
On Deleting Aggregate ObjetsDraftDavid Clarkeemail: lad�s.uu.nl�January 8, 2001AbstratWe desribe a typed objet alulus whih makes expliit the nesting between objets. Thealulus is based on Abadi and Cardelli's objet alulus [1℄ extended with regions.1 Regionshave properties desribing their nesting and the bounds on their aess. They are used notonly in a stak-based manner, but also to store an objet's private implementation. Thisreates opportunities to improve memory management. In partiular, the alulus allows theentire private implementation of an aggregate objet to be deleted when the interfae to theaggregate beomes garbage. The alulus also allows entire aggregate objets to be alloatedon stak-based regions.This work is the �rst attempt exploration of the opportunities to improve memory man-agement whih were inherent in our earlier work. The formal development presented hereseems to be orret, though it's properties have not been formally demonstrated. The readeris refered to an earlier work [5℄ for a more thorough development whih does not venture asfar as this does, or to the soon-to-appear thesis [8℄.1 IntrodutionBefore starting, let's �x some terminology. Rather than onsider objets to be without struture,we exploit the nesting inherent in the notion of aggregation used in objet-oriented design [12℄.An aggregate objet onsists of one or more interfae objets and a olletion of implementationobjets whih are private to the aggregate objet. Both the interfae and implementation objetsmay be aggregate objets. Not all objets an objet aesses are onsidered part of its implemen-tation; some objets are not proteted. For onision, we use the words aggregate, interfae, andimplementation.In previous work we presented a type system for proteting the implementation of an aggregate[6℄, where the aggregate onsisted of only a single interfae objet and multiple implementationobjets. The idea was to enable a more private private whih prevented diret aess to theimplementation from outside the aggregate. This type system enfores on that the interfae ofan aggregate is a dominator2 for aess paths from the root of the objet graph to the aggre-gate's implementation. A onsequene is that when the interfae beomes garbage, its entireimplementation an also be deleted.A typial example the alulus allowed was a linked list where the handle of the list was theinterfae and the links the implementation. The data in the list is not onsidered a part of theimplementation. The only aess to the links is through the handle. Eah of the links is a�ordedthe same amount of protetion. When the handle is deleted, then so may all the links.�This work was onduted at the Shool of Computer Siene and Engineering, University of New South Wales,Sydney. From April 2001 the author will be at the Institute of Information and Computer Siene, UtrehtUniversity, Utreht, The Netherlands.1We used the word ontext instead of region in previous work.2A node a is a dominator for paths from node b to node if all paths from b to inlude a.1

