
A Foundation for Space-Safe Transformations of Call-by-Need ProgramsJ�orgen Gustavsson and David SandsChalmers�
AbstractWe introduce a space-improvement relation on programswhich guarantees that whenever M is improved by N , re-placement of M by N in a program can never lead toasymptotically worse space (heap or stack) behaviour, fora particular model of garbage collection. This study takesplace in the context of a call-by-need programming language.For languages implemented using call-by-need, e.g, Haskell,space behaviour is notoriously di�cult to predict and anal-yse, and even innocent-looking equivalences like x+y = y+xcan change the asymptotic space requirements of some pro-grams. Despite this, we establish a fairly rich collection ofimprovement laws, with the help of a context lemma for a�ner-grained improvement relation. We brie
y consider anapplication of the theory; we prove that inlining of a�ne-linear bindings (as introduced by a certain class of \used-once" type-systems) is work- and space-safe. We also showthat certain weaker type systems for usage do not providesu�cient conditions for space-safe inlining.1 IntroductionThe space-usage of lazy functional programs is perhaps themost thorny problem facing programmers using languagessuch as Haskell. Almost all programmers unable to predictor control the space behaviour of their lazy programs. Eventhe most advanced programmers, who are able to visualisethe space use of their programs, complain that the \state-of-the-art" compilers introduce space-leaks into programs thatthey believe ought to be space-e�cient.In recent years a successful line of research into pro-�ling tools for lazy functional languages [RW93, RR96]has greatly improved a programmer's chances of locat-ing sources of space leaks. But apart from a few high-level operational semantics which claim to model space be-haviour, to the best of our knowledge there have been noformal/theoretical/semantics-based approaches to reasoningabout space behaviour of programs.Rather than tackling the problem of determining the ab-solute space behaviour of a program, in this paper we study�Chalmers University of Technology and G�oteborg University,Sweden. fgustavss,daveg@cs.chalmers.seDraft of 2 July; submitted for review to HOOTS'99

notions of relative space e�ciency. We pose the question:when it is space-safe to replace one program fragment byanother? To this end we introduce a space-improvementrelation on terms, which guarantees that whenever M isimproved by N , replacement of M by N in a program cannever lead to asymptotically worse space (heap or stack) be-haviour, for a particular model of computation and garbagecollection.The fact that we only aim to prevent asymptotic worsen-ing might seem rather weak. One reason is that we (wish to)work with high-level semantic models of space behaviour, soit is not meaningful for us to make stronger claims. Anotherreason is that asymptotic changes in space behaviour are notat all unusual. (We consider such an example below.)Why is the space behaviour of lazy functional programsdi�cult to predict? One reason is of course that all mem-ory management is automatic, coupled with the fact that theheap allocation rate of functional programs is very high; justabout everything lives in the heap. A second reason is thatthe non-strict evaluation order that is required by the lan-guage speci�cation means that computation-order bears noobvious relation to textual structure of code. The third, andperhaps most subtle reason is that all realistic implemen-tations of lazy languages use a call-by-need. Call-by-needoptimises call-by-name by ensuring that when evaluating agiven function application, arguments are evaluated at mostonce. The e�ect of sharing is to reduce { often dramatically{ the time required to execute a program. But the e�ect ofthis additional sharing on the space behaviour is to prolongthe lifetime of data, and this is often at the cost of space.As an illustration of some of these problems, consider oneof the most innocent of the extensional equivalences thatfunctional programming languages enjoy: x + y = y + x.Now consider the following Haskell program:let xs = [1::n]x = head xsy = last xsin x+ yThis program runs inO(n) time and in constant space. Firstx is evaluated1 to obtain 1, then y is evaluated, which in-volves constructing and traversing the entire list [1::n]. For-tunately, the cocktail of lazy evaluation, tail recursion andgarbage collection guarantees that as this list is constructed1Evaluation order is intentionally left unspeci�ed in the Haskelllanguage de�nition, but at the time of writing the main implemen-tations coincidentally evaluate the arguments to such primitive func-tions from left to right.

and traversed it can also be garbage collected, and thus re-quiring only constant space.Now consider what happens when x + y is replaced byy + x. In this case the time complexity is the same, butnow the space required is O(n). This is because when ybuilds and traverses the list [1::n], the elements cannot begarbage-collected because the whole list is still referenced bythe variable x.So we can conclude that replacing x + y by y + x cangive an asymptotic change in space behaviour { i.e., there isno constant which bounds the potential worsening in spacewhen this law is applied in an arbitrary context. So ourtheory of improvement will not relate this particular pair ofterms.But expressions that fall outside our improvement theoryare easy to �nd (see e.g., [PJ87] for more tricky examples).Are there any improvements which are guaranteed to hold inabsolutely any program context? In this article we show thatthere are indeed many valid space-improvement laws, andthus we lay the foundations for a theory of space behaviourof call-by-need programs.The remainder of the article is organised as follows. Sec-tion 2 describes related work. Section 3 gives the syntaxand operational semantics of our language. Section 4 de-�nes what we mean by the space-use of programs, in terms ofa de�nition of garbage collection for abstract-machine con-�gurations. We informally argue the ways in which this def-inition agrees with lower-level models, and mention a num-ber of subtle choices and variations in actual implementationmethods. Section 5 de�nes the main improvement relation,weak improvement, and presents the basic laws and proper-ties of this relation. Section 6 describes a �ner-grainedimprovement relation, strong improvement, which is used toestablish the weak improvement laws via a context lemma.Section 7 considers an application of the theory; we provethat inlining of a�ne-linear bindings (as introduced by a cer-tain class of \used-once" type-systems) is work- and space-safe. Section 8 concludes.2 Related WorkImprovement theory was originally developed in the call-by-name setting [San95, San91, San96] for the purpose ofreasoning about running-times of programs. Moran andSands [MS99] developed a call-by-need time-improvementtheory, together with a number of induction principles, andessentially all the laws that we prove here are also time-improvements.A number of operational semantics have been proposedwhich are intended to model the space requirements of call-by-need programs. Launchbury suggested adding a garbagecollection rule to his natural semantics [Lau93]; instead, ournotion of computation and memory usage is based on Ses-toft's mark-1 abstract machine[Ses97], which makes stack-usage explicit (and thereby shortcuts some space-leaks andanomalies in Launchbury's proposal). Rose [Ros96] uses agraph reduction model based on explicit substitutions inwhich the correct modelling of space is emphasised, and in[BLR96] a sketch of the space-safety of aspects of the STG-machine implementation with respect to the model is given.Morrisett and Harper [MH98] use a similar style of ab-stract machine description to that used here in order to in-vestigate the semantics of memory management in an ML-like language (see also [MFH95]). They give abstract speci-

