
On Deleting Aggregate Obje
tsDraftDavid Clarkeemail:
lad�
s.uu.nl�January 8, 2001Abstra
tWe des
ribe a typed obje
t
al
ulus whi
h makes expli
it the nesting between obje
ts. The
al
ulus is based on Abadi and Cardelli's obje
t
al
ulus [1℄ extended with regions.1 Regionshave properties des
ribing their nesting and the bounds on their a

ess. They are used notonly in a sta
k-based manner, but also to store an obje
t's private implementation. This
reates opportunities to improve memory management. In parti
ular, the
al
ulus allows theentire private implementation of an aggregate obje
t to be deleted when the interfa
e to theaggregate be
omes garbage. The
al
ulus also allows entire aggregate obje
ts to be allo
atedon sta
k-based regions.This work is the �rst attempt exploration of the opportunities to improve memory man-agement whi
h were inherent in our earlier work. The formal development presented hereseems to be
orre
t, though it's properties have not been formally demonstrated. The readeris refered to an earlier work [5℄ for a more thorough development whi
h does not venture asfar as this does, or to the soon-to-appear thesis [8℄.1 Introdu
tionBefore starting, let's �x some terminology. Rather than
onsider obje
ts to be without stru
ture,we exploit the nesting inherent in the notion of aggregation used in obje
t-oriented design [12℄.An aggregate obje
t
onsists of one or more interfa
e obje
ts and a
olle
tion of implementationobje
ts whi
h are private to the aggregate obje
t. Both the interfa
e and implementation obje
tsmay be aggregate obje
ts. Not all obje
ts an obje
t a

esses are
onsidered part of its implemen-tation; some obje
ts are not prote
ted. For
on
ision, we use the words aggregate, interfa
e, andimplementation.In previous work we presented a type system for prote
ting the implementation of an aggregate[6℄, where the aggregate
onsisted of only a single interfa
e obje
t and multiple implementationobje
ts. The idea was to enable a more private private whi
h prevented dire
t a

ess to theimplementation from outside the aggregate. This type system enfor
es on that the interfa
e ofan aggregate is a dominator2 for a

ess paths from the root of the obje
t graph to the aggre-gate's implementation. A
onsequen
e is that when the interfa
e be
omes garbage, its entireimplementation
an also be deleted.A typi
al example the
al
ulus allowed was a linked list where the handle of the list was theinterfa
e and the links the implementation. The data in the list is not
onsidered a part of theimplementation. The only a

ess to the links is through the handle. Ea
h of the links is a�ordedthe same amount of prote
tion. When the handle is deleted, then so may all the links.�This work was
ondu
ted at the S
hool of Computer S
ien
e and Engineering, University of New South Wales,Sydney. From April 2001 the author will be at the Institute of Information and Computer S
ien
e, Utre
htUniversity, Utre
ht, The Netherlands.1We used the word
ontext instead of region in previous work.2A node a is a dominator for paths from node b to node
 if all paths from b to
 in
lude a.1

This
al
ulus is, however, limited in pra
ti
e. Although the original proposal la
ked inheritan
e,this
an be easily regained [7℄. The problem is that the dominan
e property is too strong to allowthe kinds of idioms used in pra
ti
e. For example, to use an iterator on a linked list meant that thelinks
ould not be given the same amount of prote
tion previously stated, be
ause both the handleand the iterator need dire
t a

ess to the links, whi
h is prevented by the dominator property.Re
ent work extended the underlying
ontainment model, re
asting the entire type system interms of Abadi and Cardelli's obje
t
al
ulus [5℄. Doing so allowed aggregates with multiple inter-fa
es, but the memory management properties were lost. This was be
ause the types system didnot
ontain enough information to guarantee the desired invariants. Certain synta
ti
 restri
tionsare possible to avoid
ertain behaviour in the
ore
al
ulus and regain previous properties (andlimitations). We would, however, rather that the type system stated whenever su
h propertieswere satis�ed, without the limitations. For example, we want to know whether a
ertain obje
t isthe dominator for a

ess to its implementation.In this work we strengthen the properties spe
i�ed by types to allow varying di�erent levels ofprote
tion to be spe
i�ed in the same type system.Whole aggregate obje
ts
an be deleted; the implementation obje
ts, not just the interfa
e.The key to a
hieving this is to store obje
ts in regions, to have regions asso
iated with bothobje
ts and sta
ks frames, and to atta
h properties to the regions. The properties
ontrol a

