On Deleting Aggregate Objects
Draft

David Clarke

email: clad@cs.uu.nl”

January 8, 2001

Abstract

We describe a typed object calculus which makes explicit the nesting between objects. The
calculus is based on Abadi and Cardelli’s object calculus [1] extended with regions.! Regions
have properties describing their nesting and the bounds on their access. They are used not
only in a stack-based manner, but also to store an object’s private implementation. This
creates opportunities to improve memory management. In particular, the calculus allows the
entire private implementation of an aggregate object to be deleted when the interface to the
aggregate becomes garbage. The calculus also allows entire aggregate objects to be allocated
on stack-based regions.

This work s the first attempt exploration of the opportunities to improve memory man-
agement which were inherent in our earlier work. The formal development presented here
seems to be correct, though it’s properties have not been formally demonstrated. The reader
is refered to an earlier work [5] for a more thorough development which does not venture as
far as this does, or to the soon-to-appear thesis [8].

1 Introduction

Before starting, let’s fix some terminology. Rather than consider objects to be without structure,
we exploit the nesting inherent in the notion of aggregation used in object-oriented design [12].
An aggregate object consists of one or more interface objects and a collection of implementation
objects which are private to the aggregate object. Both the interface and implementation objects
may be aggregate objects. Not all objects an object accesses are considered part of its implemen-
tation; some objects are not protected. For concision, we use the words aggregate, interface, and
implementation.

In previous work we presented a type system for protecting the implementation of an aggregate
[6], where the aggregate consisted of only a single interface object and multiple implementation
objects. The idea was to enable a more private private which prevented direct access to the
implementation from outside the aggregate. This type system enforces on that the interface of
an aggregate is a dominator? for access paths from the root of the object graph to the aggre-
gate’s implementation. A consequence is that when the interface becomes garbage, its entire
implementation can also be deleted.

A typical example the calculus allowed was a linked list where the handle of the list was the
interface and the links the implementation. The data in the list is not considered a part of the
implementation. The only access to the links is through the handle. Each of the links is afforded
the same amount of protection. When the handle is deleted, then so may all the links.

*This work was conducted at the School of Computer Science and Engineering, University of New South Wales,
Sydney. From April 2001 the author will be at the Institute of Information and Computer Science, Utrecht
University, Utrecht, The Netherlands.

I'We used the word context instead of region in previous work.

2A node a is a dominator for paths from node b to node c if all paths from b to c include a.

This calculus is, however, limited in practice. Although the original proposal lacked inheritance,
this can be easily regained [7]. The problem is that the dominance property is too strong to allow
the kinds of idioms used in practice. For example, to use an iterator on a linked list meant that the
links could not be given the same amount of protection previously stated, because both the handle
and the iterator need direct access to the links, which is prevented by the dominator property.

Recent work extended the underlying containment model, recasting the entire type system in
terms of Abadi and Cardelli’s object calculus [5]. Doing so allowed aggregates with multiple inter-
faces, but the memory management properties were lost. This was because the types system did
not contain enough information to guarantee the desired invariants. Certain syntactic restrictions
are possible to avoid certain behaviour in the core calculus and regain previous properties (and
limitations). We would, however, rather that the type system stated whenever such properties
were satisfied, without the limitations. For example, we want to know whether a certain object is
the dominator for access to its implementation.

In this work we strengthen the properties specified by types to allow varying different levels of
protection to be specified in the same type system.

Whole aggregate objects can be deleted; the implementation objects, not just the interface.
The key to achieving this is to store objects in regions, to have regions associated with both
objects and stacks frames, and to attach properties to the regions. The properties control access
from objects in one region to objects in other regions, and give bounds on this access, which are
used to guarantee certain memory management invariants. In the framework we can also have
stack-based memory regions which cannot be accessed outside of the stack frame. These allow
complete objects graphs to be allocated and deleted in a stack-based manner (using a stack of
heaps).

2 The Calculus

The calculus is a minor extension of our object calculus with ownership and containment [5], which
in turn is an extension of Abadi and Cardelli’s object calculus [1]. We now briefly describe its
syntax, given in Figure 1.