This alulus is, however, limited in pratie. Although the original proposal laked inheritane,this an be easily regained [7℄. The problem is that the dominane property is too strong to allowthe kinds of idioms used in pratie. For example, to use an iterator on a linked list meant that thelinks ould not be given the same amount of protetion previously stated, beause both the handleand the iterator need diret aess to the links, whih is prevented by the dominator property.Reent work extended the underlying ontainment model, reasting the entire type system interms of Abadi and Cardelli's objet alulus [5℄. Doing so allowed aggregates with multiple inter-faes, but the memory management properties were lost. This was beause the types system didnot ontain enough information to guarantee the desired invariants. Certain syntati restritionsare possible to avoid ertain behaviour in the ore alulus and regain previous properties (andlimitations). We would, however, rather that the type system stated whenever suh propertieswere satis�ed, without the limitations. For example, we want to know whether a ertain objet isthe dominator for aess to its implementation.In this work we strengthen the properties spei�ed by types to allow varying di�erent levels ofprotetion to be spei�ed in the same type system.Whole aggregate objets an be deleted; the implementation objets, not just the interfae.The key to ahieving this is to store objets in regions, to have regions assoiated with bothobjets and staks frames, and to attah properties to the regions. The properties ontrol aessfrom objets in one region to objets in other regions, and give bounds on this aess, whih areused to guarantee ertain memory management invariants. In the framework we an also havestak-based memory regions whih annot be aessed outside of the stak frame. These allowomplete objets graphs to be alloated and deleted in a stak-based manner (using a stak ofheaps).2 The CalulusThe alulus is a minor extension of our objet alulus with ownership and ontainment [5℄, whihin turn is an extension of Abadi and Cardelli's objet alulus [1℄. We now briey desribe itssyntax, given in Figure 1.Regions onsists of the root region �, whih is the only region present when a program begins,and variables, denoting regions introdued using new. Only objets are stored in regions. Theregion � is aessible to all objets. Regions are nested; this is aptured by the relation �:, alledinside. p �: q means that p is inside q; all regions are inside �, that is, p �: � for all p. The nestingof the regions is the basis for ontrolling aess between objets. Spei�ally playing that role arepermissions.Permissions are used to ontrol aess to objets, from whih we obtain our desired invariants.The point permission hpi allows aess to objets in region p. The upset permission hp"i allowsaess to objets in any region q where p �: q, that is any region enlosing p.Types onsist of objet types and existential types whih hide region names. This departssigni�antly from traditional region aluli [14℄, beause the region use is no longer lexiallysoped. In the objet type [li : �ii21::n℄pq , p is the region in whih the objet resides, and q is theregion in whih it stores its implementation. Existential quanti�ation over regions allows regionsto be abstrated away, though their properties are retained, and thus allows new regions to bea part of types, while keeping the type system statially de�ned. The type 9(� � p=P)A meansthat there is some region denoted � whih is inside p and satis�es region bound P , desribed in amoment.Method types � are distint from types to distinguish between evaluation inside and outsidean objet. They speify whih arguments are required; method evaluation with those argumentsis onsidered to be inside the objet | the result is onsidered to be returned from the inside tothe outside of the objet.Values are terms whih are the results of omputation. Values are either variables x, loations�, as the objet-oriented language is imperative, or the term hiding a region (with some properties)

Regionsp ::= � j �PermissionsK ::= hpi j hp"iTypesA;B ::= [li : �ii21::n℄pq j 9(�� p=P)AMethod Types� ::= A j A! �Valuesu; v ::= xj �j hide p as �� q=P in v:ATermsa; b ::= vj v:lh�ij v:l (&(s : A;�)bj let x : A = a in bj expose v as �� p=P ; x:A in b:Bj new �� p=? in aj new �� p=P in let ~x = ~a in wfo�Objet (with implementation region �)wfo� ::= [li = &(si : Ai;�i)bii21::n℄q�j hide � as �� p=P in wfo�:ARegion BoundsP ::= pj ?Atual Parameters� ::= ; j v;�Formal Parameters� ::= ; j x : A;�Figure 1: The Syntaxwithin a value, hide p as � � q=P in v:A. The hidden region p is generally the implementationregion of some objet.Terms are presented in the named form [13℄ whih helps with proving properties.3 A term iseither a value, method seletion v:lh�i with arguments �, method update v:l (&(s : A;�)b, alet expression for loal delarations, or an existential unpaking expose v as �� p=P; x:A in b:B.The semantis of these terms are as usual, exept that methods take arguments. The remainingterms are more interesting.3Future work may see a hange to Gordon and Hankin's onurrent objet alulus [9℄, possibly using Cardelli,Ghelli, and Gordon's Groups [3, 4℄.