essfrom obje
ts in one region to obje
ts in other regions, and give bounds on this a

ess, whi
h areused to guarantee
ertain memory management invariants. In the framework we
an also havesta
k-based memory regions whi
h
annot be a

essed outside of the sta
k frame. These allow
omplete obje
ts graphs to be allo
ated and deleted in a sta
k-based manner (using a sta
k ofheaps).2 The Cal
ulusThe
al
ulus is a minor extension of our obje
t
al
ulus with ownership and
ontainment [5℄, whi
hin turn is an extension of Abadi and Cardelli's obje
t
al
ulus [1℄. We now brie
y des
ribe itssyntax, given in Figure 1.Regions
onsists of the root region �, whi
h is the only region present when a program begins,and variables, denoting regions introdu
ed using new. Only obje
ts are stored in regions. Theregion � is a

essible to all obje
ts. Regions are nested; this is
aptured by the relation �:,
alledinside. p �: q means that p is inside q; all regions are inside �, that is, p �: � for all p. The nestingof the regions is the basis for
ontrolling a

ess between obje
ts. Spe
i�
ally playing that role arepermissions.Permissions are used to
ontrol a

ess to obje
ts, from whi
h we obtain our desired invariants.The point permission hpi allows a

ess to obje
ts in region p. The upset permission hp"i allowsa

ess to obje
ts in any region q where p �: q, that is any region en
losing p.Types
onsist of obje
t types and existential types whi
h hide region names. This departssigni�
antly from traditional region
al
uli [14℄, be
ause the region use is no longer lexi
allys
oped. In the obje
t type [li : �ii21::n℄pq , p is the region in whi
h the obje
t resides, and q is theregion in whi
h it stores its implementation. Existential quanti�
ation over regions allows regionsto be abstra
ted away, though their properties are retained, and thus allows new regions to bea part of types, while keeping the type system stati
ally de�ned. The type 9(� � p=P)A meansthat there is some region denoted � whi
h is inside p and satis�es region bound P , des
ribed in amoment.Method types � are distin
t from types to distinguish between evaluation inside and outsidean obje
t. They spe
ify whi
h arguments are required; method evaluation with those argumentsis
onsidered to be inside the obje
t | the result is
onsidered to be returned from the inside tothe outside of the obje
t.Values are terms whi
h are the results of
omputation. Values are either variables x, lo
ations�, as the obje
t-oriented language is imperative, or the term hiding a region (with some properties)

Regionsp ::= � j �PermissionsK ::= hpi j hp"iTypesA;B ::= [li : �ii21::n℄pq j 9(�� p=P)AMethod Types� ::= A j A! �Valuesu; v ::= xj �j hide p as �� q=P in v:ATermsa; b ::= vj v:lh�ij v:l (&(s : A;�)bj let x : A = a in bj expose v as �� p=P ; x:A in b:Bj new �� p=? in aj new �� p=P in let ~x = ~a in wfo�Obje
t (with implementation region �)wfo� ::= [li = &(si : Ai;�i)bii21::n℄q�j hide � as �� p=P in wfo�:ARegion BoundsP ::= pj ?A
tual Parameters� ::= ; j v;�Formal Parameters� ::= ; j x : A;�Figure 1: The Syntaxwithin a value, hide p as � � q=P in v:A. The hidden region p is generally the implementationregion of some obje
t.Terms are presented in the named form [13℄ whi
h helps with proving properties.3 A term iseither a value, method sele
tion v:lh�i with arguments �, method update v:l (&(s : A;�)b, alet expression for lo
al de
larations, or an existential unpa
king expose v as �� p=P; x:A in b:B.The semanti
s of these terms are as usual, ex
ept that methods take arguments. The remainingterms are more interesting.3Future work may see a
hange to Gordon and Hankin's
on
urrent obje
t
al
ulus [9℄, possibly using Cardelli,Ghelli, and Gordon's Groups [3, 4℄.