�cations of garbage collection, and prove the correctness ofa particular type-based collection scheme.3 Operational SemanticsOur language is an untyped lambda calculus with recursivelets, structured data, case expressions, integers (ranged overby n and m) with addition and a zero test. We work with arestricted syntax in which arguments to functions (includingconstructors) are always variables:L;M;N ::= x j �x:M jM x j c ~xj n jM +N j addnM j iszeroMj let f~x = ~Mg in Nj case M of fci ~xi � NigThe syntactic restriction is now rather standard, followingits use in core language of the Glasgow Haskell compiler,e.g., [PJPS96, PJS98], and in [Lau93, Ses97].All constructors have a �xed arity, and are assumedto be saturated. By c ~x we mean c x1 � � � xn. The onlyvalues are lambda expressions and fully-applied construc-tors. Throughout, x; y; z, and w will range over vari-ables, c over constructor names, and V and W over values(�x:M j c ~x j n). We will writelet f~x = ~Mg in Nas a shorthand for let fx1 =M1; : : : ; xn =Mng in N wherethe ~x are distinct, the order of bindings is not syntacticallysigni�cant, and the ~x are considered bound in N and the ~M(so our lets are recursive). Similarly we writecase M of fci ~xi � Nigfor case M of fc1 ~x1 � N1j � � � jcm ~xm � Nmg:where each ~xi is a vector of distinct variables, and the ci aredistinct constructors. In addition, we will sometimes writealts as an abbreviation for case alternatives fci ~xi � Nig.The functions addn are included for convenience in thede�nition of the abstract machine, and represent an inter-mediate step in the addition of n to a term.The only kind of substitution that we consider is vari-able for variable, with � ranging over such substitutions.The simultaneous substitution of one vector of variables foranother will be written M [~y=~x], where the ~x are assumed tobe distinct (but the ~y need not be).3.1 The Abstract MachineThe semantics presented in this section is essentially Ses-toft's \mark 1" abstract machine for laziness [Ses97]. Tran-sitions are over con�gurations consisting of a heap, contain-ing bindings, the expression currently being evaluated, anda stack. We write h�; M; S i for the abstract machine con-�guration with heap �, expression M , and stack S. A heapis a set of bindings; we denote the empty heap by ;, andthe addition of a group of fresh bindings ~x = ~M to a heap� by juxtaposition: �f~x = ~Mg. The stack written b : S willdenote the stack S with b pushed on the top. The emptystack is denoted by �, and the concatenation of two stacksS and T by ST (where S is on top of T).Stack elements are either:2

� a reduction context, or� an update marker #x, indicating that the result of thecurrent computation should be bound to the variablex in the heap.The reduction contexts on the stack are shallow contextscontaining a single hole in a \reduction" position - i.e. in aposition where the current computation is being performed.They are de�ned as:R ::=[�]x j case [�] of fci ~xi � Nig j[�] +M j addn[�] j iszero [�]We will refer to the set of variables bound by � as dom�,and to the set of variables marked for update in a stack Sas domS. Update markers should be thought of as bindingoccurrences of variables. A con�guration is well-formed ifdom� and domS are disjoint. We write dom(�; S) for theirunion. For a con�guration h�; M; S i to be closed, any freevariables in �, M , and S must be contained in dom(�; S).For sets of variables P and Q we will write P Q tomean that P and Q are disjoint, i.e., P \Q = ;. The freevariables of a term M will be denoted FV(M); for a vectorof terms ~M , we will write FV(~M).The abstract machine semantics is presented in �gure 1;we implicitly restrict the de�nition to well-formed closedcon�gurations.The �rst group of rules are the standard call-by-needrules. Rules (Lookup) and (Update) concern evaluation ofvariables. To begin evaluation of x, we remove the bind-ing x = M from the heap and start evaluating M , with x,marked for update, pushed onto the stack. Rule (Update)applies when this evaluation is �nished, and we may updatethe heap with the new binding for x. Rule (Letrec) addsa set of bindings to the heap. The side condition ensuresthat no inadvertent name capture occurs, and can alwaysbe satis�ed by a local �-conversion.The basic computation rules are captured by the (Push)and (Reduce) rules schemas. The rule (Push) allows us toget to the heart of the evaluation by \unwinding" a shallowreduction context. When the term to be evaluated is a valueand there is a reduction context on the stack, the (Reduce)rule is applied.4 Space Use and Garbage CollectionA desired property of our model of space-use is that it istrue to actual implementations. Unfortunately, di�erent ab-stract machines and garbage collection strategies di�er intheir asymptotic space behaviour. Consider for example anapplication of the functionf = �x:let y = f y in yusing some of the main Haskell implementations.2 This runsin constant space under HUGS'98 and GHC 4.01, but runsout of stack in hbc 0.9999.5a, and in some older versionsof GHC. Given the di�erent space behaviours of di�erentimplementations there is no hope that we can construct atheory which applies to all implementations. Although wewill choose a particular model of space use we believe thatmost of the results and techniques developed in this papercan be adopted to any reasonable model. We will return tothis subject shortly and discuss some of the subtle ways inwhich implementations di�er.2www.haskell.org/implementations.html

