
Looking for LeaksIncomplete Draft for the SPACE2001 WorkshopAdam Bakewell�January 8, 2001AbstractImplementations of programming languages that assist the programmer by providing automatic mem-ory management can contain space leaks. We de�ne a leaky implementation as one with asymptoticallyworse space usage than the language standard for some program | the leak witness.This paper is about proving an implementation | or rather its operational semantics, expressed asa term-graph rewriting system | has a space leak. We do this by conducting an automated search forcandidate leak witnesses. These are programs that do not terminate and keep on allocating more memorywithout limit.To make the problem decideable we restrict ourselves to �nding witnesses from a class of loopingprograms which are evaluated by repeatedly applying the same sequence of rules from the operationalsemantics. A non-standard uni�cation procedure is used to construct a super-rule | the repeating rulesequence. A matching procedure tests whether a super-rule can self feed, producing its own redex andso representing a set of non-terminating programs. An approximation is applied to test if the super-rulewill also allocate at each iteration, thus selecting candidate witnesses.This brute force search is slow, so we employ the idea of proof planning to reduce the search space. Wealso use an approximation to the exact super-rule construction procedure to avoid generating multiplesolutions.The search technique is applied to variants of a simple call by name operational semantics for CoreHaskell.1 Space LeaksWe aim to �nd a proof that an implementation I of a programming language has a space leak with respectto the reference implementation R . Our de�nition of a space leak is (1): I has asymptotically greater spaceusage on some program P ; it will keep on demanding more and more memory whereas R runs P in constantspace. I R , 9P � 8k 2 N; space (P; I) > k � space(P; R) (1)So I could have asymptotically lower space usage than the reference R for many programs, but it doesnot meet the reference standard in every case (is a quasi-ordering). These notes are about searching forP , the leak witness program.2 Operational SemanticsWe use the operational semantics of an implementation, expressed as a set of term-graph rewrite rules, asthe input to the search procedure. Our term-graph framework [BR00] models programs as rooted graphscontaining terms built from a user-de�ned grammar. The operational semantics is de�ned as a graph evalu-ator | the rewrite rules. In combination with a garbage collector, which removes graph nodes unreachablefrom the roots, this speci�es the space behaviour of the operational semantics.�Department of Computer Science, University of York, UK. ajb@cs.york.ac.uk

Example 1 (A semantics for call-by-need evaluation)The �-calculus with let expressions is de�ned by the higher-order term grammar below. Category X de�nesexpression terms, including let and � which both bind a variable. Category S de�nes stack terms which holdthe context during evaluation.Syntactic category Term de�nitions Usual notationX ::= LAM x:X �x:X lambda abstractionj APP X x X x apply expression to variablej VAR x x variablej LET x:X X 0 let x = X in X 0 (recursive) local de�nitionj BOT ? constant for black holingS ::= PSH x s x; s stacked application argument xj UDM x s #x s update marker for variable xGraphs built from this grammar are sets of bindings mapping address variables to terms. Free variablesin a term are the addresses of other bindings in the graph. Graphs also have some root variables, two in thislanguage. As a simple example, consider the graph fa 7! let id = �x:x in id idga; �. This has one expressionnode addressed by the �rst root which contains a simple program term. The second root variable addressesthe current stack node, initially there are no stack nodes so it is null.An evaluator for this language is speci�ed below. Each rule has a left pattern and a right pattern, bothpatterns have roots. A rule replaces a sub-graph matching its left pattern with the sub-graph matching itsright pattern under the same substitution. A substitution S = (�; �) has two parts, � maps all the variablesin the pattern to those in the graph (including node addresses and bound variables) and � maps the variableswritten in upper-case | the holes | in the pattern to terms in the graph. The right pattern may apply asubstitution to a hole to replace any freed occurences of variables that were bound in the left pattern.fa 7! �x:E; y 7! X; s 7! #y tga; s �! fy 7! �x:E; a 7! �x:Egy; t (Update)fa 7! xga; s �! fa 7! ?; t 7! #a sgx; t (LookupGood)fa 7! �x:E; s 7! b; t; b 7! F yga; s �! fb 7! E[y=x]; a 7! �x:Egb; t (ReduceGood)fa 7! F xga; s �! fb 7! F; t 7! a; s; a 7! ? xgb; t (Push)fa 7! let y = E in Xga; s �! fa 7! X [b=y]; b 7! E[b=y]ga; s (Let)The evaluation trace for the example graph is shown below. (Let) allocates a new node b to hold thede�nition of id. The application is