A

B r

q

s t

C p

Figure 2: Bounded Region A

ess2.1 Obje
ts and RegionsThe term new � � p=? in a
orresponds approximately to the letregion term from the regions
al
ulus [14℄. This term
reates a new region � whi
h is dire
tly inside the region p, but is boundedso that it
annot be used outside of itself. This means that there
annot be a referen
e from anobje
t residing outside of � to an obje
t whi
h is in � or a region inside �. In addition this region
an be deallo
ated when term a has �nished evaluating.4 We
all this sort of region ex
lusive.The remaining syntax new � � p=P in let ~x = ~a in wfo� spe
i�ed a new obje
t with imple-mentation region � (bound in the s
ope of this expression). let ~x = ~a in : : : denotes a series oflet expressions whi
h are used to initialise the obje
t, in
luding its private implementation. Thesyntax is des
ribed in this manner, that is, parameterised by the region �, so that every obje
thas a unique implementation region.Obje
ts have the following form [li = &(si : Ai;�i)bii21::n℄pq . The region the obje
t resides in,it's interfa
e region, is p, and q is the region where it stores its private implementation. These,
ombined with the nesting of regions, govern whi
h obje
ts
an a

ess whi
h other obje
ts. The
onstraint is stated as follows: �! �0 =) impl(�) �: int(�0)where impl(�) is the implementation region and int(�0) is the interfa
e region. This states: an obje
t
an only a

ess other obje
ts whose interfa
e region is outside its implementation region. Thusthe regions play a double role of representing where the obje
ts reside, for memory managementpurposes, and for a

ess
ontrol, from whi
h the invariants on memory management are derived.An obje
t is
apable of surreptitious a

ess whenever the implementation region is not dire
tlyinside the interfa
e region. The purpose of the bound is to pla
e a
ap on the extent of surreptitiousa

ess for a parti
ular region. (C in Figure 2.)The implementation region
an be either bounded or ex
lusive.A region
reated with new where the bound P is some region p is
alled bounded. Thisrepresents the outermost region whi
h
an dire
tly a

ess the given region. Figure 2 illustrates.Here we have regions whi
h are nested as follows s �: r �: q �: p and t �: r, and three obje
tsA, B, and C, where int(A) = q impl(A) = rint(B) = r impl(B) = sint(C) = p impl(C) = t:Ea
h obje
t
an a

ess the other, but B is less a

essible that A, whi
h is less a

essible thanC. B
ould be the implementation of aggregate A, and C
ould be an iterator whi
h is used bysomeone using the A as a part of its implementation.Consider when obje
t A was
reated. Its implementation region r was
reated to be inside q,with a bound p. The bound represents the maximal region where the interfa
e of C
an reside4This property remains to be demonstrated formally.

| C's interfa
e
ould not be pla
ed in any region further out. Furthermore, any obje
t whi
hresembles C with a protruding interfa
e, but is used inside C, is also bounded by p. (We usetransitive bounds, des
ribed in a moment, to enfor
e this.)If P is ? then the region again is
alled ex
lusive. In this
ase there
an exist no obje
twith surreptitious a

ess like C. If the bound on region r is ?, then the maximum interfa
eregion an obje
t with implementation region inside A
an have is r, for example, B. (When ris a sta
k-allo
ated region then there is no obje
t A either, just the region r.) When an obje
tsimplementation region is ex
lusive, then the region does not exhibit the sta
k-based deallo
ationdes
ribed before. It does however ensure that the interfa
e obje
t is the single a

ess point to theaggregate it
onstru
ts. This means that when the obje
t be
omes garbage, every region inside rand the obje
ts they
ontain
an be safely deleted.As a part of the type system we have the following fun
tions from region variables to regions:ub and tb. The �rst gives the upper bound on a region variable. This gives the maximal regionwhere the interfa
e
an go. The se
ond gives the upper bound on regions
reated within theregion. This property is inherited by the other regions.These fun
tions have the following values, as per the kind of behaviour we wish to exhibit:sta
k allo
ated Regions
reated using new � � p=? in a, where a is not an obje
t, have thefollowing properties:� ub(�) = p. Note that it is e�e
tively unde�ned be
ause this is only used when typingobje
ts whi
h store their implementation in �;� tb(�) = �.Region is not atta
hed to an obje
t. Prevents any obje
ts like C above.single entry Regions
reated using new � � p=? in wfo� are used to store the implementationof an aggregate. In this
ase, the obje
t is the single a

ess point to the implementation.Region � has the following properties:� ub(�) = p;� tb(�) = �Again prevents obje
ts like C.bounded Regions
reated using new � � p=p0 in wfo� are used to store the implementation ofan aggregate.� ub(�) = p0; and� tb(�) = p0.This allows obje
t's like C, where the bound on the interfa
e region is p0, and this bound isinherited by any obje
ts whose implementation region is inside �.If the bound P = � for every region, then we have e�e
tively the system des
ribed in [5℄. IfP = ? for every region, then we e�e
tively have the system des
ribed in [6℄. In a sense, our twoprevious major type systems are two extremes of the prote
tion lands
ape provided by the typesystem presented here.3 The Type RulesTyping environments have the following form:E ::= ; j E; x : A j E; � : A j E;�� p=P