Regions consists of the root region €, which is the only region present when a program begins,
and variables, denoting regions introduced using new. Only objects are stored in regions. The
region € is accessible to all objects. Regions are nested; this is captured by the relation <:, called
inside. p <: ¢ means that p is inside ¢; all regions are inside ¢, that is, p <: € for all p. The nesting
of the regions is the basis for controlling access between objects. Specifically playing that role are
permissions.

Permissions are used to control access to objects, from which we obtain our desired invariants.
The point permission (p) allows access to objects in region p. The upset permission (p1) allows
access to objects in any region g where p <: ¢, that is any region enclosing p.

Types consist of object types and existential types which hide region names. This departs
significantly from traditional region calculi [14], because the region use is no longer lexically
scoped. In the object type [I; : @iiel“”]lq’, p is the region in which the object resides, and ¢ is the
region in which it stores its implementation. Existential quantification over regions allows regions
to be abstracted away, though their properties are retained, and thus allows new regions to be
a part of types, while keeping the type system statically defined. The type 3(a <1 p/P)A means
that there is some region denoted a which is inside p and satisfies region bound P, described in a
moment.

Method types O are distinct from types to distinguish between evaluation inside and outside
an object. They specify which arguments are required; method evaluation with those arguments
is considered to be inside the object — the result is considered to be returned from the inside to
the outside of the object.

Values are terms which are the results of computation. Values are either variables x, locations
t, as the object-oriented language is imperative, or the term hiding a region (with some properties)

Regions

p = ace
Permissions

K == (p [D
Types

AB [li : @€ | J(a <ap/P)A

Method Types

© == A]| A0
Values
U, v T

L
hidepas a < ¢/P in v:A

Terms
a,b = w

| w.l(A)
| wvil<g(s:ATD)Db
| letz:A=ainb
| expose v as a < p/P,z:A in b:B
| mnewa<dp/lina

| new a < p/P in let & = d in wfo,

Object (with implementation region)
wfoa n= [ll = ((Si . Al,Fz)bz’@”]g
| hide @ as a < p/P in wfo,:A

Region Bounds
P = p
| L

Actual Parameters
A = 0| wvA

Formal Parameters
r == 0| =x:AT

Figure 1: The Syntax

within a value, hide p as « <1 ¢/P in v:A. The hidden region p is generally the implementation
region of some object.

Terms are presented in the named form [13] which helps with proving properties.® A term is
either a value, method selection v.[{A) with arguments A, method update v.l < ¢(s : A,T')b, a
let expression for local declarations, or an existential unpacking expose v as a <\p/P,x:A in b:B.
The semantics of these terms are as usual, except that methods take arguments. The remaining
terms are more interesting.

3Future work may see a change to Gordon and Hankin’s concurrent object calculus [9], possibly using Cardelli,
Ghelli, and Gordon’s Groups [3, 4].

Figure 2: Bounded Region Access

2.1 Objects and Regions

The term new a < p/L in a corresponds approximately to the letregion term from the regions
calculus [14]. This term creates a new region « which is directly inside the region p, but is bounded
so that it cannot be used outside of itself. This means that there cannot be a reference from an
object residing outside of a to an object which is in a or a region inside a. In addition this region
can be deallocated when term a has finished evaluating.* We call this sort of region ezclusive.

The remaining syntax new « < p/P in let ¥ = @ in wfo,, specified a new object with imple-
mentation region « (bound in the scope of this expression). let £ = @ in ... denotes a series of
let expressions which are used to initialise the object, including its private implementation. The
syntax is described in this manner, that is, parameterised by the region «, so that every object
has a unique implementation region.

Objects have the following form [I; = ¢(s; : A;, T;)b;*S'"]E. The region the object resides in,
it’s interface region, is p, and ¢ is the region where it stores its private implementation. These,
combined with the nesting of regions, govern which objects can access which other objects. The
constraint is stated as follows:

v =/ = impl(r) <:int(s')

where impl(¢) is the implementation region and int(+') is the interface region. This states: an object
can only access other objects whose interface region is outside its implementation region. Thus
the regions play a double role of representing where the objects reside, for memory management
purposes, and for access control, from which the invariants on memory management are derived.

An object is capable of surreptitious access whenever the implementation region is not directly
inside the interface region. The purpose of the bound is to place a cap on the extent of surreptitious
access for a particular region. (C in Figure 2.)

The implementation region can be either bounded or exclusive.