decomposed by (Push); the function part is evaluated �rst: the valueof the variable b is retrieved by a (Lookup) followed by an (Update). (Reduce) replaces parameter x withargument address b and evaluates the function body, so b is looked up again.fa 7! let id = �x:x in id idga; ��! fa 7! b b; b 7! �x:xga; � (Let)�! fc 7! b; d 7! a; �; a 7! ? b; b 7! �x:xgc; d (Push)�! fc 7! ?; e 7! #c d; d 7! a; �; a 7! ? b; b 7! �x:xgb; e (LookupGood)�! fc 7! �x:x; b 7! �x:x; d 7! a; �; a 7! ? bgc; d (Update)�! fa 7! b; b 7! �x:xga; � (ReduceGood)�! fa 7! ?; f 7! #a �; b 7! �x:xgb; f (LookupGood)�! fa 7! �x:xga; � (Update)space = 5, time = 7The space usage of a graph, space, is de�ned as the maximum number of nodes needed during itsevaluation, 5 in the example. This is our reference evaluator R . Some of its rules are labelled Good , we willuse Bad variants to construct leaky evaluators. 23 Self-Feeding LoopsTo �nd a leak witness candidate by hand we might try to construct a simple non-terminating program, �llingin details so that it repeatedly allocates on I but does not on R.

For our search we will look for candidates whose execution follows a regular pattern, these self-feedingloops are de�ned by (2): they are graphs whose evaluation repeatedly follows the same n steps, resulting in abigger graph which will follow the same steps (its variables may be named di�erently, hence the substitution� in the equation). s
s A = fGj9�; n 2 N �G �!nA H ^H � �(G)g (2)This class of leak witnesses is not complete, it is easy to construct examples where irregular repetitionmust be detected to �nd the leak, but in practice it seems su�cient for many examples.Now we can formalise the property we are searching for. We are looking for a sequence of ruleshr1; : : : ; rni 2 I n such that an instance of their most general result matches a renaming of an instanceof their most general redex. If we de�ne a function superRule to �nd the most general redex and result of arule sequence (the super-rule of that rule sequence) then we can de�ne the leak candidates as the set (3).fS(L)jhr1; : : : ; rni 2 I n ^ 9(L �! R) = superRulehr1; : : : ; rni ^ 9S; � � S(�(R)) � S(L)g (3)Example 2 (A Self-Feeding Rule)This example shows how a single rule can form a self-feeding loop. Replacing (LookupGood) in R with(LookupBad) gives us a model of lazy evaluation without black holing during variable lookup. Before, whilethe value of x was being found, the variable a was overwritten with ?. (LookupBad) does not bother withthis and introduces a space leak.fa 7! xga;s �! ft 7! #a s; a 7! xgx;t (LookupBad)Renaming the left pattern with [t=s] and applying the substitution [a=x] to both sides we get; fa 7!aga; t � ft 7! #a s; a 7! aga; t. This tells us that the graphs matching fa 7! aga; t will evaluate byrepeatedly looking up a, allocating a new stack node at each iteration, resulting in unbounded space usage.This does not happen on R as black holing prevents the loop being followed. 2The programs recognised by this self-feed test have no value so it is perhaps di�cult to say how dangerousthe leaky evaluator is in practice (on programs that do have values). In general it seems unlikely that aspace fault could only a�ect non-terminating programs. It is well known that black holing is necessary togain the expected space complexity of many programs [Jon92].We are searching for the smallest leak witness because that should pinpoint the source of the space faultmost directly. Also it makes the search procedure, which will itself be non-terminating (and doomed tofailure where the smallest witness is quite large), more likely to come up with an answer. Alternatively, wecould count the number of leak witnesses per n super-rules as an absolute measure of leakiness: if there is aself-feeding leak but we cannot �nd it after searching millions of super-rules then the leak may not be veryserious in practice.Sections 4 to 6 describe the components of the brute-force search procedure, Sections 7 and 8 look atsome re�nements which improve its e�ectiveness.4 Super-Rule ConstructionWe need to �nd the most general redex and result of a sequence of two rewrite rules r1 and r2. That is,we want a rule which has the same e�ect as applying r1 then r2: we write this as super(r1; r2). Super-rules corresponding to longer rule sequences can then be constructed by repeatedly applying super , sosuperRulehr1; r2; r3i = super(super(r1; r2); r3) = super(r1; super(r2; r3)).super may have no solutions because the right pattern of r1 might never match the left pattern of r2. Itmay also have many solutions, as discussed in section 5. So super must provide a complete set of super-ruleswhich replace r1 followed by r2 exactly.Roughly, super-rule construction works as follows. Given r1 = L1 �! R1 and r2 = L2 �! R2, �rst weform a most general mid-point by unifying R1 and L2. We get a substitution S such that any address inboth S(R1) and S(R1) maps to the same term pattern and the pattern roots are identical.