4.1 Measuring spaceIn principle the heap and the stack can share the same mem-ory, and thus a program transformation which trades heapfor stack, or vice versa, should be perfectly �ne. However, inpractice most implementations allocate separate memory forthe heap and the stack, and we would therefore like to rejectsuch transformations. If a program transformation improvesthe maximum required stack and heap uses respectively, itcan never worsen the maximum required total space used bymore than a factor of two { but the converse is not neces-sarily true. Therefore we have decided to measure the heapand the stack separately.We measure the heap space occupied by a con�gurationby counting the number of bindings in the heap and thenumber of update markers on the stack. We count updatemarkers on the stack as also occupying heap space, since ina typical implementation an update marker refers to a so-called \blackhole closure" in the heap { a placeholder wherethe update eventually will take place. We will count everybinding as occupying one unit of space. In practice the sizeof a binding varies since a binding is typically representedby a tag or a code pointer plus an environment with one en-try for every free variable. However, the right hand side ofevery binding is always a (possibly renamed) subexpressionof the original program (a property sometimes called semi-compositionality3), so counting a binding as one unit gives ameasure which is within a constant factor (depending onlyon the program size) of the actual space used. We measurestack space by simply counting the number of elements onthe stack, and so an update marker will be viewed as occu-pying both heap and stack space. In practice every elementon the stack does not occupy the same amount of space, butagain, semicompositionality of the abstract machine assuresthat our measure is within a program-size-dependent con-stant factor. We will write jh�; M; S ij for the pair (h; s)where h and s is the amount of heap and stack respectivelyoccupied by the the con�guration.4.2 Garbage collectionTo reason about space use we must model garbage collection,which allows us to decrease the amount of space used by acon�guration during a computation. Garbage collection issimply the removal of any number of bindings and updatemarkers from the heap and the stack respectively, providingthat the con�guration remains closed.De�nition 4.1 (GC) Garbage collection can be applied toa closed con�guration h�; M; S i to obtain h�0; M; S0 i,written h�; M; S imh�0; M; S0 i if and only if h�0; M; S0 iis closed, and can be obtained from h�; M; S i by removingzero or more bindings and update markers from the heap andthe stack respectively.This is an accessibility-based de�nition as found in e.g., thegc-reduction rule of [MH98]. The removal of update-markersfrom the stack is not surprising given that they are viewedas the binding occurrences of the variables in question.4.3 Evaluation in �xed spaceWe are now ready to de�ne what it means for a computationto be possible in certain �xed amount of space.3A term due to Neil D. Jones3

h�fx =Mg; x; S i ! h�; M; #x : S i (Lookup)h�; V; #x : S i ! h�fx = V g; V; S i (Update)h�; let f~x = ~Mg in N; S i ! h�f~x = ~Mg; N; S i ~x dom(�; S) (Letrec)h�; R[M]; S i ! h�; M; R : S i (Push)h�; V; S ih�; V; R : S i ! h�; M; S i if R[V] M (Reduce)(�x:M) y M [y=x]case cj ~y of fci ~xi �Mig Mj [~y=~xj]m+N addmNaddmn pm+ nqiszerom (true if m = 0false otherwiseFigure 1: Abstract machine semanticsDe�nition 4.2 (Convergence in �xed space)h�; M; S i_(h;s) h�; N; T idef= 9�:h�; M; S i ! �m h�; N; T iand jh�; N; T ij � (h; s)_(h;s)_ def= the re
. and trans. closure of _(h;s)h�; M; S i+(h;s) def= 9�; V:h�; M; S i _(h;s)_ h�; V; � iM+(h;s) def= h ;; M; � i+(h;s)4.4 Some subtletiesDi�erent implementations vary in their space behaviour ina number of rather subtle ways. We will discuss some ofthose points below and how they relate to our particularspace model. The reader who is less interested in the detailsof memory management for lazy languages may safely skipthis section.Environment trimming Our abstract machine is basedon substitution of variables for variables, but lower level ab-stract machines are usually based on environments [Ses97].To avoid space leaks in environment-based machines it iscrucial to remove redundant bindings from environments onthe stack. This is sometimes called environment trimming[Ses97] or stack stubbing [PJ92]. Some implementations donot properly trim environments and programs likef x y = case g x of::: � :::y:::can lead to space leaks when compiled with the nhc com-piler, since a reference to x is kept on the stack during theevaluation of g x [R�oj95]. Our de�nition of space is con-sistent with an environment machine which does performenvironment trimming.Blackholing In our abstract machine, the lookup rule re-moves the binding from the heap while it is being evaluated.

This corresponds to so called \black holing" in real imple-mentations where the closure is overwritten with a special\black hole closure" without free variables [PJ92]. In someearly implementations the closure was instead left untouchedin the heap [RW93, Jon92]. This has the e�ect that thegarbage collector can not reclaim space that the free vari-ables of the closure hangs on to.Garbage collection of update markers In our modelwe allow for the garbage collection of update markers whichallows an application of ff = �x:let y = f y in yto run in constant space { as it does in HUGS'98 and GHC4.01, but not in hbc 0.9999.5a, or in some older versions ofGHC.Avoiding value copying and shortcutting indirec-tions When runninglet x = 1 + 2; y = id x in y +Min our abstract machine we will end up with both x and ybound to 3 in the heap. Some implementations would in-stead bind x to 3 and create an indirection y = x from y to x(or vice versa). If this is combined with a garbage collectorwhich can shortcut indirections (by in this case replacing alloccurrences of y with x and removing y = x) then spacecan be saved. This can only reduce the total space usedby a constant factor, but it can have a quite dramatic ef-fect in practice [RW93]. However since our space model isonly adequate up to constant factors anyway, this is not aserious drawback of our space model. For implementationsthat create indirections in this way it is important that thegarbage collector can shortcut indirections. Otherwise notmuch would be gained, and in our example, the space for xcannot be reclaimed before y = x is reclaimed, thus possi-bly increasing the space used. Since our abstract machinedo not create indirections we have not included shortcuttingof indirections in our garbage collector. This has the e�ect4

