| 0 | 0 | am | 
| 1 | 0 | cdots | 
| 2 | 0 | object-var | 
| 3 | 0 | ex-var | 
| 4 | 0 | ph-var | 
| 5 | 0 | vaerdi | 
| 6 | 0 | variabel | 
| 7 | 1 | op {MissingArg} end op | 
| 8 | 2 | op2 {MissingArg} comma {MissingArg} end op2 | 
| 9 | 2 | define-equal {MissingArg} comma {MissingArg} end equal | 
| 10 | 1 | contains-empty {MissingArg} end empty | 
| 11 | 2 | 1deduction {MissingArg} conclude {MissingArg} end 1deduction | 
| 12 | 2 | 1deduction zero {MissingArg} conclude {MissingArg} end 1deduction | 
| 13 | 3 | 1deduction side {MissingArg} conclude {MissingArg} condition {MissingArg} end 1deduction | 
| 14 | 3 | 1deduction one {MissingArg} conclude {MissingArg} condition {MissingArg} end 1deduction | 
| 15 | 3 | 1deduction two {MissingArg} conclude {MissingArg} condition {MissingArg} end 1deduction | 
| 16 | 4 | 1deduction three {MissingArg} conclude {MissingArg} condition {MissingArg} bound {MissingArg} end 1deduction | 
| 17 | 4 | 1deduction four {MissingArg} conclude {MissingArg} condition {MissingArg} bound {MissingArg} end 1deduction | 
| 18 | 4 | 1deduction four star {MissingArg} conclude {MissingArg} condition {MissingArg} bound {MissingArg} end 1deduction | 
| 19 | 3 | 1deduction five {MissingArg} condition {MissingArg} bound {MissingArg} end 1deduction | 
| 20 | 4 | 1deduction six {MissingArg} conclude {MissingArg} exception {MissingArg} bound {MissingArg} end 1deduction | 
| 21 | 4 | 1deduction six star {MissingArg} conclude {MissingArg} exception {MissingArg} bound {MissingArg} end 1deduction | 
| 22 | 1 | 1deduction seven {MissingArg} end 1deduction | 
| 23 | 2 | 1deduction eight {MissingArg} bound {MissingArg} end 1deduction | 
| 24 | 2 | 1deduction eight star {MissingArg} bound {MissingArg} end 1deduction | 
| 25 | 0 | ex1 | 
| 26 | 0 | ex2 | 
| 27 | 0 | ex3 | 
| 28 | 0 | ex10 | 
| 29 | 0 | ex20 | 
| 30 | 1 | existential var {MissingArg} end var | 
| 31 | 1 | {MissingArg} is existential var | 
| 32 | 4 | exist-sub {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub | 
| 33 | 4 | exist-sub0 {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub | 
| 34 | 4 | exist-sub1 {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub | 
| 35 | 4 | exist-sub* {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub | 
| 36 | 0 | placeholder-var1 | 
| 37 | 0 | placeholder-var2 | 
| 38 | 0 | placeholder-var3 | 
| 39 | 1 | placeholder-var {MissingArg} end var | 
| 40 | 1 | {MissingArg} is placeholder-var | 
| 41 | 4 | ph-sub {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub | 
| 42 | 4 | ph-sub0 {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub | 
| 43 | 4 | ph-sub1 {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub | 
| 44 | 4 | ph-sub* {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub | 
| 45 | 0 | var big set | 
| 46 | 0 | object big set | 
| 47 | 0 | meta big set | 
| 48 | 0 | zermelo empty set | 
| 49 | 0 | system Q | 
| 50 | 0 | 1rule mp | 
| 51 | 0 | 1rule gen | 
| 52 | 0 | 1rule repetition | 
| 53 | 0 | 1rule ad absurdum | 
| 54 | 0 | 1rule deduction | 
| 55 | 0 | 1rule exist intro | 
| 56 | 0 | axiom extensionality | 
