| 0 | 0 | sup | 
| 1 | 0 | prop lemma to negated and(1) | 
| 2 | 0 | lemma uniqueNegative | 
| 3 | 0 | lemma doubleMinus | 
| 4 | 0 | lemma minusNegated | 
| 5 | 0 | lemma eqReflexivity | 
| 6 | 0 | lemma eqSymmetry | 
| 7 | 0 | lemma eqTransitivity | 
| 8 | 0 | lemma eqTransitivity4 | 
| 9 | 0 | lemma eqTransitivity5 | 
| 10 | 0 | lemma eqTransitivity6 | 
| 11 | 0 | lemma addEquations | 
| 12 | 0 | lemma subtractEquations | 
| 13 | 0 | lemma subtractEquationsLeft | 
| 14 | 0 | lemma multiplyEquations | 
| 15 | 0 | lemma eqNegated | 
| 16 | 0 | lemma positiveToRight(Eq) | 
| 17 | 0 | lemma positiveToLeft(Eq)(1 term) | 
| 18 | 0 | lemma negativeToLeft(Eq) | 
| 19 | 0 | lemma nonreciprocalToRight(Eq)(1 term) | 
| 20 | 0 | lemma plusAssociativity(4 terms) | 
| 21 | 0 | lemma lessNeq | 
| 22 | 0 | lemma neqSymmetry | 
| 23 | 0 | lemma neqNegated | 
| 24 | 0 | lemma subNeqRight | 
| 25 | 0 | lemma subNeqLeft | 
| 26 | 0 | lemma negativeToRight(Neq)(1 term) | 
| 27 | 0 | lemma neqAddition | 
| 28 | 0 | lemma neqMultiplication | 
| 29 | 0 | lemma nonzeroProduct(2) | 
| 30 | 0 | lemma UStelescope(+1) | 
| 31 | 0 | lemma telescopeBound base | 
| 32 | 0 | lemma telescopeBound indu | 
| 33 | 0 | lemma telescopeBound | 
| 34 | 0 | lemma intervalSize base | 
| 35 | 0 | lemma intervalSize indu | 
| 36 | 0 | lemma intervalSize | 
| 37 | 0 | lemma XSlessUS | 
| 38 | 0 | lemma USdecreasing(+1) | 
| 39 | 0 | lemma closeUS | 
| 40 | 0 | lemma closeUS(n+1) | 
| 41 | 0 | pred lemma allNegated(Imply) | 
| 42 | 0 | pred lemma existNegated(Imply) | 
| 43 | 0 | pred lemma intro exist helper | 
| 44 | 0 | pred lemma intro exist | 
| 45 | 0 | pred lemma exist mp | 
| 46 | 0 | pred lemma exist mp2 | 
| 47 | 0 | pred lemma 2exist mp | 
| 48 | 0 | pred lemma 2exist mp2 | 
| 49 | 0 | pred lemma EAE mp | 
| 50 | 0 | pred lemma addAll | 
| 51 | 0 | pred lemma addExist helper1 | 
| 52 | 0 | pred lemma addExist helper2 | 
| 53 | 0 | pred lemma addExist | 
| 54 | 0 | pred lemma addExist(SimpleAnt) | 
| 55 | 0 | pred lemma addExist(Simple) | 
| 56 | 0 | pred lemma addEAE | 
| 57 | 0 | pred lemma AEAnegated | 
| 58 | 0 | pred lemma EEAnegated | 
| 59 | 0 | lemma induction | 
| 60 | 0 | lemma leqAntisymmetry | 
| 61 | 0 | lemma leqTransitivity | 
| 62 | 0 | lemma leqAddition | 
| 63 | 0 | lemma leqMultiplication | 
| 64 | 0 | lemma reciprocal | 
| 65 | 0 | lemma equality | 
| 66 | 0 | lemma eqLeq | 
| 67 | 0 | lemma eqAddition | 
| 68 | 0 | lemma eqMultiplication | 
| 69 | 0 | lemma leqMultiplicationLeft | 
| 70 | 0 | lemma leqLessEq | 