Example 3 (super(Let ;Let))Unifying the right pattern of (Let) with a renaming of its left pattern gives the graph patternMID = fa 7! let z = A[b=y] in B[b=y]; b 7! E[b=y]ga; s. The uni�er is S = (�; �) where � = [] and� = [(let z = A in B)=X;A[b=y]=A;B[b=y]=B].Now the uni�er S is applied to L1 and L2. Any nodes in S(L2) that are not already in, S(R1) are addedto S(L1) to form the super-rule left pattern. Similarly, the super-rule right pattern is formed from S(R2)plus any nodes in S(R1) that are not already in S(L2). Any nodes allocated by R1 which cannot be live (inany context) in the new right pattern are removed. For (Let ;Let) we get the rule below.fa 7! let y = E in (let z = A in B)ga; s �! fa 7! B[c=z; b=y]; c 7! A[c=z; b=y]; b 7! E[b=y]ga; s 2super preserves the following properties of graph rewrite rules. The left pattern is linear in holes, no holehas a substitution and all its nodes are reachable from its roots. The right pattern may be non-linear, holesmay have substitutions and it can be disconnected. All nodes in the right pattern but not in the left areallocated by the rule: they are distinct from all existing nodes and from each other. Any nodes in the leftpattern but not in the right are deallocated by the rule. Further, all nodes in the left pattern are assumedto be distinct (though we will have cause to relax this restriction later). There are two changes we mustmake to the original rewrite rule speci�cation [BR00]. Left patterns may now be non-linear in variables,and patterns are extended with constraint sets which express required inequalities amoungst their variables,so (Update) can be written as below. These constraint sets can be quadratic in the number of nodes inthe pattern but in practice they do not get quite so large because nodes that belong to di�erent syntacticcategories can never be equal: a 6= s and y 6= s are implicit in (Update).fa 7! �x:E; y 7! X; s 7! #y tga; sjjfa 6= yg �! fy 7! �x:E; a 7! �x:Egy; tjjfa 6= yg (Update)5 Multiple Super-RulesAs well as taking the variable disequality constraints into consideration, the super-rule problem can producemultiple solutions. The pattern uni�cation (or rather, disuni�cation [BB94] | uni�cation with disequalities)procedure must generate a set of solutions. Examples 4 and 5 illustrate the cases that cause multiple solutions.Example 4 (Holes with substitutions)Unifying the patterns H [x=y] and z demands multiple solutions because either the substitution has an e�ectmaking hole H = y and the variable x = z or the substitution has no e�ect and H = z; z 6= y. To understandwhy both solutions are needed, consider constructing the super(Let ;Lookup). We must disunify the patternsfa 7! X [b=y]; b 7! E[b=y]ga; s and fa 7! xga; s. This requires a solution to the equation X [b=y] = x. Soeither X = y where the variable looked up is the one just allocated or the variable is one already presentelsewhere in the graph and X = x. Therefore we generate the two super-rules below.fa 7! let c = A in (g)ga; bkfg 6= cg �! fa 7! ?; h 7! #a b; d 7! A[d=c]gg; hkfg 6= c; a 6= h; a 6= d; h 6= dgfa 7! let c = A in (c)ga; b �! fa 7! ?; h 7! #a b; d 7! A[d=c]gd; hkfa 6= h; a 6= d; h 6= dg 2In general, when a disuni�cation requires a solution to H� = P , there are as many solutions as thereare ways of partitioning the free variables of P into j�j + 1 sets. Fortunately, we never have to solve theuni�cation problem H [x=y] = H 0[u=v] because we always disunify a left pattern with a right pattern.Example 5 (Equalities between left-pattern nodes)The basic super-rule construction procedure for super(Push ;LookupBad) gives us (4). This is not quite rightbecause it leaves a = f or a 6= f unspeci�ed, and yet it does not quite represent both possibilities properly.fa 7! f b; f 7! Xga; sjjfg �! fa 7! ? b; c 7! f; f 7! X;u 7! #c t; t 7! a : sgf; ujjfa 6= c; c 6= f; u 6= tg (4)