| 57 | 0 | axiom empty set | 
| 58 | 0 | axiom pair definition | 
| 59 | 0 | axiom union definition | 
| 60 | 0 | axiom power definition | 
| 61 | 0 | axiom separation definition | 
| 62 | 0 | prop lemma add double neg | 
| 63 | 0 | prop lemma remove double neg | 
| 64 | 0 | prop lemma and commutativity | 
| 65 | 0 | prop lemma auto imply | 
| 66 | 0 | prop lemma contrapositive | 
| 67 | 0 | prop lemma first conjunct | 
| 68 | 0 | prop lemma second conjunct | 
| 69 | 0 | prop lemma from contradiction | 
| 70 | 0 | prop lemma from disjuncts | 
| 71 | 0 | prop lemma iff commutativity | 
| 72 | 0 | prop lemma iff first | 
| 73 | 0 | prop lemma iff second | 
| 74 | 0 | prop lemma imply transitivity | 
| 75 | 0 | prop lemma join conjuncts | 
| 76 | 0 | prop lemma mp2 | 
| 77 | 0 | prop lemma mp3 | 
| 78 | 0 | prop lemma mp4 | 
| 79 | 0 | prop lemma mp5 | 
| 80 | 0 | prop lemma mt | 
| 81 | 0 | prop lemma negative mt | 
| 82 | 0 | prop lemma technicality | 
| 83 | 0 | prop lemma weakening | 
| 84 | 0 | prop lemma weaken or first | 
| 85 | 0 | prop lemma weaken or second | 
| 86 | 0 | lemma formula2pair | 
| 87 | 0 | lemma pair2formula | 
| 88 | 0 | lemma formula2union | 
| 89 | 0 | lemma union2formula | 
| 90 | 0 | lemma formula2separation | 
| 91 | 0 | lemma separation2formula | 
| 92 | 0 | lemma subset in power set | 
| 93 | 0 | lemma power set is subset0 | 
| 94 | 0 | lemma power set is subset | 
| 95 | 0 | lemma power set is subset0-switch | 
| 96 | 0 | lemma power set is subset-switch | 
| 97 | 0 | lemma set equality suff condition | 
| 98 | 0 | lemma set equality suff condition(t)0 | 
| 99 | 0 | lemma set equality suff condition(t) | 
| 100 | 0 | lemma set equality skip quantifier | 
| 101 | 0 | lemma set equality nec condition | 
| 102 | 0 | lemma reflexivity0 | 
| 103 | 0 | lemma reflexivity | 
| 104 | 0 | lemma symmetry0 | 
| 105 | 0 | lemma symmetry | 
| 106 | 0 | lemma transitivity0 | 
| 107 | 0 | lemma transitivity | 
| 108 | 0 | lemma er is reflexive | 
| 109 | 0 | lemma er is symmetric | 
| 110 | 0 | lemma er is transitive | 
| 111 | 0 | lemma empty set is subset | 
| 112 | 0 | lemma member not empty0 | 
| 113 | 0 | lemma member not empty | 
| 114 | 0 | lemma unique empty set0 | 
| 115 | 0 | lemma unique empty set | 
| 116 | 0 | lemma ==Reflexivity | 
| 117 | 0 | lemma ==Symmetry | 
| 118 | 0 | lemma ==Transitivity0 | 
| 119 | 0 | lemma ==Transitivity | 
| 120 | 0 | lemma transfer ~is0 | 
| 121 | 0 | lemma transfer ~is | 
| 122 | 0 | lemma pair subset0 | 
| 123 | 0 | lemma pair subset1 | 
| 124 | 0 | lemma pair subset | 
| 125 | 0 | lemma same pair | 
| 126 | 0 | lemma same singleton | 
| 127 | 0 | lemma union subset | 
| 128 | 0 | lemma same union | 
| 129 | 0 | lemma separation subset | 
| 130 | 0 | lemma same separation | 
| 131 | 0 | lemma same binary union | 
| 132 | 0 | lemma intersection subset | 
| 133 | 0 | lemma same intersection | 
| 134 | 0 | lemma auto member | 
| 135 | 0 | lemma eq-system not empty0 | 
| 136 | 0 | lemma eq-system not empty | 
| 137 | 0 | lemma eq subset0 | 
| 138 | 0 | lemma eq subset | 
| 139 | 0 | lemma equivalence nec condition0 | 