E ` 3 good environmentE ` p good region pE ` p �: q p is inside qE ` K good permission KE ` K � K 0 K is a subpermission of K 0E;K ` A good type AE;K ` A<:B A is a subtype of BE;K ` a : A good expression a of type AE;K ` � meth good method type �E;K ` (�)(�)) C a
tuals arguments � mat
h method type �;return type is CFigure 3: JudgementsThe type system
onsists of the judgements des
ribed in Figure 3. (Others dealing with storesand
on�gurations are required to provide a
omplete a

ount.)Note that permissionsK
ontrol both type and term formation. The idea is to limit the obje
tsand lo
ations a

essed in a given term to those residing in one of the regions indi
ated by thepermission [5℄.The �rst three type rules follow the standard pattern. Lo
ations have obje
t type.(Env ;); ` 3 (Env x)E;K ` A x =2 dom(E)E; x : A ` 3 (Env Lo
ation)E; hpi ` [li : �ii21::n℄pq � =2 dom(E)E; � : [li : �ii21::n℄pq ` 3There are two rules for adding new region variables to an environment, depending whether theregion is bounded or ex
lusive. A bounded region
an be
reated inside any other region p, solong as we ensure that the bound q is at most the transitive bound of p (Env �1). This preventsan obje
t in region � from being a

essed dire
tly by an obje
t outside of tb(p), as this wouldviolate the intended meaning of tb(). An ex
lusive region
an be
reating inside any valid region(Env �2). (Env �1)E ` q �: tb(p) � =2 dom(E)E;�� p=q ` 3 (Env �2)E ` p � =2 dom(E)E;�� p=? ` 3Given some environment, a valid region is either the top level region � or any de
lared in theenvironment.The nesting of regions is derived from the variable de
larations. Additional rules deal with? to make subtyping existential types more
exible and uniform. The rules for re
exivity andtransitivity of �: have been omitted.(Region �)E ` 3E ` � (Region �)� 2 dom(E)E ` � (In �:)�� p=P 2 EE ` � �: p (In ??)E ` 3E ` ? �: ? (In ?)E ` pE ` ? �: pThe upper and transitive bounds too are derived from the region de
larations in the environ-ment, as des
ribed in Se
tion 2.1.

(In UB1)�� p=q 2 EE ` q �: ub(�) (In UB2)�� p=? 2 EE ` p �: ub(�) (In TB1)�� p=q 2 EE ` q �: tb(�) (In TB2)�� p=? 2 EE ` � �: tb(�)These rules are really saying a number of things whi
h have been
ompressed into a single setof rules. For example, (In UB1) is really saying thatE ` q �: q �� p=q 2 EE ` ub(�) = qE ` q �: ub(�) using (UB1)�� p=q 2 EE ` ub(�) = q and (In =)E ` p �: q E ` q0 = qE ` p �: q0The rules as presented provide enough information for our present purpose.Any valid region
an be used to
reate either a point (Perm p) or upset permission (Perm p ").The subpermission relation is derived dire
tly from the nesting of regions. It is based on the ideathat if you have permission to a

ess a region, you
an a

ess all the regions en
losing it | alliedwith standard s
oping rules. Rules for re
exivity and transitivity of � have been omitted.(Perm p)E ` pE ` hpi (Perm p ")E ` pE ` hp"i (SubPerm p)E ` pE ` hpi � hp"i (SubPerm �:)E ` q �: pE ` hp"i � hq"iIt is in the rules for types, parti
ularly for obje
ts, where all the ma
hinery starts to work.The �rst
lause of (Type Obje
t), E; hq "i ` �i meth, ensures that all parts of the methodtype whi
h
on
ern obje
t types reside in regions en
losing q. This helps maintain a parti
ularstru
tural invariant on obje
t graphs whi
h allows private implementation to be prote
ted, butalso to be a

essed by multiple interfa
es [5℄. The
lause E ` q �: p ensures that the obje
ts
an a