| 71 | 0 | lemma lessLeq | 
| 72 | 0 | lemma from leqGeq | 
| 73 | 0 | lemma subLeqRight | 
| 74 | 0 | lemma subLeqLeft | 
| 75 | 0 | lemma leqPlus1 | 
| 76 | 0 | lemma positiveToRight(Leq) | 
| 77 | 0 | lemma positiveToRight(Leq)(1 term) | 
| 78 | 0 | lemma negativeToRight(Leq) | 
| 79 | 0 | lemma positiveToLeft(Leq) | 
| 80 | 0 | lemma negativeToLeft(Leq) | 
| 81 | 0 | lemma negativeToLeft(Leq)(1 term) | 
| 82 | 0 | lemma leqAdditionLeft | 
| 83 | 0 | lemma leqSubtraction | 
| 84 | 0 | lemma leqSubtractionLeft | 
| 85 | 0 | lemma thirdGeq | 
| 86 | 0 | lemma leqNegated | 
| 87 | 0 | lemma addEquations(Leq) | 
| 88 | 0 | lemma multiplyEquations(Leq) | 
| 89 | 0 | lemma thirdGeqSeries | 
| 90 | 0 | lemma leqNeqLess | 
| 91 | 0 | lemma fromLess | 
| 92 | 0 | lemma toLess | 
| 93 | 0 | lemma fromNotLess | 
| 94 | 0 | lemma toNotLess | 
| 95 | 0 | lemma negativeLessPositive | 
| 96 | 0 | lemma leqLessTransitivity | 
| 97 | 0 | lemma lessLeqTransitivity | 
| 98 | 0 | lemma lessTransitivity | 
| 99 | 0 | lemma lessTotality | 
| 100 | 0 | lemma subLessRight | 
| 101 | 0 | lemma subLessLeft | 
| 102 | 0 | 
lemma switchTerms(x | 
| 103 | 0 | 
lemma switchTerms(x-y | 
| 104 | 0 | lemma lessAddition | 
| 105 | 0 | lemma lessAdditionLeft | 
| 106 | 0 | lemma lessMultiplication | 
| 107 | 0 | lemma lessMultiplicationLeft | 
| 108 | 0 | lemma lessDivision | 
| 109 | 0 | lemma positiveToRight(Less) | 
| 110 | 0 | lemma positiveToLeft(Less) | 
| 111 | 0 | lemma negativeToLeft(Less) | 
| 112 | 0 | lemma negativeToRight(Less) | 
| 113 | 0 | lemma addEquations(Less) | 
| 114 | 0 | lemma addEquations(LeqLess) | 
| 115 | 0 | lemma reciprocalToLeft(Less) | 
| 116 | 0 | lemma lessNegated | 
| 117 | 0 | lemma positiveNonzero | 
| 118 | 0 | lemma positiveNegated | 
| 119 | 0 | lemma nonpositiveNegated | 
| 120 | 0 | lemma negativeNegated | 
| 121 | 0 | lemma nonnegativeNegated | 
| 122 | 0 | lemma positiveHalved | 
| 123 | 0 | lemma positiveInverted | 
| 124 | 0 | lemma nonnegativeNumerical | 
| 125 | 0 | lemma negativeNumerical | 
| 126 | 0 | lemma positiveNumerical | 
| 127 | 0 | lemma nonpositiveNumerical | 
| 128 | 0 | lemma |0|=0 | 
| 129 | 0 | lemma 0<=|x| | 
| 130 | 0 | lemma x<=|x| | 
| 131 | 0 | lemma fromPositiveNumerical | 
| 132 | 0 | lemma sameNumerical | 
| 133 | 0 | lemma signNumerical(+) | 
| 134 | 0 | lemma signNumerical | 
| 135 | 0 | lemma toNumericalLess | 
| 136 | 0 | lemma fromNumericalGreater | 
| 137 | 0 | lemma numericalDifference | 
| 138 | 0 | lemma numericalDifferenceLess helper | 
| 139 | 0 | lemma numericalDifferenceLess | 