| 140 | 0 | lemma equivalence nec condition | 
| 141 | 0 | lemma none-equivalence nec condition0 | 
| 142 | 0 | lemma none-equivalence nec condition1 | 
| 143 | 0 | lemma none-equivalence nec condition | 
| 144 | 0 | lemma equivalence class is subset | 
| 145 | 0 | lemma equivalence classes are disjoint | 
| 146 | 0 | lemma all disjoint | 
| 147 | 0 | lemma all disjoint-imply | 
| 148 | 0 | lemma bs subset union(bs/r) | 
| 149 | 0 | lemma union(bs/r) subset bs | 
| 150 | 0 | lemma union(bs/r) is bs | 
| 151 | 0 | theorem eq-system is partition | 
| 152 | 0 | var ep | 
| 153 | 0 | var fx | 
| 154 | 0 | var fy | 
| 155 | 0 | var fz | 
| 156 | 0 | var fu | 
| 157 | 0 | var fv | 
| 158 | 0 | var rx | 
| 159 | 0 | var ry | 
| 160 | 0 | var rz | 
| 161 | 0 | var ru | 
| 162 | 0 | meta ep | 
| 163 | 0 | meta fx | 
| 164 | 0 | meta fy | 
| 165 | 0 | meta fz | 
| 166 | 0 | meta fu | 
| 167 | 0 | meta fv | 
| 168 | 0 | meta rx | 
| 169 | 0 | meta ry | 
| 170 | 0 | meta rz | 
| 171 | 0 | meta ru | 
| 172 | 0 | 0 | 
| 173 | 0 | 1 | 
| 174 | 0 | (-1) | 
| 175 | 0 | 2 | 
| 176 | 0 | 1/2 | 
| 177 | 0 | 0f | 
| 178 | 0 | 1f | 
| 179 | 0 | 00 | 
| 180 | 0 | 01 | 
| 181 | 0 | axiom leqReflexivity | 
| 182 | 0 | axiom leqAntisymmetry | 
| 183 | 0 | axiom leqTransitivity | 
| 184 | 0 | axiom leqTotality | 
| 185 | 0 | axiom leqAddition | 
| 186 | 0 | axiom leqMultiplication | 
| 187 | 0 | axiom plusAssociativity | 
| 188 | 0 | axiom plusCommutativity | 
| 189 | 0 | axiom negative | 
| 190 | 0 | axiom plus0 | 
| 191 | 0 | axiom timesAssociativity | 
| 192 | 0 | axiom timesCommutativity | 
| 193 | 0 | axiom reciprocal | 
| 194 | 0 | axiom times1 | 
| 195 | 0 | axiom distribution | 
| 196 | 0 | axiom 0not1 | 
| 197 | 0 | axiom equality | 
| 198 | 0 | axiom eqLeq | 
| 199 | 0 | axiom eqAddition | 
| 200 | 0 | axiom eqMultiplication | 
| 201 | 0 | lemma set equality nec condition(1) | 
| 202 | 0 | lemma set equality nec condition(2) | 
| 203 | 0 | 1rule ifThenElse true | 
| 204 | 0 | 1rule ifThenElse false | 
| 205 | 0 | 1rule from=f | 
| 206 | 0 | 1rule to=f | 
| 207 | 0 | 
1rule from | 
| 208 | 0 | 
1rule to | 
| 209 | 0 | axiom plusF | 
| 210 | 0 | axiom timesF | 
| 211 | 0 | axiom minusF | 
| 212 | 0 | axiom 0f | 
| 213 | 0 | axiom 1f | 
| 214 | 0 | 1rule fromSameF | 
| 215 | 0 | 1rule toSameF | 
| 216 | 0 | 1rule to==XX | 
| 217 | 0 | 1rule from== | 
| 218 | 0 | 1rule to== | 
| 219 | 0 | 
1rule from< | 
| 220 | 0 | 
1rule from< | 
| 221 | 0 | 
1rule from< | 
| 222 | 0 | 
1rule to< | 
| 223 | 0 | 1rule from<< | 
| 224 | 0 | 1rule to<< | 
| 225 | 0 | 1rule fromInR | 
| 226 | 0 | axiom plusR | 
| 227 | 0 | axiom timesR | 
| 228 | 0 | lemma leqAntisymmetry | 
| 229 | 0 | lemma leqTransitivity | 
| 230 | 0 | lemma leqAddition | 
| 231 | 0 | lemma leqMultiplication | 
| 232 | 0 | lemma reciprocal | 
| 233 | 0 | lemma equality | 
| 234 | 0 | lemma eqLeq | 
| 235 | 0 | lemma eqAddition | 
| 236 | 0 | lemma eqMultiplication | 
| 237 | 0 | prop lemma to negated imply | 
| 238 | 0 | prop lemma tertium non datur | 
| 239 | 0 | prop lemma imply negation | 
| 240 | 0 | prop lemma from negations | 