that programs which contains indirections in the source code(that is, subterms of the form let y = x in M) may use upmore space than necessary, but otherwise the model is well-behaved.Shortcutting update marker chains Sometimes twoor more update markers, say #x and #y, end up on topof each other on the stack. Then both x and y will even-tually be updated with the same value or, in implementa-tions which introduce indirections, one will be indirected tothe other. Some implementations preclude this situation bynever pushing update markers on top of each other: if #x isalready on the stack, an indirection y = x is created insteadof pushing #y. When this is combined with garbage collec-tion of indirections, the e�ect is similar to the combined ef-fect of garbage collection of update markers, avoiding valuecopying and garbage collecting indirections. As far as weknow this trick has not been documented, but it is used inthe GHC compiler4.Lazy patterns Lazy patterns in let bindings likelet (x; y) =M in Nare an important feature of real lazy languages such asHaskell. They might be encoded in our language in thefollowing mannerlet p=M;x = fst p; y = snd p in NThis encoding seems to be used in, for example HUGS'98,but can lead to space leaks (unless special consideration istaken in the garbage collector which essentially amounts toletting the garbage collector do a restricted form of compu-tation [Wad87]). Instead, as suggested by Sparud [Spa93]one can extend the core language to cope with lazy patternsdirectly. We have left out lazy patterns to keep things simplebut there should be no problem with adding them.5 Weak Space ImprovementIn the previous section we de�ned a notion of space whichwe believe is realistic in the sense that an actual implemen-tation (using our reasonably aggressive garbage collection)will require space within a constant factor of our abstractmeasure, where the constant depends on the size of the pro-gram to be executed.In this section we de�ne space improvement within a con-stant factor { what we will simply refer to as Weak Improve-ment { which says that if M is improved by N , replacing Mby N in any program context will never lead to more thana constant factor worsening in space behaviour, where theconstant factor is independent of the context.The starting point for an operational theory is usually anapproximation and an equivalence de�ned in terms of pro-gram contexts. Program contexts are usually introduced as\programs with holes", the intention being that an expres-sion is to be \plugged into" all of the holes in the context.The central idea is that to compare the behaviour of twoterms one should compare their behaviour in all programcontexts.We will use contexts such that holes may not occur inargument positions of an application or a constructor, for4Simon Peyton Jones, Personal communication, June 1999.

if this were the case, then �lling a hole (with a non vari-able) would violate the syntax. Contexts may contain zeroor more occurrences of the hole, and as usual the opera-tion of �lling a hole with a term can cause variables in theterm to become captured. For the technical development wework with the second order syntax for contexts as in e.g.,[San98a][MS99], although we elide these technicalities in thepresent abstract.De�nition 5.1 (Weak Improvement) We say that M isweakly improved by N , written M B� N , if there exists alinear function f 2 N ! N such that for all C such thatC[M] and C[N] are closed,C[M]+(h;s) =) C[N]+(f(h);f(s)):So M B� N means that N never takes up more than a con-stant factor more space than M (but it might still use non-constant factor less space). We write M CB� N to mean thatM B� N and N B�M .Proposition 5.1 (Precongruence) B� is a precongru-ence { i.e., it is a transitive and re
exive relation whichis preserved by contexts.Proof. The proof of all but transitivity is immediate.Transitivity follows from the fact that the composition ofany two linear functions is linear. 2The improvement relations in this article also imply possiblyimproved termination properties, although this choice is nota particularly signi�cant, and all laws, excepting those in-volving explicitly nonterminating terms, are also operationalequivalences.5.1 Weak Improvement LawsHere we summarise a collection of laws for weak improve-ment. The laws are established using a strong version ofimprovement, and a context lemma that is described in thenext section. The �rst property is fundamental, and high-lights the signi�cance of free variables in this theory:Theorem 5.2 (Free Variable Property) If M B� Nthen FV(M) � FV(N).Proof. Suppose that M B� N . Then there exits a linearfunction f which bounds the extra space required to com-pute with N instead of M . Assume, towards a contradic-tion, that there exists a variable x such that x 2 FV(N) butx 62 FV(M). Without loss of generality we can assume thatFV(N) = fxg and FV(M) = ; (since by congruence of B�we can wrap a context around M and N which ensures thisproperty). Now consider the context C:let traverse = �xs:case xs ofnil � 1h : t � traverse tcount = �n: case iszero n oftrue � nilfalse � let a = n� 1r = count ain n : rx = count kz = [�]in traverse x+ (�y:1)z5

where : is an in�x cons constructor. It can be seen (we omit aformal proof, which would be somewhat tedious) that C[M]evaluates with some constant space, independent of k. Thisis because the list count k can be garbage collected as it istraversed. However C[N] requires space proportional to k,since there is a (dead code) reference to x which preventsany of the list from being collected until it has been com-pletely constructed. Since we can make k arbitrarily largewe cannot have M B� N . 2The sketch proof above relies on unbounded integers. Asimilar example can be constructed using just a �nite set ofconstructors and a logarithmic-space encoding of k.In �gure 2 we collect some weak improvement laws. Likeany other contextual program ordering, it is not a recursivelyenumerable, so any such collection is inevitably somewhatad hoc.In presenting laws, we will follow two conventions. The�rst is the standard free-variable convention [Bar81] that allbound variables in the statement of a law are distinct, andthat they are disjoint from the free variables. The second isthat in any instance of a law, the free variable property isrespected. When we state a cost-equivalence, it should betaken as a pair of improvement laws. For example, from thecost-equivalence law(�x:M) y CB� M [y=x]we can conclude that (�x:x) y CB� y and (�x:3) y B� 3, butnot that 3 B� (�x:3) y.5.2 On divergent termsThere is no bottom element in the space-ordering relation.By Theorem 5.2, it follows that divergent terms containingdi�erent numbers of free variables are not cost equivalent{ simply because when placed in a program context, theirfree variables can a�ect the amount of garbage. Thus themore free variables a divergent term contains, the lower inthe improvement ordering it sits.Proposition 5.3 Let
1 and
2 denote an arbitrary termswhich are operationally equivalent (with respect to observingtermination behaviour) to the divergent term let x = x in x.Then
1 B�
2 if and only if FV(
1) � FV(
2).Let
X denote an arbitrary divergent term with FV(
X) =X (such terms, by the above proposition, will all be costequivalent).6 Strong ImprovementThe weak improvement laws are established with the use ofa �ner-grained notion of improvement which we call strongimprovement. This section describes the properties of strongimprovement.De�nition 6.1 (Strong improvement) We say that Mis strongly improved by N , written M B� N , if for all Csuch that C[M] and C[N] are closed,C[M]+(h;s) =) C[N]+(h;s):