ess themselves. The �nal
lause E ` p �: ub(q) ensures that the obje
t is not pla
ed in aregion whi
h should not have a

ess to region q.The subtyping rule for obje
ts allows only width but not depth subtyping, though this
ouldeasily be extended using varian
e annotations [1℄. Neither region
omponent
an
hange.(Type Obje
t) (li distin
t)E; hq"i ` �i meth 8i 2 1::n E ` q �: p E ` p �: ub(q)E; hpi ` [li : �ii21::n℄pq(Sub Obje
t) (li distin
t)E; hq"i ` �i meth 8i 2 1::n+m E ` q �: p E ` p �: ub(q)E; hpi ` [li : �ii21::n+m℄pq<:[li : �ii21::n℄pqExistential types quantify only over regions (though the usual existential
ould easily be added).This is to hide the details of the new implementation region part of an obje
t's type. Sin
e theregion in whi
h an obje
t resides is used to determine whi
h other obje
ts
an a

ess it, from whi
hthe subsequent stru
tural invariants are attained, a key aspe
t of this type rule is to prevent hidingthat region. This is done with an additional side
ondition: from E ` K and � =2 dom(E), itfollows that � is not in the permissions K. Sin
e this governs the top level regions whi
h the
ano

ur in obje
t types appearing in type B, we
on
lude that none of these obje
t types
an residein �.The subtyping rule follows the standard pattern, ex
ept that the p and P
omponents varyin opposite dire
tions. The p
omponent is the region whi
h � is inside. Logi
ally, be
ause �:

is transitive, � is also inside any region whi
h p is inside. The type system, on the other hand,prevents dire
t a

ess from any region outside P . By tightening the bound no harm is done.Indeed, when P 0 = ? the type prevents any surreptitious referen
es from being
reated.(Type Exists)E;�� p=P ;K ` B E ` KE;K ` 9(�� p=P)B (Sub Exists)E ` p �: p0 E ` P 0 �: P E; �� p=P ;K ` A<:A0 E ` KE;K ` 9(�� p=P)A<:9(� � p0=P 0)A0Lifting allows types and expressions whi
h
an be formed given some permission K to be validwith a larger permission K 0.(Type Lift)E;K ` A E ` K � K 0E;K 0 ` A (Sub Lift)E;K ` A<:B E ` K � K 0E;K 0 ` A<:BThe subtype relation <: is also re
exive and transitive, but again these rules have been omitted.The method type rules allow methods to have any number of arguments and a return typewhi
h are all types. Methods
annot take fun
tions as parameters, but fun
tions
an be en
odedor added with little e�ort. Presenting method types as a separate
olle
iton of type rules makessense with more
ompli
ated versions of this type system.(Type Return)E;K ` AE;K ` A meth (Type Arrow)E;K ` A E;K ` � methE;K ` A ! � methA number of the term typing rules rely on the fun
tion b�
C whi
h
onverts the methodarguments � and the return type C into a method type �:De�nition 1 (b�
C) b;
C b= Cbx : A;�
C b= A! b�
CLo
ations and variables are typed as per assumption, so long as the permission is large enoughto
onstru
t the appropriate type.(Val x)x : A 2 E E;K ` AE;K ` x : A (Val Lo
ation)� : [li : �ii21::n℄pq 2 EE; hpi ` � : [li : �ii21::n℄pqThe rule (Val Obje
t) in
ludes the usual rule for well-formed obje
ts, taking a

ount of themultiple method arguments. In addition, it restri
ts the obje
ts and lo
ations whi
h
an bea

essed in the method bodies to those in
luded in permission hq"i, where q is the implementationregion. This means an obje
t
an a

ess any en
losing region. Be
ause the obje
t's type A iswell-formed, we also have that E ` q �: p, thus an obje
t
an a

ess itself. We also have theappropriate bound restri
tion whi
h limits a

ess to the implementation region. The
on
lusionof the rule states that the obje
t
an be a

essed in any expression having permssion to a

ess theinterfa
e region p.