A region created with new where the bound P is some region p is called bounded. This
represents the outermost region which can directly access the given region. Figure 2 illustrates.

Here we have regions which are nested as follows s <: r <: ¢ <: p and ¢t <: r, and three objects
A, B, and C, where

int(4) = ¢ impl(A) =r
int(B) =r impl(B) = s
int(C) =p impl(C) =t.

Each object can access the other, but B is less accessible that A, which is less accessible than
C. B could be the implementation of aggregate A, and C could be an iterator which is used by
someone using the A as a part of its implementation.

Consider when object A was created. Its implementation region r was created to be inside ¢,
with a bound p. The bound represents the maximal region where the interface of C' can reside

4This property remains to be demonstrated formally.

— (s interface could not be placed in any region further out. Furthermore, any object which
resembles C' with a protruding interface, but is used inside C, is also bounded by p. (We use
transitive bounds, described in a moment, to enforce this.)

If P is L then the region again is called ezclusive. In this case there can exist no object
with surreptitious access like C. If the bound on region r is L, then the maximum interface
region an object with implementation region inside A can have is r, for example, B. (When r
is a stack-allocated region then there is no object A either, just the region r.) When an objects
implementation region is exclusive, then the region does not exhibit the stack-based deallocation
described before. It does however ensure that the interface object is the single access point to the
aggregate it constructs. This means that when the object becomes garbage, every region inside r
and the objects they contain can be safely deleted.

As a part of the type system we have the following functions from region variables to regions:
UB and TB. The first gives the upper bound on a region variable. This gives the maximal region
where the interface can go. The second gives the upper bound on regions created within the
region. This property is inherited by the other regions.

These functions have the following values, as per the kind of behaviour we wish to exhibit:

stack allocated Regions created using new a <Ip/L in a, where a is not an object, have the
following properties:

e UB(a) = p. Note that it is effectively undefined because this is only used when typing
objects which store their implementation in «;

e TB(a) = a.
Region is not attached to an object. Prevents any objects like C' above.

single entry Regions created using new « <1 p/L in wfo, are used to store the implementation
of an aggregate. In this case, the object is the single access point to the implementation.
Region « has the following properties:

e UB(a) = p;

e TB(a) =«
Again prevents objects like C'.

bounded Regions created using new a < p/p’ in wfo, are used to store the implementation of
an aggregate.
e UB(a) =p'; and
/

e TB(a) =p'.

This allows object’s like C', where the bound on the interface region is p’, and this bound is
inherited by any objects whose implementation region is inside a.

If the bound P = ¢ for every region, then we have effectively the system described in [5]. If
P = 1 for every region, then we effectively have the system described in [6]. In a sense, our two
previous major type systems are two extremes of the protection landscape provided by the type
system presented here.

3 The Type Rules

Typing environments have the following form:

E == 0| Exz:A|E:A| E,a<dp/P

ErO good environment

Etrp good region p

EFp<:q p is inside q

EFK good permission K

E-KCK' K is a subpermission of K'

E;:KFA good type A

E;KF A<:B A is a subtype of B

E:KFa:A good expression a of type A

E; K I O meth good method type ©

E;K+F(0)(A)=C actuals arguments A match method type ©;

return type is C

Figure 3: Judgements

The type system consists of the judgements described in Figure 3. (Others dealing with stores
and configurations are required to provide a complete account.)

Note that permissions K control both type and term formation. The idea is to limit the objects
and locations accessed in a given term to those residing in one of the regions indicated by the
permission [5].

The first three type rules follow the standard pattern. Locations have object type.

(Env 0) (Env z) (Env Location)
E;KFA z¢dom(E) E;(p) Fli : ©;€'"]p ¢ dom(E)
DE< Ex:AFS E,L:[li:@ilel“”]gl—O

There are two rules for adding new region variables to an environment, depending whether the
region is bounded or exclusive. A bounded region can be created inside any other region p, so
long as we ensure that the bound ¢ is at most the transitive bound of p (Env <11). This prevents
an object in region a from being accessed directly by an object outside of TB(p), as this would

violate the intended meaning of TB(). An exclusive region can be creating inside any valid region
(Env «2).

(Env 1) (Env <12)
EFg=<:1B(p) «a¢dom(E) EFp a¢dom(E)
E,a<dp/qk < E,a<dp/LEO

Given some environment, a valid region is either the top level region € or any declared in the
environment.

