another interesting direction for future work would be to
consider the time and space safety of a larger-scale program
transformation, such as deforestation [Wad90]. This should
be possible thanks to work and space safe inlining.

References
[Bar81] H. Barendregt. The Lambda Calculus. North Hol-
land, 1981.

[BLR96] Z.-E.-A. Benaissa, P. Lescanne, and K. H. Rose.
Modeling sharing and recursion for weak reduc-
tion strategies using explicit substitution. In
Proc. PLILP’96, the 8" International Sympo-
sium on Programming Languages, Implementa-
tions, Logics, and Programs, volume 1140 of

LNCS, pages 393-407. Springer-Verlag, 1996.

A. D. Gordon and A. M. Pitts, editors. Higher
Order Operational Techniques in Semantics.
Publications of the Newton Institute. Cambridge
University Press, 1998.

[GPS]

[Gus98] J. Gustavsson. A type based sharing analysis
for update avoidance and optimisation. In Proc.
ICFP’98, the 8 ACM SIGPLAN International
Conference on Functional Programming, pages

39-50, September 1998.

[Gus99] Jorgen Gustavsson. A Type Based Sharing Anal-
ysis for Update Avoidance and Optimisation. Li-

centiate thesis, May 1999.

Richard Jones. Tail recursion without space
leaks. Journal of Functional Programming,
2(1):73-79, January 1992.

[Jon92]

[Lau93] J. Launchbury. A natural semantics for lazy

evaluation. In Proc. POPL’93, the 20" ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 144-154. ACM
Press, January 1993.

[Mar93] S. Marlow. Update avoidance analysis by ab-
stract interpretation. In Proc. 1993 Glasgow
Functional Programming Workshop, Workshops

in Computing. Springer-Verlag, August 1993.

[Mar95] Simon Marlow. Deforestation for Higher-Order
Functional Programs. PhD thesis, University of

Glasgow, 1995.

[MFH95] Greg Morrisett, Matthias Felleisen, and Robert
Harper. Abstract Models of Memory Manage-
ment. In Proc. Int’l Conf. on Functional Pro-
gramming Languages and Computer Architecture

(FPCA’95), pages 66—-77. ACM Press, June 1995.

[MH98] Greg Morriset and Robert Harper. Semantics of
memory management for polymorphic languages.

In Gordon and Pitts [GP98], pages 175-226.

[Mil77]

[Mog97]

[MS99]

[PJ87]

[PJ92]

[PIPS96)]

[PJS98]

[R6j95]

[Ros96]

[RR96]

[RW93]

[San91]

[San95]

[San96]

R. Milner. Fully abstract models of the typed A-
calculus. Theoretical Computer Science, 4:1-22,
1977.

T. Mogensen. Types for 0, 1 or many uses.
In Proc. Workshop on Implementation of Func-
tional Languages (Draft), 1997.

Andrew Moran and David Sands. Improve-
ment in a lazy context: An operational theorZ
for call-by-need. In Proc. POPL’99, the 26
ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 43-56.
ACM Press, January 1999.

S. L. Peyton Jones. The Implementation of Func-
tional Programming Languages. Prentice Hall,
1987.

S. L. Peyton Jones. Implementing lazy functional
languages on stock hardware: the Spineless Tag-
less G-machine. Journal of Functional Program-
ming, 2(2), April 1992.

S. Peyton Jones, W. Partain, and A. Santos.
Let-floating: moving bindings to give faster pro-
grams. In Proc. ICFP’96, the 1°* ACM SIG-
PLAN International Conference on Functional
Programming, pages 1-12. ACM Press, May
1996.

S. Peyton Jones and A. Santos. A
transformation-based optimiser for Haskell.
Science of Computer Programming, 32(1-3):3—
47, 1998.

Niklas R6jemo. Garbage collection, and memory
efficiency, in lazy functional languages. PhD the-
sis, Chalmers Tekniska Hogskola, 1995.

K. H. Rose. Operational Reduction Models for
Functional Programming Languages. PhD the-
sis, DIKU, University of Copenhagen, Denmark,
February 1996. available as DIKU report 96/1.

Colin Runciman and Niklas R6jemo. New Di-
mensions in Heap Profiling. Journal of Func-
tional Programming, 6(4):587-620, 1996.

Colin Runciman and David Wakeling. Heap
Profiling of Lazy Functional Programs. Journal
of Functional Programming, 3(2):217-245, April
1993.

D. Sands. Operational theories of improve-
ment in functional languages (extended ab-
stract). In Proc. 1991 Glasgow Functional Pro-
gramming Workshop, Workshops in Computing
Series, pages 298-311. Springer-Verlag, August
1991.

D. Sands. A naive time analysis and its theory
of cost equivalence. Journal of Logic and Com-
putation, 5(4):495-541, 1995.

D. Sands. Total correctness by local improve-
ment in the transformation of functional pro-
gram. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 18(2):175-234,
March 1996.

11

[San98a]

[San98b]

[Ses91]

[Ses97]

[Spa93]

[TWMOY5]

[Wad87]

[Wad90]

[WJ99]

D. Sands. Computing with contexts: A sim-
ple approach. In A. D. Gordon, A. M.
Pitts, and C. L. Talcott, editors, Proc.

HOOTS II, the 2 Workshop on Higher Or-
der Operational Techniques in Semantics, vol-
ume 10 of Electronic Notes in Theoretical Com-
puter Science. Elsevier Science Publishers B.V.,
1998. at http://www.elsevier.nl/cas/tree/store/
tcs/free/noncas/pc/menu.htm.

D. Sands. Improvement theory and its applica-
tions. In Gordon and Pitts [GP98], pages 275~
306.

P. Sestoft. Analysis and Efficient Implementation
of Functional Programs. PhD thesis, DIKU, Uni-
versity of Copenhagen, Denmark, October 1991.

P. Sestoft. Deriving a lazy abstract machine.
Journal of Functional Programming, 7(3):231-
264, May 1997.

Jan Sparud. Fixing Some Space Leaks without a
Garbage Collector. In Proc. 6th Int’l Conf. on
Functional Programming Languages and Com-
puter Architecture (FPCA’93), pages 117-122.
ACM Press, June 1993.

D. N. Turner, P. Wadler, and C. Mossin. Once
upon a type. In Proc. FPCA’95, ACM Confer-
ence on Functional Programming Languages and
Computer Architecture, pages 1-11. ACM Press,
June 1995.

P. Wadler. Fixing Some Space Leaks with a
Garbage Collector. Software Practice and Ezpe-
rience, September 1987.

P. Wadler. Deforestation: Transforming pro-
grams to eliminate trees. Theoretical Computer
Science, 73:231-248, 1990.

Keith Wansbrough and Simon Peyton Jones.
Once upon a polymorphic type. In Proc.
POPL’99, the 26" ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Lan-
guages. ACM Press, January 1999.