(Val Obje
t) (where A � [li : �ii21::n℄pq and �i � b�i
Ci)E; si : A;�i; hq"i ` bi : Ci 8i 2 1::nE; hpi ` [li = &(si : A;�i)bii21::n℄pq : AMethod sele
tion depends on the following additional type rules for
he
king that the methodarguments are
orre
t in type and number. These are (Arg Empty) and (Arg Val).(Arg Empty)E;K ` CE;K ` (C)(;)) C (Arg Val)E;K ` v : A E;K ` (�)(�)) CE;K ` (A ! �)(v;�)) CMethod sele
tion simply requires that the arguments mat
h the de
lared type, and the return typeis the return type of the method type. (Val Sele
t)E;K ` v : [li : �ii21::n℄pq E;K ` (�j)(�)) Cj j 2 1::nE;K ` v:ljh�i : CjMethod update ensures that the new method has the same type as the old, and that anyobje
ts and lo
ations whi
h it a

esses are a

essible both to the obje
t and in the
ontext whi
hinstalls the method. (That is, E ` K 0 � hq"i and E ` K 0 � K in e�e
t spe
ify that K 0 is in theinterse
tion of hq"i and K.)(Val Update) (where A � [li : �ii21::n℄pq and �j � b�j
Cj)E;K ` v : A E; s : A;�j ;K 0 ` b : CjE ` K 0 � hq"i E ` K 0 � K j 2 1::nE;K ` v:lj (&(s : A;�j)b : AThe type rule for new introdu
es a new region with parti
ular properties into an expression.The permission h�i in the �rst premiss allows obje
ts to be
reating in the new region and perhapsin
luded as part of an aggregate's implementation, but the se
ond premiss ensures that � doesnot o

ur in the type, preventing the new region name from appearing in the return type. Thistype rule resembles the one for new names in the ��
al
ulus [11, 10℄.(Val New)E;�� p=P ;K [h�i ` a : A E;K ` AE;K ` new �� p=P in a : APa
king and repa
king existential types follow the usual pattern (ex
ept for the name
hange).The additional
lause to (Val Hide) ensures that the type 9(� � q=P)A is well-formed, and thusthat hide does not abstra
t away the region in whi
h any obje
ts reside, as this region is essentialfor
ontrolling obje
t graph stru
ture. (Val Hide)E ` p �: q E;K ` vffp=�gg : Affp=�gg E;K ` 9(�� q=P)AE;K ` hide p as �� q=P in v:A : 9(�� q=P)A

(Val Expose)E;K ` v : 9(�� p=P)A E;K ` B E;�� p=P; x : A;K [h�i ` b : BE;K ` expose v as �� p=P ; x:A in b:B : BSubsumption additionally allows the permission required to type an expression to in
rease.(Val Subsumption)E;K ` a : A E;K 0 ` A<:B E ` K � K 0E;K 0 ` a : BThe operational semanti
s of the
al
ulus are straightforward extensions of those for the pre-vious version of this system. The regions have no e�e
t on
omputation, but the semanti
s tra
ksnew regions and their properties in terms of existing regions. In previous work this was used toprove the appropriate invariants, and we anti
ipate that this will be the
ase here.4 Appli
ationsThe
al
ulus has a number of prin
iple appli
ations:� obje
ts whi
h
an be have their entire implementation deleted when they be
ome garbage;� bounds on a

ess to aggregates used to derive other
onstraints on obje
t lifetimes; and� sta
k-based allo
ation of obje
ts | whi
h, using the above two features, allows entire ag-gregate obje
ts to be allo
ated in a sta
k-based manner, using a sta
k of heaps.But there are other appli
ations in the area for whi
h this
al
ulus was orignially devised.There is a problem with so-
alled vampiri
 behaviour [5℄ | whi
h amounts la
king
ontrol overregion
reation | is dealt with adequately by this type system, using the ? bound. Using the samekind of type in a di�erent manner (if the type system is extended with region parameterisationin methods following [5℄) allows something resembling prin
ipals to be regained, in prin
iple [15℄.This is
alled borrowing elsewhere. This o

urs when an obje
t passes another obje
t, possiblypart of its implementation, to another obje
t's method, and is guaranteed that the other obje
twill not retain a referen
e in any shape or form [2℄. As a simple example,
onsider a sort fun
tionwhi
h sorts the elements of a list. One would hope that this did not retain any referen
es to thelist being sorted or any of its elements, but one would wish that it
ould use its own intermediatedata stru
tures to do the sorting. The form of borrowing available in minor extensions to thistype system
an a

ommodate su
h idioms.5 Dis
ussionThe notions of bounded
ontainment presented here may seem a little
ompli
ated, but they arebased on notions whi
h already exist in programming languages. They are in part inspired by thevariable s
oping of inner
lasses (and many other things),
ombined with genuine priva
y (whi
hprote
ts obje
ts), and the bounds on the general way aggregates are used in pra
ti
e.These notions in
lasses are generally stati
, whereas our nesting and bounds are entirelydynami
, and the kinds of prote
tion on o�er (su
h as via priva
y annotations) work only at a
lass or pa
kage not obje
t level. Here we deal with the a
tual obje
ts.