The nesting of regions is derived from the variable declarations. Additional rules deal with
1 to make subtyping existential types more flexible and uniform. The rules for reflexivity and
transitivity of <: have been omitted.

(Region ¢) (Region «) (In <:) (In L1) (In L)
EES a € dom(E) adp/PeE ErFS Ebrp
Etre Era EFa<:p ErF1<:1 EF1<:p

The upper and transitive bounds too are derived from the region declarations in the environ-
ment, as described in Section 2.1.

(In UB1) (In UB2) (In TB1) (In TB2)
adp/qeE adp/LeE adp/qeE adp/leE
E | g <: UB(a) EFp <:UB(a) EF q <: TB(a) EF a<:1B(q)

These rules are really saying a number of things which have been compressed into a single set
of rules. For example, (In UB1) is really saying that

adp/qeE (UB1) (In =)
Ebg<:q EFuB(a)=gq using adp/q€eE and Frp<:q EkFq=q
El g <: uB(a) EFuB(a) =¢ Ebp=<iq

The rules as presented provide enough information for our present purpose.

Any valid region can be used to create either a point (Perm p) or upset permission (Perm p 1).
The subpermission relation is derived directly from the nesting of regions. It is based on the idea
that if you have permission to access a region, you can access all the regions enclosing it — allied
with standard scoping rules. Rules for reflexivity and transitivity of C have been omitted.

(Perm p) (Perm p 1) (SubPerm p) (SubPerm <:)
EtFp Etp EbFp EFg=<:p
E+(p) E+ (1) E+(p) C (p) EF (pt) € (¢

It is in the rules for types, particularly for objects, where all the machinery starts to work.

The first clause of (Type Object), F;{q1) F ©; meth, ensures that all parts of the method
type which concern object types reside in regions enclosing ¢. This helps maintain a particular
structural invariant on object graphs which allows private implementation to be protected, but
also to be accessed by multiple interfaces [5]. The clause E F ¢ <: p ensures that the objects
can access themselves. The final clause E F p <: UB(g) ensures that the object is not placed in a
region which should not have access to region gq.

The subtyping rule for objects allows only width but not depth subtyping, though this could
easily be extended using variance annotations [1]. Neither region component can change.

(Type Object) (I; distinct)
E;(qt) - ©i meth Viel.n EFqg=<:p EFp=<:UB(q)
E; (p) [[li . @iiel..n]p

q

(Sub Object) (I; distinct)
E;(qt) - ©;meth Vicl.n+m Etqg=<:p Ekp=<:UB(q)
E;(p) F [l;: 070"l 9,50

Existential types quantify only over regions (though the usual existential could easily be added).
This is to hide the details of the new implementation region part of an object’s type. Since the
region in which an object resides is used to determine which other objects can access it, from which
the subsequent structural invariants are attained, a key aspect of this type rule is to prevent hiding
that region. This is done with an additional side condition: from F F K and a ¢ dom(E), it
follows that « is not in the permissions K. Since this governs the top level regions which the can
occur in object types appearing in type B, we conclude that none of these object types can reside
in a.

The subtyping rule follows the standard pattern, except that the p and P components vary
in opposite directions. The p component is the region which « is inside. Logically, because <:

is transitive, « is also inside any region which p is inside. The type system, on the other hand,
prevents direct access from any region outside P. By tightening the bound no harm is done.
Indeed, when P’ = L the type prevents any surreptitious references from being created.

(Type Exists) (Sub Exists)
E,a<p/P;K+B EFK Etp=<:p EFP <P E,adp/P;KtF A<A" EFK
E,KF3(a<p/P)B EKF3a<p/P)A<3(a<ap /PVA

Lifting allows types and expressions which can be formed given some permission K to be valid
with a larger permission K'.

(Type Lift) (Sub Lift)
E;:KFA EFKCK' E;:K+A<:B EFKCK'
E:K'FA E;K'+ A<:B

The subtype relation <: is also reflexive and transitive, but again these rules have been omitted.

The method type rules allow methods to have any number of arguments and a return type
which are all types. Methods cannot take functions as parameters, but functions can be encoded
or added with little effort. Presenting method types as a separate colleciton of type rules makes
sense with more complicated versions of this type system.