A

B r

q

s t

C p

Figure 2: Bounded Region Aess2.1 Objets and RegionsThe term new � � p=? in a orresponds approximately to the letregion term from the regionsalulus [14℄. This term reates a new region � whih is diretly inside the region p, but is boundedso that it annot be used outside of itself. This means that there annot be a referene from anobjet residing outside of � to an objet whih is in � or a region inside �. In addition this regionan be dealloated when term a has �nished evaluating.4 We all this sort of region exlusive.The remaining syntax new � � p=P in let ~x = ~a in wfo� spei�ed a new objet with imple-mentation region � (bound in the sope of this expression). let ~x = ~a in : : : denotes a series oflet expressions whih are used to initialise the objet, inluding its private implementation. Thesyntax is desribed in this manner, that is, parameterised by the region �, so that every objethas a unique implementation region.Objets have the following form [li = &(si : Ai;�i)bii21::n℄pq . The region the objet resides in,it's interfae region, is p, and q is the region where it stores its private implementation. These,ombined with the nesting of regions, govern whih objets an aess whih other objets. Theonstraint is stated as follows: �! �0 =) impl(�) �: int(�0)where impl(�) is the implementation region and int(�0) is the interfae region. This states: an objetan only aess other objets whose interfae region is outside its implementation region. Thusthe regions play a double role of representing where the objets reside, for memory managementpurposes, and for aess ontrol, from whih the invariants on memory management are derived.An objet is apable of surreptitious aess whenever the implementation region is not diretlyinside the interfae region. The purpose of the bound is to plae a ap on the extent of surreptitiousaess for a partiular region. (C in Figure 2.)The implementation region an be either bounded or exlusive.A region reated with new where the bound P is some region p is alled bounded. Thisrepresents the outermost region whih an diretly aess the given region. Figure 2 illustrates.Here we have regions whih are nested as follows s �: r �: q �: p and t �: r, and three objetsA, B, and C, where int(A) = q impl(A) = rint(B) = r impl(B) = sint(C) = p impl(C) = t:Eah objet an aess the other, but B is less aessible that A, whih is less aessible thanC. B ould be the implementation of aggregate A, and C ould be an iterator whih is used bysomeone using the A as a part of its implementation.Consider when objet A was reated. Its implementation region r was reated to be inside q,with a bound p. The bound represents the maximal region where the interfae of C an reside4This property remains to be demonstrated formally.

| C's interfae ould not be plaed in any region further out. Furthermore, any objet whihresembles C with a protruding interfae, but is used inside C, is also bounded by p. (We usetransitive bounds, desribed in a moment, to enfore this.)If P is ? then the region again is alled exlusive. In this ase there an exist no objetwith surreptitious aess like C. If the bound on region r is ?, then the maximum interfaeregion an objet with implementation region inside A an have is r, for example, B. (When ris a stak-alloated region then there is no objet A either, just the region r.) When an objetsimplementation region is exlusive, then the region does not exhibit the stak-based dealloationdesribed before. It does however ensure that the interfae objet is the single aess point to theaggregate it onstruts. This means that when the objet beomes garbage, every region inside rand the objets they ontain an be safely deleted.As a part of the type system we have the following funtions from region variables to regions:ub and tb. The �rst gives the upper bound on a region variable. This gives the maximal regionwhere the interfae an go. The seond gives the upper bound on regions reated within theregion. This property is inherited by the other regions.These funtions have the following values, as per the kind of behaviour we wish to exhibit:stak alloated Regions reated using new � � p=? in a, where a is not an objet, have thefollowing properties:� ub(�) = p. Note that it is e�etively unde�ned beause this is only used when typingobjets whih store their implementation in �;� tb(�) = �.Region is not attahed to an objet. Prevents any objets like C above.single entry Regions reated using new � � p=? in wfo� are used to store the implementationof an aggregate. In this ase, the objet is the single aess point to the implementation.Region � has the following properties:� ub(�) = p;� tb(�) = �Again prevents objets like C.bounded Regions reated using new � � p=p0 in wfo� are used to store the implementation ofan aggregate.� ub(�) = p0; and� tb(�) = p0.This allows objet's like C, where the bound on the interfae region is p0, and this bound isinherited by any objets whose implementation region is inside �.If the bound P = � for every region, then we have e�etively the system desribed in [5℄. IfP = ? for every region, then we e�etively have the system desribed in [6℄. In a sense, our twoprevious major type systems are two extremes of the protetion landsape provided by the typesystem presented here.3 The Type RulesTyping environments have the following form:E ::= ; j E; x : A j E; � : A j E;�� p=P