6 FutureMu
h remains to be done. As we
omplete the formal development of the type system, we hopealso to simplify it by independently studying the underlying
ontainment model. The aim is todis
over invariants on obje
t graph stru
ture whi
h
an be stated simply. This should also assistwith the statement and proof of the memory management properties.As su
h, the type system is too
ompli
ated to use dire
tly in a programming language. Withminimal annotations, perhaps indi
ating whi
h obje
ts are part of the implementation, and byleveraging o� the existing nesting stru
tures already present in programming languages (for ex-ample, inner
lasses), a stati
 program analysis may use the type system as a target as a target,aiming to get a more private private.On
e the
onstraints between obje
t and region life-times have been established, hybrid algo-rithms whi
h
ombine regions with garbage
olle
tion
an then be designed, implemented, andevaluated. This of
ourse will not happen overnight.Referen
es[1℄ Mart��n Abadi and Lu
a Cardelli. A Theory of Obje
ts. Springer-Verlag, 1996.[2℄ John Boyland. Alias burying: Unique variables without destru
tive reads. Software | Pra
ti
e andExperien
e, 2001. to appear.[3℄ Lu
a Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Ambient groups and mobility types. InTheoreti
al Computer S
ien
e; Exploring New Frontiers in Theoreti
al Informati
s. InternationalConferen
e IFIP TCS 2000, volume 1872 of LNCS, pages 333{347, 2000.[4℄ Lu
a Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Se
re
y and group
reation. In CONCUR2000 { Con
urren
y Theory. 11th International Conferen
e, volume 1877 of LNCS, pages 365{379,August 2000.[5℄ David Clarke. An obje
t
al
ulus with ownership and
ontainment. In Founda-tions of Obje
t-oriented Programming (FOOL8), London, January 2001. Available fromhttp://www.
s.williams.edu/�kim/FOOL/FOOL8.html.[6℄ David Clarke, John Potter, and James Noble. Ownership types for
exible alias prote
tion. InOOPSLA Pro
eedings, 1998.[7℄ David Clarke, Ryan Shelswell, John Potter, and James Noble. Obje
t ownership to order. Unpublishedmanus
ript.[8℄ David G. Clarke. Ownership and Containment. PhD thesis, S
hool of Computer S
ien
e and Engi-neering, University of New South Wales, Sydney, Australia, 2001. In preparation.[9℄ Andrew D. Gordon and Paul D. Hankin. A
on
urrent obje
t
al
ulus: Redu
tion and typing. InHLCL'98, Elsevier ENTCS, 1998.[10℄ Martin Odersky. A synta
ti
 theory of lo
al names. Te
hni
al Report YALEU/DC/RR-965, YaleUniversity, May 1993.[11℄ A. M. Pitts and I. D. B. Stark. Observable properties of higher order fun
tions that dynami
ally
reate lo
al names, or: What's new? In Mathemati
al Foundations of Computer S
ien
e, Pro
.18th Int. Symp., Gda�nsk, 1993, volume 711 of Le
ture Notes in Computer S
ien
e, pages 122{141.Springer-Verlag, Berlin, 1993.[12℄ James Rumbaugh, Mi
hael Blaha, William Premerlani, Frederi
k Eddy, and William Lorensen.Obje
t-Oriented Modeling and Design. Prenti
e Hall, 1991.[13℄ Amr Sabry and Matthias Felleisen. Reasoning about programs in
ontinuation-passing style. In 1992ACM Conferen
e on LISP and Fun
tional Programming, pages 288{298, San Fran
is
o, CA, June1992. ACM.[14℄ Mads Tofte and Jean-Pierre Talpin. Region-Based Memory Management. Information and Compu-tation, 132(2):109{176, 1997.[15℄ Steve Zdan
ewi
, Dan Grossman, and Greg Morrisett. Prin
ipals in programming languages: Asynta
ti
 proof te
hnique. In Pro
eedings of the 4th ACM SIGPLAN International Conferen
e onFun
tional Programming, Paris, Fran
e, September 1999.

