| 0 | 0 | equivalence-relations |
| 1 | 0 | cdots |
| 2 | 0 | object-var |
| 3 | 0 | ex-var |
| 4 | 0 | ph-var |
| 5 | 0 | vaerdi |
| 6 | 0 | variabel |
| 7 | 1 | op {MissingArg} end op |
| 8 | 2 | op2 {MissingArg} comma {MissingArg} end op2 |
| 9 | 2 | define-equal {MissingArg} comma {MissingArg} end equal |
| 10 | 1 | contains-empty {MissingArg} end empty |
| 11 | 2 | 1deduction {MissingArg} conclude {MissingArg} end 1deduction |
| 12 | 2 | 1deduction zero {MissingArg} conclude {MissingArg} end 1deduction |
| 13 | 3 | 1deduction side {MissingArg} conclude {MissingArg} condition {MissingArg} end 1deduction |
| 14 | 3 | 1deduction one {MissingArg} conclude {MissingArg} condition {MissingArg} end 1deduction |
| 15 | 3 | 1deduction two {MissingArg} conclude {MissingArg} condition {MissingArg} end 1deduction |
| 16 | 4 | 1deduction three {MissingArg} conclude {MissingArg} condition {MissingArg} bound {MissingArg} end 1deduction |
| 17 | 4 | 1deduction four {MissingArg} conclude {MissingArg} condition {MissingArg} bound {MissingArg} end 1deduction |
| 18 | 4 | 1deduction four star {MissingArg} conclude {MissingArg} condition {MissingArg} bound {MissingArg} end 1deduction |
| 19 | 3 | 1deduction five {MissingArg} condition {MissingArg} bound {MissingArg} end 1deduction |
| 20 | 4 | 1deduction six {MissingArg} conclude {MissingArg} exception {MissingArg} bound {MissingArg} end 1deduction |
| 21 | 4 | 1deduction six star {MissingArg} conclude {MissingArg} exception {MissingArg} bound {MissingArg} end 1deduction |
| 22 | 1 | 1deduction seven {MissingArg} end 1deduction |
| 23 | 2 | 1deduction eight {MissingArg} bound {MissingArg} end 1deduction |
| 24 | 2 | 1deduction eight star {MissingArg} bound {MissingArg} end 1deduction |
| 25 | 0 | ex1 |
| 26 | 0 | ex2 |
| 27 | 0 | ex10 |
| 28 | 0 | ex20 |
| 29 | 1 | existential var {MissingArg} end var |
| 30 | 1 | {MissingArg} is existential var |
| 31 | 4 | exist-sub {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub |
| 32 | 4 | exist-sub0 {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub |
| 33 | 4 | exist-sub1 {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub |
| 34 | 4 | exist-sub* {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub |
| 35 | 0 | placeholder-var1 |
| 36 | 0 | placeholder-var2 |
| 37 | 0 | placeholder-var3 |
| 38 | 1 | placeholder-var {MissingArg} end var |
| 39 | 1 | {MissingArg} is placeholder-var |
| 40 | 4 | ph-sub {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub |
| 41 | 4 | ph-sub0 {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub |
| 42 | 4 | ph-sub1 {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub |
| 43 | 4 | ph-sub* {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub |
| 44 | 0 | var big set |
| 45 | 0 | object big set |
| 46 | 0 | meta big set |
| 47 | 0 | zermelo empty set |
| 48 | 0 | system zf |
| 49 | 0 | 1rule mp |
| 50 | 0 | 1rule gen |
| 51 | 0 | 1rule repetition |
| 52 | 0 | 1rule ad absurdum |
| 53 | 0 | 1rule deduction |
| 54 | 0 | 1rule exist intro |
| 55 | 0 | axiom extensionality |
| 56 | 0 | axiom empty set |
| 57 | 0 | axiom pair definition |
| 58 | 0 | axiom union definition |
| 59 | 0 | axiom power definition |
| 60 | 0 | axiom separation definition |
| 61 | 0 | cheating axiom all disjoint |
| 62 | 0 | prop lemma add double neg |
| 63 | 0 | prop lemma remove double neg |
| 64 | 0 | prop lemma and commutativity |
| 65 | 0 | prop lemma auto imply |
| 66 | 0 | prop lemma contrapositive |
| 67 | 0 | prop lemma first conjunct |
| 68 | 0 | prop lemma second conjunct |
| 69 | 0 | prop lemma from contradiction |
| 70 | 0 | prop lemma from disjuncts |
| 71 | 0 | prop lemma iff commutativity |
| 72 | 0 | prop lemma iff first |
| 73 | 0 | prop lemma iff second |
| 74 | 0 | prop lemma imply transitivity |
| 75 | 0 | prop lemma join conjuncts |
| 76 | 0 | prop lemma mp2 |
| 77 | 0 | prop lemma mp3 |
| 78 | 0 | prop lemma mp4 |
| 79 | 0 | prop lemma mp5 |
| 80 | 0 | prop lemma mt |
| 81 | 0 | prop lemma negative mt |
| 82 | 0 | prop lemma technicality |
| 83 | 0 | prop lemma weakening |
| 84 | 0 | prop lemma weaken or first |