We write M CB� N to mean that M B� N and N B�M .For strong improvement we have established a contextlemma [Mil77]: to prove that M is strongly improved by N ,one only needs to compare their behaviour with respect toa much smaller set of contexts, namely the context whichimmediately need to evaluate their holes.Lemma 6.1 (Context Lemma) For all terms M and Nsuch that FV(M) � FV(N), if for all � and S,h�; M; S i+(h;s) =) h�; N; S i+(h;s)then M B� N .The con�guration contexts of the form h�; [�]; S i cor-respond to the notion of evaluation contexts described in[MS99].6.1 Spikes and ballastTo prove, for example, (restricted) beta-reduction(�x:M) y B� M [y=x] we will show the stronger prop-erty: (�x:M) y B� M [y=x]: The context lemma makes thisproperty very easy to establish. The converse direction alsoholds within a constant factor (under the assumption thaty occurs free in M [y=x]). The only di�erence when goingfrom the right-hand side to the left is that the left handside will momentarily use up one stack unit more than theright-hand side.In order to express the latter property using the moreprecise improvement theory, we need some space analogueof the time-tick from [MS99]. In fact, we will use four kindsof \tick", two of which are minor language extensions.The �rst two devices, the stack spike and the heap spike,are (like the time-tick) representable in the language. Thestack spike is de�ned thusgM def= case true of ftrue �MgIt has the short-lived e�ect of increasing the stack usage byone unit, at the moment that M is about to be evaluated.The improvement above can now be made more precise bynoting that:(�x:M) y CB� gM [y=x] if y 2 FV(M [y=x]):The heap spike is the heap analogue of the stack spike; itmomentarily increases the size of the heap at the point intime when the term is ready to be evaluated.fM def= let x =M in x x 62 FV(M)Now we come to two constructs which involve minor lan-guage extensions which a�ect the de�nition of space but donot otherwise change the de�nition of evaluation. The �rstis stack ballast, which corresponds to adding extra space toa stack-element. We now assume that every reduction con-text is labelled with a natural number, nR { which we callstack ballast. A ballast-free reduction context will now betaken as shorthand for a reduction context with ballast of0. The following modi�cations are made to the de�nitions:� Ballast is transparent from the point of view of thecomputation rules, so R[V] N =) nR[V] N ;� the stack consumption of a reduction context with bal-last is given by: jnRj = n+ 1.6

Thus ballast holds on to n additional units of stack space,for the length of time that the reduction context remains onthe stack.Dually, heap ballast adds some n units of heap consump-tion to a binding. Heap ballast remains attached to thebinding for its lifetime, but is otherwise transparent fromthe point of view of computation. When a binding is sub-ject of evaluation, that is when there is an update markerfor the binding on the stack the heap ballast attaches to theupdate marker and adds to the heap consumption of themarker.� The heap consumption of a binding with ballast: jnx =M j = n + 1.� The heap consumption of an update marker with bal-last: j#nxj = n+ 1.� The stack consumption of an update marker with bal-last: j#nxj = 1.With the help of ballasts we can increase the size of thestack and heap spikes.ngM def= ncase true of ftrue �MgnfM def= let nx=M in x x 62 FV(M)Of course, spikes and ballast have no intrinsic interest forprogrammers { they are a bookkeeping mechanism which weuse to syntactically account for di�erent types of space us-age. The crucial property of stack and heap ballast, and therespective spikes is that they do not change space behaviourby more than a constant factor:Lemma 6.2 (Spike and Ballast Introduction)1. M CB� ngM2. M CB� nfM3. nR[M] CB� n+mR[M]4. let flx = L; ~m~y = ~Mg in N CB� let fl+nx = L; ~m~y =~Mg in NThe proof for ballast is straightforward, by showing thatthe largest ballast contained in a con�guration can neverincrease during computation. The proof for heap and stackspikes is analogous to that for time ticks in [MS99].Although ballast is a seemingly small language extensionwe suspect that it is not a conservative extension with re-spect to the space improvement theory. Thus we cannot,a priori, expect that every law that holds in the languagewithout ballast can be established via the language withballasts.6.2 Strong Improvement LawsIn �gure 3 we have collected a number of laws for strongimprovement. The laws are related to the laws for weakimprovement by careful addition spikes and ballast to eachside. The laws for weak improvement thus follows imme-diately by an appeal to the spike and ballast introduction.Proving these laws amounts to establishing the premise ofthe context lemma. For this we use the notion of uniformcomputation from [San98a] which, with a very careful treat-ment of garbage, can be adapted to reasoning about space.

The individual proofs are very much reminiscent of the proofof the corresponding laws for time improvement [MS99], (ex-cept that we cannot use an \open" version of uniform com-putation as used there).6.3 Strong improvement and induction principlesIn this paper we have used strong improvement merely asa vehicle for establishing properties of weak improvement.Although it remains as future work, we believe that we canestablish some principles, such as improvement induction[San98b, MS99], for reasoning about recursive functions.We believe that these induction principles would then havepremises involving strong improvement (rather than weakimprovement). If so, the rôle of strong improvement wouldgo beyond the present and would involve equational reason-ing about terms with spikes and ballast. The fact that wehave established a rich spike and ballast algebra (given in�gure 4) which permits spikes to be introduced, moved andeliminated suggests that such equational reasoning is possi-ble.7 Work and Space-Safe InliningIn this section we brie
y consider an application of thetheory to the problem determining when it is safe to in-line a de�nition. Inlining is a standard compiler optimiza-tion, but one which is potentially dangerous in the con-text of a lazy language. The improvement relation guaran-tees in a certain sense that a local transformation is space-safe. As we have seen from the preceding sections, inliningof values is space safe, since from weak -value-� have thatlet x = V in C[x] B� let x = V in C[V]. Another form ofinlining which is validated is let x = M in R[x] B� R[M](weak -inline,weak -let-R). The same observations also holdfor time-improvement [MS99]. But what if x is bound to anon-value or C is not an reduction context? To inline a nonvalue in a non reduction context:let fx =Mg in C[x]) let fx =Mg in C[M]can sometimes be very worthwhile [PJS98]. In more ad-vanced transformations such as higher-order deforestation[Wad90, Mar95] it is crucial. However, as is well-known,the transformation risks duplicating computation, and thiscan lead to an asymptotically worse program { in both spaceand time. The time issue is discussed in [PJS98], where theyillustrate that the naive \solution" of ensuring that there isonly one syntactic occurrence of x does not guarantee work-safe inlining.A number of researchers have sought to �nd criteria forwhen such transformations are work-safe, based on lineartype systems and notions of \used at most once" [TWM95,Gus98, WJ99, Gus99]. Despite the fact that Turner et aldiscuss inlining of \used-one" bindings in some detail, as faras we are aware, it remains an open problem to actuallyprove that these criteria actually do guarantee work-safety.Another question (one which to our knowledge has not evenbeen posed) is whether the \used at most once" criteriamight also guarantee space safety.In the remainder of this section we outline answers tothese questions. One problem is that time and space safetydo not go hand in hand. Sometimes inlining can lead to7