| 140 | 0 | lemma splitNumericalSumHelper | 
| 141 | 0 | lemma splitNumericalSum(++) | 
| 142 | 0 | lemma splitNumericalSum(--) | 
| 143 | 0 | lemma splitNumericalSum(+-, smallNegative) | 
| 144 | 0 | lemma splitNumericalSum(+-, bigNegative) | 
| 145 | 0 | lemma splitNumericalSum(+-) | 
| 146 | 0 | lemma splitNumericalSum(-+) | 
| 147 | 0 | lemma splitNumericalSum | 
| 148 | 0 | lemma splitNumericalProduct(++) | 
| 149 | 0 | lemma splitNumericalProduct(+-) | 
| 150 | 0 | lemma splitNumericalProduct | 
| 151 | 0 | lemma insertMiddleTerm(Numerical) | 
| 152 | 0 | lemma insertTwoMiddleTerms(Numerical) | 
| 153 | 0 | lemma three2twoTerms | 
| 154 | 0 | lemma three2threeTerms | 
| 155 | 0 | lemma three2twoFactors | 
| 156 | 0 | lemma three2threeFactors | 
| 157 | 0 | lemma times(-1) | 
| 158 | 0 | lemma times(-1)Left | 
| 159 | 0 | lemma leqMax1 | 
| 160 | 0 | lemma leqMax2 | 
| 161 | 0 | lemma lessThanMax | 
| 162 | 0 | lemma x+y=zBackwards | 
| 163 | 0 | lemma x*y=zBackwards | 
| 164 | 0 | lemma x=x+(y-y) | 
| 165 | 0 | lemma x=x+y-y | 
| 166 | 0 | lemma x=x*y*(1/y) | 
| 167 | 0 | lemma insertMiddleTerm(Sum) | 
| 168 | 0 | lemma insertTwoMiddleTerms(Sum) | 
| 169 | 0 | lemma insertMiddleTerm(Difference) | 
| 170 | 0 | lemma x*0+x=x | 
| 171 | 0 | lemma x*0=0 | 
| 172 | 0 | lemma nonnegativeFactors | 
| 173 | 0 | lemma nonzeroFactors | 
| 174 | 0 | lemma positiveFactors | 
| 175 | 0 | lemma plusTimesMinus | 
| 176 | 0 | lemma minusTimesMinus | 
| 177 | 0 | lemma (-1)*(-1)+(-1)*1=0 | 
| 178 | 0 | lemma (-1)*(-1)=1 | 
| 179 | 0 | lemma 0<1Helper | 
| 180 | 0 | lemma 0<1 | 
| 181 | 0 | lemma 0<2 | 
| 182 | 0 | lemma 0<3 | 
| 183 | 0 | lemma 0<1/2 | 
| 184 | 0 | lemma 0<1/3 | 
| 185 | 0 | lemma x+x=2*x | 
| 186 | 0 | lemma x+x+x=3*x | 
| 187 | 0 | lemma (1/2)x+(1/2)x=x | 
| 188 | 0 | lemma (1/3)x+(1/3)x+(1/3)x=x | 
| 189 | 0 | lemma -x-y=-(x+y) | 
| 190 | 0 | lemma -x*y=-(x*y) | 
| 191 | 0 | lemma -0=0 | 
| 192 | 0 | lemma sameFsymmetry | 
| 193 | 0 | lemma sameFtransitivity | 
| 194 | 0 | lemma f2R(Plus) | 
| 195 | 0 | lemma f2R(Times) | 
| 196 | 0 | 
lemma < | 
| 197 | 0 | 
lemma < | 
| 198 | 0 | lemma <<==Reflexivity | 
| 199 | 0 | lemma <<==AntisymmetryHelper(Q) | 
| 200 | 0 | 
lemma fromNot | 
| 201 | 0 | 
lemma fromNot | 
| 202 | 0 | 
lemma fromNot | 
| 203 | 0 | 
lemma fromNot | 
| 204 | 0 | 
lemma fromNot | 
| 205 | 0 | lemma fromNotSameF(Strongest) helper2 | 
| 206 | 0 | lemma fromNotSameF(Strongest) helper | 
| 207 | 0 | lemma fromNotSameF(Strongest) | 
| 208 | 0 | lemma toLess(F) helper | 