| 85 | 0 | prop lemma weaken or second |
| 86 | 0 | lemma formula2pair |
| 87 | 0 | lemma pair2formula |
| 88 | 0 | lemma formula2union |
| 89 | 0 | lemma union2formula |
| 90 | 0 | lemma formula2separation |
| 91 | 0 | lemma separation2formula |
| 92 | 0 | lemma subset in power set |
| 93 | 0 | lemma power set is subset0 |
| 94 | 0 | lemma power set is subset |
| 95 | 0 | lemma power set is subset0-switch |
| 96 | 0 | lemma power set is subset-switch |
| 97 | 0 | lemma set equality suff condition |
| 98 | 0 | lemma set equality suff condition(t)0 |
| 99 | 0 | lemma set equality suff condition(t) |
| 100 | 0 | lemma set equality skip quantifier |
| 101 | 0 | lemma set equality nec condition |
| 102 | 0 | lemma reflexivity0 |
| 103 | 0 | lemma reflexivity |
| 104 | 0 | lemma symmetry0 |
| 105 | 0 | lemma symmetry |
| 106 | 0 | lemma transitivity0 |
| 107 | 0 | lemma transitivity |
| 108 | 0 | lemma er is reflexive |
| 109 | 0 | lemma er is symmetric |
| 110 | 0 | lemma er is transitive |
| 111 | 0 | lemma empty set is subset |
| 112 | 0 | lemma member not empty0 |
| 113 | 0 | lemma member not empty |
| 114 | 0 | lemma unique empty set0 |
| 115 | 0 | lemma unique empty set |
| 116 | 0 | lemma =reflexivity |
| 117 | 0 | lemma =symmetry |
| 118 | 0 | lemma =transitivity0 |
| 119 | 0 | lemma =transitivity |
| 120 | 0 | lemma transfer ~is0 |
| 121 | 0 | lemma transfer ~is |
| 122 | 0 | lemma pair subset0 |
| 123 | 0 | lemma pair subset1 |
| 124 | 0 | lemma pair subset |
| 125 | 0 | lemma same pair |
| 126 | 0 | lemma same singleton |
| 127 | 0 | lemma union subset |
| 128 | 0 | lemma same union |
| 129 | 0 | lemma separation subset |
| 130 | 0 | lemma same separation |
| 131 | 0 | lemma same binary union |
| 132 | 0 | lemma intersection subset |
| 133 | 0 | lemma same intersection |
| 134 | 0 | lemma auto member |
| 135 | 0 | lemma eq-system not empty0 |
| 136 | 0 | lemma eq-system not empty |
| 137 | 0 | lemma eq subset0 |
| 138 | 0 | lemma eq subset |
| 139 | 0 | lemma equivalence nec condition0 |
| 140 | 0 | lemma equivalence nec condition |
| 141 | 0 | lemma none-equivalence nec condition0 |
| 142 | 0 | lemma none-equivalence nec condition1 |
| 143 | 0 | lemma none-equivalence nec condition |
| 144 | 0 | lemma equivalence class is subset |
| 145 | 0 | lemma equivalence classes are disjoint |
| 146 | 0 | lemma all disjoint |
| 147 | 0 | lemma all disjoint-imply |
| 148 | 0 | lemma bs subset union(bs/r) |
| 149 | 0 | lemma union(bs/r) subset bs |
| 150 | 0 | lemma union(bs/r) is bs |
| 151 | 0 | theorem eq-system is partition |
| 152 | 2 | eq-system of {MissingArg} modulo {MissingArg} |
| 153 | 2 | intersection {MissingArg} comma {MissingArg} end intersection |
| 154 | 1 | union {MissingArg} end union |
| 155 | 2 | binary-union {MissingArg} comma {MissingArg} end union |
| 156 | 1 | power {MissingArg} end power |
| 157 | 1 | zermelo singleton {MissingArg} end singleton |
| 158 | 2 | zermelo pair {MissingArg} comma {MissingArg} end pair |
| 159 | 2 | zermelo ordered pair {MissingArg} comma {MissingArg} end pair |
| 160 | 2 | {MissingArg} zermelo in {MissingArg} |
| 161 | 3 | {MissingArg} is related to {MissingArg} under {MissingArg} |
| 162 | 2 | {MissingArg} is reflexive relation in {MissingArg} |
| 163 | 2 | {MissingArg} is symmetric relation in {MissingArg} |
| 164 | 2 | {MissingArg} is transitive relation in {MissingArg} |
| 165 | 2 | {MissingArg} is equivalence relation in {MissingArg} |
| 166 | 3 | equivalence class of {MissingArg} in {MissingArg} modulo {MissingArg} |
| 167 | 2 | {MissingArg} is partition of {MissingArg} |
| 168 | 2 | {MissingArg} zermelo is {MissingArg} |
| 169 | 2 | {MissingArg} is subset of {MissingArg} |
| 170 | 1 | not0 {MissingArg} |
| 171 | 2 | {MissingArg} zermelo ~in {MissingArg} |
| 172 | 2 | {MissingArg} zermelo ~is {MissingArg} |
| 173 | 2 | {MissingArg} and0 {MissingArg} |
| 174 | 2 | {MissingArg} or0 {MissingArg} |
| 175 | 2 | {MissingArg} iff {MissingArg} |
| 176 | 2 | the set of ph in {MissingArg} such that {MissingArg} end set |
The pyk compiler, version 0.grue.20060417+ by Klaus Grue,