E ` 3 good environmentE ` p good region pE ` p �: q p is inside qE ` K good permission KE ` K � K 0 K is a subpermission of K 0E;K ` A good type AE;K ` A<:B A is a subtype of BE;K ` a : A good expression a of type AE;K ` � meth good method type �E;K ` (�)(�)) C atuals arguments � math method type �;return type is CFigure 3: JudgementsThe type system onsists of the judgements desribed in Figure 3. (Others dealing with storesand on�gurations are required to provide a omplete aount.)Note that permissionsK ontrol both type and term formation. The idea is to limit the objetsand loations aessed in a given term to those residing in one of the regions indiated by thepermission [5℄.The �rst three type rules follow the standard pattern. Loations have objet type.(Env ;); ` 3 (Env x)E;K ` A x =2 dom(E)E; x : A ` 3 (Env Loation)E; hpi ` [li : �ii21::n℄pq � =2 dom(E)E; � : [li : �ii21::n℄pq ` 3There are two rules for adding new region variables to an environment, depending whether theregion is bounded or exlusive. A bounded region an be reated inside any other region p, solong as we ensure that the bound q is at most the transitive bound of p (Env �1). This preventsan objet in region � from being aessed diretly by an objet outside of tb(p), as this wouldviolate the intended meaning of tb(). An exlusive region an be reating inside any valid region(Env �2). (Env �1)E ` q �: tb(p) � =2 dom(E)E;�� p=q ` 3 (Env �2)E ` p � =2 dom(E)E;�� p=? ` 3Given some environment, a valid region is either the top level region � or any delared in theenvironment.The nesting of regions is derived from the variable delarations. Additional rules deal with? to make subtyping existential types more exible and uniform. The rules for reexivity andtransitivity of �: have been omitted.(Region �)E ` 3E ` � (Region �)� 2 dom(E)E ` � (In �:)�� p=P 2 EE ` � �: p (In ??)E ` 3E ` ? �: ? (In ?)E ` pE ` ? �: pThe upper and transitive bounds too are derived from the region delarations in the environ-ment, as desribed in Setion 2.1.

(In UB1)�� p=q 2 EE ` q �: ub(�) (In UB2)�� p=? 2 EE ` p �: ub(�) (In TB1)�� p=q 2 EE ` q �: tb(�) (In TB2)�� p=? 2 EE ` � �: tb(�)These rules are really saying a number of things whih have been ompressed into a single setof rules. For example, (In UB1) is really saying thatE ` q �: q �� p=q 2 EE ` ub(�) = qE ` q �: ub(�) using (UB1)�� p=q 2 EE ` ub(�) = q and (In =)E ` p �: q E ` q0 = qE ` p �: q0The rules as presented provide enough information for our present purpose.Any valid region an be used to reate either a point (Perm p) or upset permission (Perm p ").The subpermission relation is derived diretly from the nesting of regions. It is based on the ideathat if you have permission to aess a region, you an aess all the regions enlosing it | alliedwith standard soping rules. Rules for reexivity and transitivity of � have been omitted.(Perm p)E ` pE ` hpi (Perm p ")E ` pE ` hp"i (SubPerm p)E ` pE ` hpi � hp"i (SubPerm �:)E ` q �: pE ` hp"i � hq"iIt is in the rules for types, partiularly for objets, where all the mahinery starts to work.The �rst lause of (Type Objet), E; hq "i ` �i meth, ensures that all parts of the methodtype whih onern objet types reside in regions enlosing q. This helps maintain a partiularstrutural invariant on objet graphs whih allows private implementation to be proteted, butalso to be aessed by multiple interfaes [5℄. The lause E ` q �: p ensures that the objetsan aess themselves. The �nal lause E ` p �: ub(q) ensures that the objet is not plaed in aregion whih should not have aess to region q.The subtyping rule for objets allows only width but not depth subtyping, though this ouldeasily be extended using variane annotations [1℄. Neither region omponent an hange.(Type Objet) (li distint)E; hq"i ` �i meth 8i 2 1::n E ` q �: p E ` p �: ub(q)E; hpi ` [li : �ii21::n℄pq(Sub Objet) (li distint)E; hq"i ` �i meth 8i 2 1::n+m E ` q �: p E ` p �: ub(q)E; hpi ` [li : �ii21::n+m℄pq<:[li : �ii21::n℄pqExistential types quantify only over regions (though the usual existential ould easily be added).This is to hide the details of the new implementation region part of an objet's type. Sine theregion in whih an objet resides is used to determine whih other objets an aess it, from whihthe subsequent strutural invariants are attained, a key aspet of this type rule is to prevent hidingthat region. This is done with an additional side ondition: from E ` K and � =2 dom(E), itfollows that � is not in the permissions K. Sine this governs the top level regions whih the anour in objet types appearing in type B, we onlude that none of these objet types an residein �.The subtyping rule follows the standard pattern, exept that the p and P omponents varyin opposite diretions. The p omponent is the region whih � is inside. Logially, beause �:

is transitive, � is also inside any region whih p is inside. The type system, on the other hand,prevents diret aess from any region outside P . By tightening the bound no harm is done.Indeed, when P 0 = ? the type prevents any surreptitious referenes from being reated.(Type Exists)E;�� p=P ;K ` B E ` KE;K ` 9(�� p=P)B (Sub Exists)E ` p �: p0 E ` P 0 �: P E; �� p=P ;K ` A<:A0 E ` KE;K ` 9(�� p=P)A<:9(� � p0=P 0)A0Lifting allows types and expressions whih an be formed given some permission K to be validwith a larger permission K 0.(Type Lift)E;K ` A E ` K � K 0E;K 0 ` A (Sub Lift)E;K ` A<:B E ` K � K 0E;K 0 ` A<:BThe subtype relation <: is also reexive and transitive, but again these rules have been omitted.The method type rules allow methods to have any number of arguments and a return typewhih are all types. Methods annot take funtions as parameters, but funtions an be enodedor added with little e�ort. Presenting method types as a separate olleiton of type rules makessense with more ompliated versions of this type system.(Type Return)E;K ` AE;K ` A meth (Type Arrow)E;K ` A E;K ` � methE;K ` A ! � methA number of the term typing rules rely on the funtion b�C whih onverts the methodarguments � and the return type C into a method type �:De�nition 1 (b�C) b;C b= Cbx : A;�C b= A! b�CLoations and variables are typed as per assumption, so long as the permission is large enoughto onstrut the appropriate type.(Val x)x : A 2 E E;K ` AE;K ` x : A (Val Loation)� : [li : �ii21::n℄pq 2 EE; hpi ` � : [li : �ii21::n℄pqThe rule (Val Objet) inludes the usual rule for well-formed objets, taking aount of themultiple method arguments. In addition, it restrits the objets and loations whih an beaessed in the method bodies to those inluded in permission hq"i, where q is the implementationregion. This means an objet an aess any enlosing region. Beause the objet's type A iswell-formed, we also have that E ` q �: p, thus an objet an aess itself. We also have theappropriate bound restrition whih limits aess to the implementation region. The onlusionof the rule states that the objet an be aessed in any expression having permssion to aess theinterfae region p.