| 241 | 0 | prop lemma from three disjuncts | 
| 242 | 0 | prop lemma from two times two disjuncts | 
| 243 | 0 | prop lemma negate first disjunct | 
| 244 | 0 | prop lemma negate second disjunct | 
| 245 | 0 | prop lemma expand disjuncts | 
| 246 | 0 | lemma eqReflexivity | 
| 247 | 0 | lemma eqSymmetry | 
| 248 | 0 | lemma eqTransitivity | 
| 249 | 0 | lemma eqTransitivity4 | 
| 250 | 0 | lemma eqTransitivity5 | 
| 251 | 0 | lemma eqTransitivity6 | 
| 252 | 0 | lemma plus0Left | 
| 253 | 0 | lemma times1Left | 
| 254 | 0 | lemma eqAdditionLeft | 
| 255 | 0 | lemma eqMultiplicationLeft | 
| 256 | 0 | lemma distributionOut | 
| 257 | 0 | lemma three2twoTerms | 
| 258 | 0 | lemma three2threeTerms | 
| 259 | 0 | lemma three2twoFactors | 
| 260 | 0 | lemma addEquations | 
| 261 | 0 | lemma subtractEquations | 
| 262 | 0 | lemma subtractEquationsLeft | 
| 263 | 0 | lemma eqNegated | 
| 264 | 0 | lemma positiveToRight(Eq) | 
| 265 | 0 | lemma positiveToLeft(Eq)(1 term) | 
| 266 | 0 | lemma negativeToLeft(Eq) | 
| 267 | 0 | lemma lessNeq | 
| 268 | 0 | lemma neqSymmetry | 
| 269 | 0 | lemma neqNegated | 
| 270 | 0 | lemma subNeqRight | 
| 271 | 0 | lemma subNeqLeft | 
| 272 | 0 | lemma neqAddition | 
| 273 | 0 | lemma neqMultiplication | 
| 274 | 0 | lemma uniqueNegative | 
| 275 | 0 | lemma doubleMinus | 
| 276 | 0 | lemma leqLessEq | 
| 277 | 0 | lemma lessLeq | 
| 278 | 0 | lemma from leqGeq | 
| 279 | 0 | lemma subLeqRight | 
| 280 | 0 | lemma subLeqLeft | 
| 281 | 0 | lemma leqPlus1 | 
| 282 | 0 | lemma positiveToRight(Leq) | 
| 283 | 0 | lemma positiveToRight(Leq)(1 term) | 
| 284 | 0 | lemma negativeToLeft(Leq) | 
| 285 | 0 | lemma leqAdditionLeft | 
| 286 | 0 | lemma leqSubtraction | 
| 287 | 0 | lemma leqSubtractionLeft | 
| 288 | 0 | lemma thirdGeq | 
| 289 | 0 | lemma leqNegated | 
| 290 | 0 | lemma addEquations(Leq) | 
| 291 | 0 | lemma thirdGeqSeries | 
| 292 | 0 | lemma leqNeqLess | 
| 293 | 0 | lemma fromLess | 
| 294 | 0 | lemma toLess | 
| 295 | 0 | lemma fromNotLess | 
| 296 | 0 | lemma toNotLess | 
| 297 | 0 | lemma negativeLessPositive | 
| 298 | 0 | lemma leqLessTransitivity | 
| 299 | 0 | lemma lessLeqTransitivity | 
| 300 | 0 | lemma lessTransitivity | 
| 301 | 0 | lemma lessTotality | 
| 302 | 0 | lemma subLessRight | 
| 303 | 0 | lemma subLessLeft | 
| 304 | 0 | lemma lessAddition | 
| 305 | 0 | lemma lessAdditionLeft | 
| 306 | 0 | lemma lessMultiplication | 
| 307 | 0 | lemma lessMultiplicationLeft | 
| 308 | 0 | lemma lessDivision | 
| 309 | 0 | lemma addEquations(Less) | 
| 310 | 0 | lemma lessNegated | 
| 311 | 0 | lemma positiveNegated | 
| 312 | 0 | lemma nonpositiveNegated | 
| 313 | 0 | lemma negativeNegated | 
| 314 | 0 | lemma nonnegativeNegated | 
| 315 | 0 | lemma positiveHalved | 
| 316 | 0 | lemma nonnegativeNumerical | 
| 317 | 0 | lemma negativeNumerical | 
| 318 | 0 | lemma positiveNumerical | 
| 319 | 0 | lemma nonpositiveNumerical | 
| 320 | 0 | lemma |0|=0 | 
| 321 | 0 | lemma 0<=|x| | 
| 322 | 0 | lemma sameNumerical | 
| 323 | 0 | lemma signNumerical(+) | 
| 324 | 0 | lemma signNumerical | 
| 325 | 0 | lemma numericalDifference | 