| 209 | 0 | lemma toLess(F) | 
| 210 | 0 | lemma fromNot<< | 
| 211 | 0 | lemma toLess(R) | 
| 212 | 0 | lemma fromNotSameF(Weak)(Helper) | 
| 213 | 0 | lemma fromNotSameF(Weak) | 
| 214 | 0 | lemma fromNotLess(F) | 
| 215 | 0 | lemma ==Addition | 
| 216 | 0 | lemma ==AdditionLeft | 
| 217 | 0 | lemma fpart-Bounded base | 
| 218 | 0 | lemma fpart-Bounded indu helper | 
| 219 | 0 | lemma fpart-Bounded indu | 
| 220 | 0 | lemma fpart-Bounded | 
| 221 | 0 | lemma f-Bounded helper | 
| 222 | 0 | lemma f-Bounded | 
| 223 | 0 | lemma sameFmultiplication helper | 
| 224 | 0 | lemma sameFmultiplication | 
| 225 | 0 | lemma eqMultiplication(R) | 
| 226 | 0 | lemma eqMultiplicationLeft(R) | 
| 227 | 0 | lemma x*0=0(F) | 
| 228 | 0 | lemma x*0=0(R) | 
| 229 | 0 | lemma lessMultiplication(F) helper2 | 
| 230 | 0 | lemma lessMultiplication(F) helper | 
| 231 | 0 | lemma lessMultiplication(F) | 
| 232 | 0 | lemma lessMultiplication(R) | 
| 233 | 0 | lemma leqMultiplication(R) | 
| 234 | 0 | lemma plusAssociativity(F) | 
| 235 | 0 | lemma plus0(F) | 
| 236 | 0 | lemma plusCommutativity(F) | 
| 237 | 0 | lemma timesAssociativity(F) | 
| 238 | 0 | lemma times1f | 
| 239 | 0 | lemma 2cauchy helper | 
| 240 | 0 | lemma 2cauchy | 
| 241 | 0 | lemma reciprocalF nonzero | 
| 242 | 0 | lemma eventually=f to sameF helper | 
| 243 | 0 | lemma eventually=f to sameF | 
| 244 | 0 | lemma fromNotSameF(Strong) helper2 | 
| 245 | 0 | lemma fromNotSameF(Strong) helper | 
| 246 | 0 | lemma fromNotSameF(Strong) | 
| 247 | 0 | lemma sameFreciprocal helper | 
| 248 | 0 | lemma sameFreciprocal | 
| 249 | 0 | lemma from!!== | 
| 250 | 0 | lemma reciprocal(R) | 
| 251 | 0 | lemma timesCommutativity(F) | 
| 252 | 0 | lemma distribution(F) | 
| 253 | 0 | lemma fromMax(1) | 
| 254 | 0 | lemma fromMax(2) | 
| 255 | 0 | prop lemma to negated and | 
| 256 | 0 | lemma distributionOut | 
| 257 | 0 | lemma distributionOutLeft | 
| 258 | 0 | lemma distributionLeft | 
| 259 | 0 | lemma fromNotLess(R) | 
| 260 | 0 | lemma cartProdIsRelation | 
| 261 | 0 | lemma fromSubset | 
| 262 | 0 | lemma subsetIsRelation | 
| 263 | 0 | lemma toSeries | 
| 264 | 0 | lemma fromSeries | 
| 265 | 0 | lemma seriesSubsetCP | 
| 266 | 0 | lemma valueType | 
| 267 | 0 | prop lemma remove or | 
| 268 | 0 | lemma fromSingleton | 
| 269 | 0 | lemma inPair(1) | 
| 270 | 0 | lemma inPair(2) | 
| 271 | 0 | lemma sameMember(2) | 
| 272 | 0 | lemma toBinaryUnion(1) | 
| 273 | 0 | lemma toBinaryUnion(2) | 
| 274 | 0 | lemma fromOrderedPair(twoLevels) | 
| 275 | 0 | lemma toCartProd helper | 