Weak Improvement LawsM CB� N if M N (weak -red -eq)let fx = V[x]; ~y = ~D[x]g in C[x] B� let fx = V[V[x]]; ~y = ~D[V[x]]g in C[V[x]] (weak -value-�)R[case M of fpat i � Nig] CB� case M of fpat i � R[Ni]g (weak -case-R)R[let f~x = ~Mg in N] CB� let f~x = ~Mg in R[N] (weak -let-R)let fx =Mg in x CB� M; if x =2 FV(M) (weak -inline)let f~x = ~Mg in N CB� N; if ~x FV(N) (weak -gc)let f~x= ~Lg in let f~y = ~Mg in N CB� let f~x = ~L; ~y = ~Mg in N (let -
atten)let fx = let f~y = ~L; ~z = ~Mg in Ng in N 0 B� let fx = let f~z = ~Mg in N; ~y = ~Lg in N 0 (let -let-1)let fx= let f~z = ~Mg in N; ~y = ~Lg in N 0 B� let fx = let f~y = ~L; ~z = ~Mg in Ng in N 0 if ~y � FV(~N; ~M) (let -let-2)
X B� M (
)Figure 2: Weak Improvement LawsStrong Improvement LawsnR[V] CB� ngN if nR[V] N (reduction -eq)let fmx = V[x]; ~n~y = ~D[x]g in C[x] CB� let fmx = V[V[x]]; ~n~y = ~D[V[x]]g in C[V[x]] (value-�)mR[ncase M of fpat i � Nig] CB� m+n+1case M of fpat i � mR[Ni]g (case-R)mR[let f~n~x= ~Mg in N] CB� mglet f~n~x = ~Mg in mR[N] (let-R)let fnx =Mg in x CB� nfM; if x =2 FV(M) (inline)let f~x = ~Mg in N CB� N; if ~x FV(N) (gc)�(~l+1)flet f~l~x = ~Lg in let f~m~y = ~Mg in N CB� �(~l+1)flet f~l~x = ~L; ~m~y = ~Mg in N (let -
atten)let fl+�(~m+1)x = let f~m~y = ~L; ~n~z = ~Mg in Ng in N 0 B� let flx = let f~n~z = ~Mg in N; ~m~y = ~Lg in N 0 (let -let-1)let flx = let f~m~y = ~L; ~n~z = ~Mg in Ng in N 0 C� let flx = let f~n~z = ~Mg in N; ~m~y = ~Lg in N 0 (let -let-2)if ~y 2 FV(let f~n~z = ~Mg in N)Figure 3: Strong improvement laws.mfnfM CB� nfmfM (1)mfnfM CB� nfM if m � n (2)mflet f~n~x= ~Mg in N CB� let fnx =Mg in N if m+ 1 � �(~n + 1) and ~x 2 FV(N) (3)m+�(~n+1)flet f~n~x= ~Mg in N CB� let fnx =Mg in mfN if ~x 2 FV(N) (4)mfR[M] CB� R[mfM] (5)mgngM CB� ngmgM (6)mgngM CB� ngM if m � n (7)mgnR[M] CB� nR[M] if m � n (8)m+n+1gnR[M] CB� nR[mgM] (9)mglet f~n~x= ~Mg in N CB� let f~n~x = ~Mg in mgN if ~x 2 FV(N) (10)mfngM CB� ngmfM (11)Figure 4: Spike and ballast algebra.8

asymptotically worse space behaviour even when it is work-safe. For example,let x = count ky = head xin y + traverse x+ (�z:1) y)let x = count ky = head xin head x+ traverse x+ (�z:1) ywhere count is the function from Section 5 which producesthe list of integers counting down from its argument to zero.The inlining above is work-safe but not space safe: the lefthand side can run in constant space but the right handside requires heap space proportional to k. This exampleis enough to show that the \used at most once" criteriaalone is not enough to guarantee space safety (although itdoes, as expected, guarantee work-safety).In the remainder of this section we will strengthen theuse-once criteria so that it is enough to guarantee both workand space safety, and outline our approach to establishingthese results.The program analysis by Gustavsson [Gus98, Gus99] hasalready been proven to satisfy the stronger criteria and webelieve that the analyses by Turner et al [TWM95] andWansbrough and Peyton-Jones [WJ99] do so as well. How-ever the \used at most once" analyses by Sestoft [Ses91],Marlow [Mar93] and Mogensen [Mog97] do not satisfy theadditional criteria, and we believe that as a result their anal-yses do not provide conditions for space-safe inlining.7.1 A�ne-linear bindingsOur approach is to extend the language with a�ne-linear\use-once" bindings, equipped with a direct operational in-terpretation. Such a binding will be written x �=M and wewill write M̂ for the term obtained by removing the linearannotations from bindings in M . Linear bindings are trans-parent to all computation rules except Lookup. We nowhave two lookup rules, one for ordinary bindings, and onefor linear bindings:h�fx =Mg; x; S i ! h�; M; #x : S i (Lookup)h�fx �=Mg; x; S i ! h�; M; S i if x 62 FV(�;M; S)(Lookup-�)The rule for linear bindings looks up the binding withoutpushing an update marker. Without the side conditionx 62 FV(�;M; S) this could lead to an open con�guration,which in a lower-level implementation would correspond tothe creation of a dangling pointer { something which couldcrash an unwary garbage collector. The side condition pre-vents such a situation, and instead the computation getsstuck. Note then that with this semantics the computationmay get stuck due to a linear binding even though the bind-ing is not used more than once. For example,let fx �= 1 + 2g in x+ (�y:1)xgets stuck since when x is going to be used there is a re-maining (semantically dead) occurrence of x in (�y:1)x. Ifa term do not get stuck due to a linear binding then its timeand space behaviour is closely coupled to the term obtainedby removing the linear annotations.