If a = f then X = (f b) but if we substitute this into the right pattern of (4) then there are two nodeswith address a which map to di�erent terms. But it is possible to evaluate (Push) then (Lookup) in the casewhere a = f , we just need to generate both solutions explicitly by continuing the disuni�cation with eithera = f or a 6= f . This gives the correct result, shown below. This modi�cation can generate a number ofsolutions exponential in the pattern size.fa 7! f b; f 7! Xga; sjjfa 6= fg�! fa 7! ? b; c 7! f; f 7! X;u 7! #c t; t 7! a : sgf; ujjfa 6= c; c 6= f; a 6= f; u 6= tgfa 7! a bga; sjjfg �! fa 7! ? b; c 7! a; u 7! #c t; t 7! a : sgf; ujjfa 6= c; u 6= tg (5)26 Simple Search StrategyGenerating all rule sequences then �nding their super-rules then testing if they can self-feed and �nallytesting whether they allocate produces a list of candidate leak witnesses.The allocation test is only an approximation because we cannot always tell whether the increase in spaceusage will survive a garbage collection | it depends on the context. So we de�ne the change in space causedby a rule as a range and then we can take the lower limit as a safe approximation, or the upper limit if moresolutions are preferred.Example 6 (Finding a leak in a stack-like scoping evaluator)De�ning I as R but replacing (ReduceGood) with (ReduceBad) and adding (Return) gives us a semanticsthat has a space leak. Now, when a function body is entered by (Reduce), it pushes a Ret stack term whichis not popped until the value of that function body is found (category S is extended with these Ret x sfunction symbols).fa 7! �x:E; s 7! b; t; b 7! F yga; s �! fb 7! E[y=x]; s 7! Ret b t; a 7! �x:Egb; s (ReduceBad)fa 7! �x:E; s 7! Ret f tga; s �! fa 7! �x:Ega; t (Return)The smallest candidate witness produced is: ff 7! �x:f �; a 7! f �ga; �, from the rule sequence(Push;Lookup;Update;ReduceBad). This accumulates a Ret node at each iteration. Coincidentally, this rulesequence is the smallest self-feeding loop on R, which runs in constant space. 27 Going FasterTo search more quickly we use the idea of proof planning [Bun88] to restrict the search space without losingpossible solutions. There are a number of improvements we can make to the simple rule sequence generationprocess before the (much more complex) super-rule generator is applied.Firstly, we only need to consider rule sequences that could occur. The super-rule generator will onlysucceed if the whole rule sequence can occur, but we can use a next rule table to avoid generating any rulesequences which is obviously impossible because rule x can never follow rule y.Example 7 (Next rule table of R)For our example evaluator R (and its variants) the next rule table is shown below. It is generated simplyby disunifying the right pattern of the �rst rule with the left pattern of the second. It is quite dense, 20 outof a possible 25 rule sequences may occur.First Rule Second RuleUpdate Lookup Reduce Push LetUpdate 1 1Lookup 1 1 1 1Reduce 1 1 1 1 1Push 1 1 1 1Let 1 1 1 1 1