| 276 | 0 | lemma toCartProd | 
| 277 | 0 | lemma nonreciprocalToRight(Eq) | 
| 278 | 0 | lemma nonreciprocalToLeft(Eq)(1 term) | 
| 279 | 0 | lemma sameReciprocal | 
| 280 | 0 | lemma CPseparationIsRelation | 
| 281 | 0 | lemma orderedPairEquality | 
| 282 | 0 | lemma reciprocalIsFunction | 
| 283 | 0 | lemma reciprocalIsTotal | 
| 284 | 0 | lemma reciprocalIsRationalSeries | 
| 285 | 0 | lemma crsIsRelation | 
| 286 | 0 | lemma crsIsFunction | 
| 287 | 0 | lemma crsIsTotal | 
| 288 | 0 | lemma crsIsSeries | 
| 289 | 0 | lemma crsLookup | 
| 290 | 0 | lemma 0f | 
| 291 | 0 | lemma 1f | 
| 292 | 0 | lemma toSingleton | 
| 293 | 0 | lemma fromSameSingleton | 
| 294 | 0 | lemma singletonmembersEqual | 
| 295 | 0 | lemma unequalsNotInSingleton | 
| 296 | 0 | lemma nonsingletonmembersUnequal | 
| 297 | 0 | lemma fromOrderedPair | 
| 298 | 0 | lemma fromOrderedPair(1) | 
| 299 | 0 | lemma fromOrderedPair(2) | 
| 300 | 0 | lemma fromCartProd | 
| 301 | 0 | lemma fromCartProd(1) | 
| 302 | 0 | lemma fromCartProd(2) | 
| 303 | 0 | lemma sameOrderedPair | 
| 304 | 0 | lemma inSeries helper | 
| 305 | 0 | lemma inSeries | 
| 306 | 0 | lemma to=f subset helper | 
| 307 | 0 | lemma to=f subset | 
| 308 | 0 | lemma to=f | 
| 309 | 0 | lemma productIsFunction | 
| 310 | 0 | lemma productIsTotal | 
| 311 | 0 | lemma productIsRationalSeries | 
| 312 | 0 | lemma timesF | 
| 313 | 0 | lemma -x+(1/2)x=-(1/2)x | 
| 314 | 0 | lemma positiveTripled | 
| 315 | 0 | lemma positiveDividedBy3 | 
| 316 | 0 | lemma |x-x|=0 | 
| 317 | 0 | lemma 1<2 | 
| 318 | 0 | lemma 1/3<2/3 | 
| 319 | 0 | lemma (1/3)x+(1/3)x=(2/3)x | 
| 320 | 0 | lemma (2/3)x+(1/3)x=x | 
| 321 | 0 | lemma -x+(2/3)x=-(1/3)x | 
| 322 | 0 | lemma -(1/3)x-(1/3)x=-(2/3)x | 
| 323 | 0 | lemma -x+(1/3)x=-(2/3)x | 
| 324 | 0 | lemma preserveLessGreater | 
| 325 | 0 | lemma closetolessIsLess | 
| 326 | 0 | lemma subLessLeft(F) | 
| 327 | 0 | lemma subLessLeft(R) | 
| 328 | 0 | lemma closetogreaterIsGreater | 
| 329 | 0 | lemma subLessRight(F) | 
| 330 | 0 | lemma subLessRight(R) | 
| 331 | 0 | lemma plus0Left | 
| 332 | 0 | lemma times1Left | 
| 333 | 0 | lemma eqAdditionLeft | 
| 334 | 0 | lemma eqMultiplicationLeft | 
| 335 | 0 | lemma plusF(Sym) | 
| 336 | 0 | lemma timesF(Sym) | 
| 337 | 0 | lemma sameSeries(Gen) | 
| 338 | 0 | lemma equalsSameF | 
| 339 | 0 | lemma leqReflexivity(R) | 
| 340 | 0 | tester1 | 
| 341 | 0 | tester2 | 
| 342 | 0 | tester3 | 
| 343 | 0 | tester4 | 
| 344 | 0 | tester5 | 
| 345 | 0 | tester6 | 
The pyk compiler, version 0.grue.20060417+ by Klaus Grue,