Proposition 7.1 If M+ then,M̂+(h;s) in t steps =)M+(h;s) in � t stepsM+(h;s) in t steps =) M̂+(h;s) in t stepsThe proof is straightforward since the computations arelockstep, and whenever the computation of M applies alinear-lookup step, the fact that M does not become stuckimplies that in the corresponding lookup step in M̂ , the up-date marker can be immediately garbage collected.7.2 Inlining linear bindingsThis crucial strengthening of the \used at most once" cri-teria will allow us to establish space safety. We have thefollowing strong improvements (where B�work is the improve-ment relation for time as de�ned in [MS99]).Theorem 7.2let fmx �= M; ~n~y = ~D[x]g in C[x]B�work let fmx �=M; ~n~y = ~D[M]g in C[M]let fmx �= M; ~n~y = ~D[x]g in C[x]B� let fmx �=M; ~n~y = ~D[M]g in C[M]The reason that we include the time-improvement law hereis that once we add linear bindings to the language, eventhe time-improvement theory must be free-variable aware,and thus the proofs for space and time become very closelyrelated. The theorem is proved in a manner similar to thevalue-�, and does not present any particular di�culties.It is easy to show that adding linear bindings to the lan-guage is not a conservative extension and thus the spaceimprovement laws from section 5 and 6 do not, a priori,hold in the extended language. However, in anticipation ofthis application, we have established all the laws in the lan-guage with both linear bindings and ballast. This allows usto reason about the space safety of transformations entirelyin the language with linear bindings. For the same reasonthe time improvement laws of [MS99] do not, a priori, hold.We have not yet determined which of the time-improvementlaws carry over, but we believe that those which are spaceimprovements will be time improvements in the extendedlanguage. The intuition behind this is again that both spaceand (our form of) linear bindings are sensitive to free vari-ables.7.3 Work and Space-Safety of Linear Type SystemsIt is perhaps not immediately apparent how the untyped no-tion of linear binding and Theorem 7.2 can be used to arguethe work and space safety of linear type systems. Lineartype systems are global program analyses; they can take thecontext in which a term occurs into account. Not surpris-ingly the established results for these type systems involvethe whole program.Proposition 7.3 If P is a program (a closed term with nolinear bindings) and P 0 is obtained from P by replacing bind-ings with linear bindings whenever one of the linear type sys-tems of [TWM95, Gus98, Gus99, WJ99] claims the variablehas linear type, then P+ =) P 0+9

The proof of this claim is essentially the subject reductionproperty of the respective type systems, which implies thatwell-typed programs cannot become stuck due to the con-�guration becoming open. [The latter point is only provedexplicitly in [Gus98, Gus99]. In [TWM95] and [WJ99] theresult is established for the weaker notion of \used at mostonce" but we believe it is straightforward to strengthen theirresults.]The property that we wish to prove is a similarly globalproperty, rather than a context-insensitive improvement re-lation:Theorem 7.4 If P is a program (a closed term with nolinear bindings), such thatP+(h;s)in t steps,and Q is obtained from P by inlining some of the bindingswhich are linear according to one of the linear type systems,then Q+(h;s)in � t steps,Proof. Suppose that P+(h;s)in t steps, and that P 0 is theresult of replacing all bindings which have linear type (ac-cording to one of the type systems) with actual linear bind-ings. Suppose further that Q0 is the result of inlining somelinear bindings in P 0, and that Q is the result of removing alllinear annotations from Q0. From Proposition 7.3 we knowthat P 0+ so by proposition 7.1P 0+(h;s) in � t steps.Now since Q0 is obtained from P 0 by inlining linear bindings,from Theorem 7.2 and the de�nitions of improvement, itfollows that Q0+(h;s)in � t steps.Finally, since Q̂0 = Q, by proposition 7.1 we haveQ+(h;s)in � t steps as required. 28 Conclusions and Future WorkWe have presented a surprisingly5 rich operational theoryfor the space use of call-by-need programs, based on a spaceimprovement ordering on programs. The theory allows oneto argue that transforming a program fragment M into Nis space safe in the sense that replacing M by N in anyprogram can never lead to asymptotically worse space (heapor stack) behaviour.As a �rst application of the theory, we have proved thatinlining of a�ne-linear bindings (as introduced by a certainclass of \used-once" type-systems) is work- and space-safe.A key problem which remains to be solved is to estab-lish some principles for reasoning about recursive functions.We have brie
y considered whether we can establish the im-provement theorem or improvement induction and we havegood reasons to believe that it should be possible.Another item on our work list is to add lazy patternsand strict lets to our language since these features seemto be crucial when de�ning space e�cient versions of somefunctions.5At least, suprising to us!