We only generate rule sequences hr1; : : : ; rni such that ri+1 may follow ri and r1 may follow rn. If wesearch all sequences up to length 7 on I , this cuts the number of sequences from 97,655 to 21,851. 2Further processing of the next rule table may be appropriate to remove any tributaries and leave onlystrongly-connected cycles, since we are only interested in rules that are reachable from themselves. Thebrute force search will still generate all permutation loops of a super-rule. For example, if ha; b; ci form anallocating and self-feeding super-rule then so do hb; c; ai and hc; a; bi. These variants can be eliminated atthe sequence generation stage, the disadvantage being that we will not always get the loop variant which iseasiest to read.Example 8 (Removing permutation loops in I)Adding this �lter to our search up to length 7 in R cuts the number of sequences down to 3,367. For I inExample 6, instead of getting all 4 versions of the witness (10 taking multiple solutions into account, and58 if we also take all results of the self-feed test) we only get the 2 super-rules for the (alphabetically least)permutation of those rules, shown below.fa 7! i; i 7! �c:i g; b 7! w; z; w 7! ? gga; bkfw 6= a; a 6= i; w 6= i; g 6= cg�! fs 7! i; t 7! w; b; w 7! ? g; b 7! Ret w z; a 7! �c:i g; i 7! �c:i ggs; tkfs 6= w;w 6= a; a 6= i; w 6= i; g 6= c; s 6= a; s 6= i; t 6= bg(LookupGood ;Update;ReduceBad ;Push)fa 7! h; h 7! �s:h s; b 7! u;w; u 7! ? dga; bkfu 6= a; a 6= h; u 6= hg�! fq 7! h; r 7! u; b; u 7! ? d; b 7! Ret u w; a 7! �s:h s; h 7! �s:h sgq; rkfq 6= u; u 6= a; a 6= h; u 6= h; q 6= a; q 6= h; r 6= bg(LookupGood ;Update;ReduceBad ;Push) 2Finally, we are only interested in super-rules which allocate. Another simple approximation rules outany rule sequence that cannot ever allocate. This brings the search space to depth 7 in R down to 2,649sequences.8 Avoiding Multiple SolutionsThe exact super-rule construction algorithm can generate a lot of solutions for certain combinations of rules,particularly where there are many hole substitutions or disconnected right-hand patterns. An approximateversion of the disuni�cation algorithm which generalises at the points where the exact version producesmultiple solutions gives only one super-rule for each rule sequence. Furthermore, if the approximate ruleis not self-feeding then the exact verion cannot be self-feeding either. Adding the approximate versions as�lters before generating the exact solution cuts the search space down much further. In our search to depth7 on R , there are 2,179 sequences which have an approximate super-rule out of which only 31 can self-feed.The exact super-rule generator produces 357 rules from these sequences.9 Conclusion and Further WorkThe primary shortcoming of the work presented here is that it only generates candidate leak witnesses:it produces programs that are allocating self-feeding loops on I , but does not say anything about theirbehaviour on R. To solve this problem we need to decide if any instance of our candidate witnesses canrun in constant space on R. For examples like the ones in this paper, it will be su�cient to prove thateither: the candidate cannot begin a self-feeding loop on R , as in Example 2; or that the cadidate forms aself-feeding but non-allocating loop, as in Example 6.There is also plenty of scope for improvement in the search procedure: sharing disuni�cations and usingnext rule tables with a lookahead of more than one step could give constant-factor time improvements, atthe cost of greater space usage.

References[BB94] W L Buntine and H-J B�urckert. On solving equations and disequations. Journal of the ACM,41(4):591{629, July 1994.[BR00] A Bakewell and C Runciman. The space usage problem: An evaluation kit for graph-reductionsemantics. In S Gilmore, editor, Proc. 2nd Scottish Functional Programming Workshop, School ofComputer Science, University of St. Andrews, pages 1{18, July 2000.[Bun88] A Bundy. The use of explicit plans to guide inductive proofs. In CADE-9, volume 310 of LNCS,pages 111{120, 1988.[Jon92] Richard Jones. Tail recursion without space leaks. Journal of Functional Programming, 2(1):73{80,January 1992.