(Type Return) (Type Arrow)
E;:KFA E;K+FA E;KF O meth
E; K+ A meth E;KF A — O meth

A number of the term typing rules rely on the function [I'|¢ which converts the method
arguments I' and the return type C into a method type ©:

Definition 1 (|']¢)

e = C
lz: A, T|c A—[Tc

1

Locations and variables are typed as per assumption, so long as the permission is large enough
to construct the appropriate type.

(Val z) (Val Location)
.'L'AEE E,Kl_A L[ll@lleln]geE
E;KFz:A E;(p)F o[l O,

The rule (Val Object) includes the usual rule for well-formed objects, taking account of the
multiple method arguments. In addition, it restricts the objects and locations which can be
accessed in the method bodies to those included in permission {(gt), where ¢ is the implementation
region. This means an object can access any enclosing region. Because the object’s type A is
well-formed, we also have that E F ¢ <: p, thus an object can access itself. We also have the
appropriate bound restriction which limits access to the implementation region. The conclusion
of the rule states that the object can be accessed in any expression having permssion to access the
interface region p.

(Val Object) (where A = [l; : ©;i€1-"]Y and ©; = [I'i]¢;)
E s;: AT (qT) Fb,:C; Viel.n
E;(p) F[li =(si s A, T)b"c"]E - A

Method selection depends on the following additional type rules for checking that the method
arguments are correct in type and number. These are (Arg Empty) and (Arg Val).

(Arg Empty) (Arg Val)
E;K+C E;Kt+v:A E;KF(0)(A)=C
EKF (O =C EKF (A= 0)(0,A) = C

Method selection simply requires that the arguments match the declared type, and the return type
is the return type of the method type.

(Val Select)
E;KFuv:[li: 0" " E;KF(0;)(A)=>C; jel.n
E;K F ’Ul]<A> . Cj

Method update ensures that the new method has the same type as the old, and that any
objects and locations which it accesses are accessible both to the object and in the context which
installs the method. (That is, E F K’ C (¢1) and E + K' C K in effect specify that K’ is in the
intersection of (1) and K.)

(Val Update) (where A = [l; : ©;*€!="]§ and ©; = |I;]¢;)
E;KFv:A E,s:ATj;K'Fb:C
EFK' C({¢t) EFK'CK jel.mn

E;KFovlj<g(s:AT;)b: A

The type rule for new introduces a new region with particular properties into an expression.
The permission {a) in the first premiss allows objects to be creating in the new region and perhaps
included as part of an aggregate’s implementation, but the second premiss ensures that a does
not occur in the type, preventing the new region name from appearing in the return type. This
type rule resembles the one for new names in the Av calculus [11, 10].

(Val New)
E,a<dp/P;KU{a)Fa:A E;KFA
E;KFnewa<p/Pina: A

Packing and repacking existential types follow the usual pattern (except for the name change).
The additional clause to (Val Hide) ensures that the type I(a <1 g/P)A is well-formed, and thus
that hide does not abstract away the region in which any objects reside, as this region is essential
for controlling object graph structure.

(Val Hide)
Ebtp<:q E;KFo{?L}:A{*L} E;KF3Ia<q/P)A
E;Kt hidepasa<g/PinvA:3(a<q/P)A

(Val Expose)
E;Ktv:3(a<p/P)A E;K+FB E,a<p/Pz:A;KU(a)Fb:B
E;K +- expose v as a < p/P,z:A in b:B : B

Subsumption additionally allows the permission required to type an expression to increase.

(Val Subsumption)
E;:Kta:A E;K'FA<:B EFKCK'
E;:K'ta:B

The operational semantics of the calculus are straightforward extensions of those for the pre-
vious version of this system. The regions have no effect on computation, but the semantics tracks
new regions and their properties in terms of existing regions. In previous work this was used to
prove the appropriate invariants, and we anticipate that this will be the case here.

4 Applications

The calculus has a number of principle applications:
e objects which can be have their entire implementation deleted when they become garbage;
e bounds on access to aggregates used to derive other constraints on object lifetimes; and

e stack-based allocation of objects — which, using the above two features, allows entire ag-
gregate objects to be allocated in a stack-based manner, using a stack of heaps.