(Val Objet) (where A � [li : �ii21::n℄pq and �i � b�iCi)E; si : A;�i; hq"i ` bi : Ci 8i 2 1::nE; hpi ` [li = &(si : A;�i)bii21::n℄pq : AMethod seletion depends on the following additional type rules for heking that the methodarguments are orret in type and number. These are (Arg Empty) and (Arg Val).(Arg Empty)E;K ` CE;K ` (C)(;)) C (Arg Val)E;K ` v : A E;K ` (�)(�)) CE;K ` (A ! �)(v;�)) CMethod seletion simply requires that the arguments math the delared type, and the return typeis the return type of the method type. (Val Selet)E;K ` v : [li : �ii21::n℄pq E;K ` (�j)(�)) Cj j 2 1::nE;K ` v:ljh�i : CjMethod update ensures that the new method has the same type as the old, and that anyobjets and loations whih it aesses are aessible both to the objet and in the ontext whihinstalls the method. (That is, E ` K 0 � hq"i and E ` K 0 � K in e�et speify that K 0 is in theintersetion of hq"i and K.)(Val Update) (where A � [li : �ii21::n℄pq and �j � b�jCj)E;K ` v : A E; s : A;�j ;K 0 ` b : CjE ` K 0 � hq"i E ` K 0 � K j 2 1::nE;K ` v:lj (&(s : A;�j)b : AThe type rule for new introdues a new region with partiular properties into an expression.The permission h�i in the �rst premiss allows objets to be reating in the new region and perhapsinluded as part of an aggregate's implementation, but the seond premiss ensures that � doesnot our in the type, preventing the new region name from appearing in the return type. Thistype rule resembles the one for new names in the �� alulus [11, 10℄.(Val New)E;�� p=P ;K [h�i ` a : A E;K ` AE;K ` new �� p=P in a : APaking and repaking existential types follow the usual pattern (exept for the name hange).The additional lause to (Val Hide) ensures that the type 9(� � q=P)A is well-formed, and thusthat hide does not abstrat away the region in whih any objets reside, as this region is essentialfor ontrolling objet graph struture. (Val Hide)E ` p �: q E;K ` vffp=�gg : Affp=�gg E;K ` 9(�� q=P)AE;K ` hide p as �� q=P in v:A : 9(�� q=P)A

(Val Expose)E;K ` v : 9(�� p=P)A E;K ` B E;�� p=P; x : A;K [h�i ` b : BE;K ` expose v as �� p=P ; x:A in b:B : BSubsumption additionally allows the permission required to type an expression to inrease.(Val Subsumption)E;K ` a : A E;K 0 ` A<:B E ` K � K 0E;K 0 ` a : BThe operational semantis of the alulus are straightforward extensions of those for the pre-vious version of this system. The regions have no e�et on omputation, but the semantis traksnew regions and their properties in terms of existing regions. In previous work this was used toprove the appropriate invariants, and we antiipate that this will be the ase here.4 AppliationsThe alulus has a number of priniple appliations:� objets whih an be have their entire implementation deleted when they beome garbage;� bounds on aess to aggregates used to derive other onstraints on objet lifetimes; and� stak-based alloation of objets | whih, using the above two features, allows entire ag-gregate objets to be alloated in a stak-based manner, using a stak of heaps.But there are other appliations in the area for whih this alulus was orignially devised.There is a problem with so-alled vampiri behaviour [5℄ | whih amounts laking ontrol overregion reation | is dealt with adequately by this type system, using the ? bound. Using the samekind of type in a di�erent manner (if the type system is extended with region parameterisationin methods following [5℄) allows something resembling prinipals to be regained, in priniple [15℄.This is alled borrowing elsewhere. This ours when an objet passes another objet, possiblypart of its implementation, to another objet's method, and is guaranteed that the other objetwill not retain a referene in any shape or form [2℄. As a simple example, onsider a sort funtionwhih sorts the elements of a list. One would hope that this did not retain any referenes to thelist being sorted or any of its elements, but one would wish that it ould use its own intermediatedata strutures to do the sorting. The form of borrowing available in minor extensions to thistype system an aommodate suh idioms.5 DisussionThe notions of bounded ontainment presented here may seem a little ompliated, but they arebased on notions whih already exist in programming languages. They are in part inspired by thevariable soping of inner lasses (and many other things), ombined with genuine privay (whihprotets objets), and the bounds on the general way aggregates are used in pratie.These notions in lasses are generally stati, whereas our nesting and bounds are entirelydynami, and the kinds of protetion on o�er (suh as via privay annotations) work only at alass or pakage not objet level. Here we deal with the atual objets.