An important piece of future work is to try to apply thespace improvement laws to larger examples. This will surelyreveal the need for more laws, for example laws concerningstrictness and evaluation order.Another interesting direction for future work would be toconsider the time and space safety of a larger-scale programtransformation, such as deforestation [Wad90]. This shouldbe possible thanks to work and space safe inlining.References[Bar81] H. Barendregt. The Lambda Calculus. North Hol-land, 1981.[BLR96] Z.-E.-A. Benaissa, P. Lescanne, and K. H. Rose.Modeling sharing and recursion for weak reduc-tion strategies using explicit substitution. InProc. PLILP'96, the 8th International Sympo-sium on Programming Languages, Implementa-tions, Logics, and Programs, volume 1140 ofLNCS, pages 393{407. Springer-Verlag, 1996.[GP98] A. D. Gordon and A. M. Pitts, editors. HigherOrder Operational Techniques in Semantics.Publications of the Newton Institute. CambridgeUniversity Press, 1998.[Gus98] J. Gustavsson. A type based sharing analysisfor update avoidance and optimisation. In Proc.ICFP'98, the 3rd ACM SIGPLAN InternationalConference on Functional Programming, pages39{50, September 1998.[Gus99] J�orgen Gustavsson. A Type Based Sharing Anal-ysis for Update Avoidance and Optimisation. Li-centiate thesis, May 1999.[Jon92] Richard Jones. Tail recursion without spaceleaks. Journal of Functional Programming,2(1):73{79, January 1992.[Lau93] J. Launchbury. A natural semantics for lazyevaluation. In Proc. POPL'93, the 20th ACMSIGPLAN-SIGACT Symposium on Principles ofProgramming Languages, pages 144{154. ACMPress, January 1993.[Mar93] S. Marlow. Update avoidance analysis by ab-stract interpretation. In Proc. 1993 GlasgowFunctional Programming Workshop, Workshopsin Computing. Springer-Verlag, August 1993.[Mar95] Simon Marlow. Deforestation for Higher-OrderFunctional Programs. PhD thesis, University ofGlasgow, 1995.[MFH95] Greg Morrisett, Matthias Felleisen, and RobertHarper. Abstract Models of Memory Manage-ment. In Proc. Int'l Conf. on Functional Pro-gramming Languages and Computer Architecture(FPCA'95), pages 66{77. ACM Press, June 1995.[MH98] Greg Morriset and Robert Harper. Semantics ofmemory management for polymorphic languages.In Gordon and Pitts [GP98], pages 175{226.10

[Mil77] R. Milner. Fully abstract models of the typed �-calculus. Theoretical Computer Science, 4:1{22,1977.[Mog97] T. Mogensen. Types for 0, 1 or many uses.In Proc. Workshop on Implementation of Func-tional Languages (Draft), 1997.[MS99] Andrew Moran and David Sands. Improve-ment in a lazy context: An operational theoryfor call-by-need. In Proc. POPL'99, the 26thACM SIGPLAN-SIGACT Symposium on Prin-ciples of Programming Languages, pages 43{56.ACM Press, January 1999.[PJ87] S. L. Peyton Jones. The Implementation of Func-tional Programming Languages. Prentice Hall,1987.[PJ92] S. L. Peyton Jones. Implementing lazy functionallanguages on stock hardware: the Spineless Tag-less G-machine. Journal of Functional Program-ming, 2(2), April 1992.[PJPS96] S. Peyton Jones, W. Partain, and A. Santos.Let-
oating: moving bindings to give faster pro-grams. In Proc. ICFP'96, the 1st ACM SIG-PLAN International Conference on FunctionalProgramming, pages 1{12. ACM Press, May1996.[PJS98] S. Peyton Jones and A. Santos. Atransformation-based optimiser for Haskell.Science of Computer Programming, 32(1{3):3{47, 1998.[R�oj95] Niklas R�ojemo. Garbage collection, and memorye�ciency, in lazy functional languages. PhD the-sis, Chalmers Tekniska H�ogskola, 1995.[Ros96] K. H. Rose. Operational Reduction Models forFunctional Programming Languages. PhD the-sis, DIKU, University of Copenhagen, Denmark,February 1996. available as DIKU report 96/1.[RR96] Colin Runciman and Niklas R�ojemo. New Di-mensions in Heap Pro�ling. Journal of Func-tional Programming, 6(4):587{620, 1996.[RW93] Colin Runciman and David Wakeling. HeapPro�ling of Lazy Functional Programs. Journalof Functional Programming, 3(2):217{245, April1993.[San91] D. Sands. Operational theories of improve-ment in functional languages (extended ab-stract). In Proc. 1991 Glasgow Functional Pro-gramming Workshop, Workshops in ComputingSeries, pages 298{311. Springer-Verlag, August1991.[San95] D. Sands. A na��ve time analysis and its theoryof cost equivalence. Journal of Logic and Com-putation, 5(4):495{541, 1995.[San96] D. Sands. Total correctness by local improve-ment in the transformation of functional pro-gram. ACM Transactions on Programming Lan-guages and Systems (TOPLAS), 18(2):175{234,March 1996.

[San98a] D. Sands. Computing with contexts: A sim-ple approach. In A. D. Gordon, A. M.Pitts, and C. L. Talcott, editors, Proc.HOOTS II, the 2nd Workshop on Higher Or-der Operational Techniques in Semantics, vol-ume 10 of Electronic Notes in Theoretical Com-puter Science. Elsevier Science Publishers B.V.,1998. at http://www.elsevier.nl/cas/tree/store/tcs/free/noncas/pc/menu.htm.[San98b] D. Sands. Improvement theory and its applica-tions. In Gordon and Pitts [GP98], pages 275{306.[Ses91] P. Sestoft. Analysis and E�cient Implementationof Functional Programs. PhD thesis, DIKU, Uni-versity of Copenhagen, Denmark, October 1991.[Ses97] P. Sestoft. Deriving a lazy abstract machine.Journal of Functional Programming, 7(3):231{264, May 1997.[Spa93] Jan Sparud. Fixing Some Space Leaks without aGarbage Collector. In Proc. 6th Int'l Conf. onFunctional Programming Languages and Com-puter Architecture (FPCA'93), pages 117{122.ACM Press, June 1993.[TWM95] D. N. Turner, P. Wadler, and C. Mossin. Onceupon a type. In Proc. FPCA'95, ACM Confer-ence on Functional Programming Languages andComputer Architecture, pages 1{11. ACM Press,June 1995.[Wad87] P. Wadler. Fixing Some Space Leaks with aGarbage Collector. Software Practice and Expe-rience, September 1987.[Wad90] P. Wadler. Deforestation: Transforming pro-grams to eliminate trees. Theoretical ComputerScience, 73:231{248, 1990.[WJ99] Keith Wansbrough and Simon Peyton Jones.Once upon a polymorphic type. In Proc.POPL'99, the 26th ACM SIGPLAN-SIGACTSymposium on Principles of Programming Lan-guages. ACM Press, January 1999.

11