But there are other applications in the area for which this calculus was orignially devised.
There is a problem with so-called vampiric behaviour [5] — which amounts lacking control over
region creation — is dealt with adequately by this type system, using the L bound. Using the same
kind of type in a different manner (if the type system is extended with region parameterisation
in methods following [5]) allows something resembling principals to be regained, in principle [15].
This is called borrowing elsewhere. This occurs when an object passes another object, possibly
part of its implementation, to another object’s method, and is guaranteed that the other object
will not retain a reference in any shape or form [2]. As a simple example, consider a sort function
which sorts the elements of a list. One would hope that this did not retain any references to the
list being sorted or any of its elements, but one would wish that it could use its own intermediate
data structures to do the sorting. The form of borrowing available in minor extensions to this
type system can accommodate such idioms.

5 Discussion

The notions of bounded containment presented here may seem a little complicated, but they are
based on notions which already exist in programming languages. They are in part inspired by the
variable scoping of inner classes (and many other things), combined with genuine privacy (which
protects objects), and the bounds on the general way aggregates are used in practice.

These notions in classes are generally static, whereas our nesting and bounds are entirely
dynamic, and the kinds of protection on offer (such as via privacy annotations) work only at a
class or package not object level. Here we deal with the actual objects.

6 Future

Much remains to be done. As we complete the formal development of the type system, we hope
also to simplify it by independently studying the underlying containment model. The aim is to
discover invariants on object graph structure which can be stated simply. This should also assist
with the statement and proof of the memory management properties.

As such, the type system is too complicated to use directly in a programming language. With
minimal annotations, perhaps indicating which objects are part of the implementation, and by
leveraging off the existing nesting structures already present in programming languages (for ex-
ample, inner classes), a static program analysis may use the type system as a target as a target,
alming to get a more private private.

Once the constraints between object and region life-times have been established, hybrid algo-
rithms which combine regions with garbage collection can then be designed, implemented, and
evaluated. This of course will not happen overnight.

References

[1] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] John Boyland. Alias burying: Unique variables without destructive reads. Software — Practice and
Ezperience, 2001. to appear.

[3] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Ambient groups and mobility types. In
Theoretical Computer Science; Exploring New Frontiers in Theoretical Informatics. International
Conference IFIP TCS 2000, volume 1872 of LNCS, pages 333-347, 2000.

[4] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Secrecy and group creation. In CONCUR
2000 — Concurrency Theory. 11th International Conference, volume 1877 of LNCS, pages 365-379,
August 2000.

[6] David Clarke. An object calculus with ownership and containment. In Founda-
tions of Object-oriented Programming (FOOLS), London, January 2001. Available from
http://www.cs.williams.edu/~kim/FOOL/FOOL8.html.

[6] David Clarke, John Potter, and James Noble. Ownership types for flexible alias protection. In
OOPSLA Proceedings, 1998.

[7] David Clarke, Ryan Shelswell, John Potter, and James Noble. Object ownership to order. Unpublished
manuscript.

[8] David G. Clarke. Ownership and Containment. PhD thesis, School of Computer Science and Engi-
neering, University of New South Wales, Sydney, Australia, 2001. In preparation.

[9] Andrew D. Gordon and Paul D. Hankin. A concurrent object calculus: Reduction and typing. In
HLCL’98, Elsevier ENTCS, 1998.

[10] Martin Odersky. A syntactic theory of local names. Technical Report YALEU/DC/RR-965, Yale
University, May 1993.

[11] A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions that dynamically
create local names, or: What’s new? In Mathematical Foundations of Computer Science, Proc.
18th Int. Symp., Gdarisk, 1993, volume 711 of Lecture Notes in Computer Science, pages 122-141.
Springer-Verlag, Berlin, 1993.

[12] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen.
Object-Oriented Modeling and Design. Prentice Hall, 1991.

[13] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style. In 1992
ACM Conference on LISP and Functional Programming, pages 288-298, San Francisco, CA, June
1992. ACM.

[14] Mads Tofte and Jean-Pierre Talpin. Region-Based Memory Management. Information and Compu-
tation, 132(2):109-176, 1997.

[15] Steve Zdancewic, Dan Grossman, and Greg Morrisett. Principals in programming languages: A
syntactic proof technique. In Proceedings of the 4th ACM SIGPLAN International Conference on
Functional Programming, Paris, France, September 1999.