6 FutureMuh remains to be done. As we omplete the formal development of the type system, we hopealso to simplify it by independently studying the underlying ontainment model. The aim is todisover invariants on objet graph struture whih an be stated simply. This should also assistwith the statement and proof of the memory management properties.As suh, the type system is too ompliated to use diretly in a programming language. Withminimal annotations, perhaps indiating whih objets are part of the implementation, and byleveraging o� the existing nesting strutures already present in programming languages (for ex-ample, inner lasses), a stati program analysis may use the type system as a target as a target,aiming to get a more private private.One the onstraints between objet and region life-times have been established, hybrid algo-rithms whih ombine regions with garbage olletion an then be designed, implemented, andevaluated. This of ourse will not happen overnight.Referenes[1℄ Mart��n Abadi and Lua Cardelli. A Theory of Objets. Springer-Verlag, 1996.[2℄ John Boyland. Alias burying: Unique variables without destrutive reads. Software | Pratie andExperiene, 2001. to appear.[3℄ Lua Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Ambient groups and mobility types. InTheoretial Computer Siene; Exploring New Frontiers in Theoretial Informatis. InternationalConferene IFIP TCS 2000, volume 1872 of LNCS, pages 333{347, 2000.[4℄ Lua Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Serey and group reation. In CONCUR2000 { Conurreny Theory. 11th International Conferene, volume 1877 of LNCS, pages 365{379,August 2000.[5℄ David Clarke. An objet alulus with ownership and ontainment. In Founda-tions of Objet-oriented Programming (FOOL8), London, January 2001. Available fromhttp://www.s.williams.edu/�kim/FOOL/FOOL8.html.[6℄ David Clarke, John Potter, and James Noble. Ownership types for exible alias protetion. InOOPSLA Proeedings, 1998.[7℄ David Clarke, Ryan Shelswell, John Potter, and James Noble. Objet ownership to order. Unpublishedmanusript.[8℄ David G. Clarke. Ownership and Containment. PhD thesis, Shool of Computer Siene and Engi-neering, University of New South Wales, Sydney, Australia, 2001. In preparation.[9℄ Andrew D. Gordon and Paul D. Hankin. A onurrent objet alulus: Redution and typing. InHLCL'98, Elsevier ENTCS, 1998.[10℄ Martin Odersky. A syntati theory of loal names. Tehnial Report YALEU/DC/RR-965, YaleUniversity, May 1993.[11℄ A. M. Pitts and I. D. B. Stark. Observable properties of higher order funtions that dynamiallyreate loal names, or: What's new? In Mathematial Foundations of Computer Siene, Pro.18th Int. Symp., Gda�nsk, 1993, volume 711 of Leture Notes in Computer Siene, pages 122{141.Springer-Verlag, Berlin, 1993.[12℄ James Rumbaugh, Mihael Blaha, William Premerlani, Frederik Eddy, and William Lorensen.Objet-Oriented Modeling and Design. Prentie Hall, 1991.[13℄ Amr Sabry and Matthias Felleisen. Reasoning about programs in ontinuation-passing style. In 1992ACM Conferene on LISP and Funtional Programming, pages 288{298, San Franiso, CA, June1992. ACM.[14℄ Mads Tofte and Jean-Pierre Talpin. Region-Based Memory Management. Information and Compu-tation, 132(2):109{176, 1997.[15℄ Steve Zdanewi, Dan Grossman, and Greg Morrisett. Prinipals in programming languages: Asyntati proof tehnique. In Proeedings of the 4th ACM SIGPLAN International Conferene onFuntional Programming, Paris, Frane, September 1999.