| 326 | 0 | lemma splitNumericalSumHelper | 
| 327 | 0 | lemma splitNumericalSum(++) | 
| 328 | 0 | lemma splitNumericalSum(--) | 
| 329 | 0 | lemma splitNumericalSum(+-, smallNegative) | 
| 330 | 0 | lemma splitNumericalSum(+-, bigNegative) | 
| 331 | 0 | lemma splitNumericalSum(+-) | 
| 332 | 0 | lemma splitNumericalSum(-+) | 
| 333 | 0 | lemma splitNumericalSum | 
| 334 | 0 | lemma insertMiddleTerm(Numerical) | 
| 335 | 0 | lemma x+y=zBackwards | 
| 336 | 0 | lemma x*y=zBackwards | 
| 337 | 0 | lemma x=x+(y-y) | 
| 338 | 0 | lemma x=x+y-y | 
| 339 | 0 | lemma x=x*y*(1/y) | 
| 340 | 0 | lemma insertMiddleTerm(Sum) | 
| 341 | 0 | lemma insertMiddleTerm(Difference) | 
| 342 | 0 | lemma x*0+x=x | 
| 343 | 0 | lemma x*0=0 | 
| 344 | 0 | lemma (-1)*(-1)+(-1)*1=0 | 
| 345 | 0 | lemma (-1)*(-1)=1 | 
| 346 | 0 | lemma 0<1Helper | 
| 347 | 0 | lemma 0<1 | 
| 348 | 0 | lemma 0<2 | 
| 349 | 0 | lemma 0<1/2 | 
| 350 | 0 | lemma x+x=2*x | 
| 351 | 0 | lemma (1/2)x+(1/2)x=x | 
| 352 | 0 | lemma -x-y=-(x+y) | 
| 353 | 0 | lemma minusNegated | 
| 354 | 0 | lemma times(-1) | 
| 355 | 0 | lemma times(-1)Left | 
| 356 | 0 | lemma -0=0 | 
| 357 | 0 | lemma sameFsymmetry | 
| 358 | 0 | lemma sameFtransitivity | 
| 359 | 0 | lemma =f to sameF | 
| 360 | 0 | lemma plusF(Sym) | 
| 361 | 0 | lemma timesF(Sym) | 
| 362 | 0 | lemma f2R(Plus) | 
| 363 | 0 | lemma f2R(Times) | 
| 364 | 0 | lemma plusR(Sym) | 
| 365 | 0 | lemma timesR(Sym) | 
| 366 | 0 | lemma lessLeq(R) | 
| 367 | 0 | lemma eqLeq(R) | 
| 368 | 0 | lemma subLessRight(R) | 
| 369 | 0 | lemma subLessLeft(R) | 
| 370 | 0 | 
lemma < | 
| 371 | 0 | 
lemma < | 
| 372 | 0 | lemma <<==Reflexivity | 
| 373 | 0 | lemma <<==AntisymmetryHelper(Q) | 
| 374 | 0 | lemma <<==Antisymmetry | 
| 375 | 0 | lemma <<==Transitivity | 
| 376 | 0 | lemma plus0f | 
| 377 | 0 | lemma plus00 | 
| 378 | 0 | lemma ==Addition | 
| 379 | 0 | lemma ==AdditionLeft | 
| 380 | 0 | 
lemma < | 
| 381 | 0 | lemma <<==Addition | 
| 382 | 0 | lemma plusAssociativity(F) | 
| 383 | 0 | lemma plusAssociativity(R) | 
| 384 | 0 | lemma negative(R) | 
| 385 | 0 | lemma plusCommutativity(F) | 
| 386 | 0 | lemma plusCommutativity(R) | 
| 387 | 0 | lemma timesAssociativity(F) | 
| 388 | 0 | lemma timesAssociativity(R) | 
| 389 | 0 | lemma times1f | 
| 390 | 0 | lemma times01 | 
| 391 | 0 | lemma timesCommutativity(F) | 
| 392 | 0 | lemma timesCommutativity(R) | 
| 393 | 0 | lemma distribution(F) | 
| 394 | 0 | lemma distribution(R) | 
| 395 | 1 | R( {MissingArg} ) | 
| 396 | 1 | --R( {MissingArg} ) | 
| 397 | 1 | 1/ {MissingArg} | 
| 398 | 2 | eq-system of {MissingArg} modulo {MissingArg} | 
| 399 | 2 | intersection {MissingArg} comma {MissingArg} end intersection | 
| 400 | 2 | [ {MissingArg} ; {MissingArg} ] | 
| 401 | 1 | union {MissingArg} end union | 
| 402 | 2 | binary-union {MissingArg} comma {MissingArg} end union | 
| 403 | 1 | power {MissingArg} end power | 
| 404 | 1 | zermelo singleton {MissingArg} end singleton | 
| 405 | 2 | zermelo pair {MissingArg} comma {MissingArg} end pair | 
| 406 | 2 | zermelo ordered pair {MissingArg} comma {MissingArg} end pair | 
| 407 | 1 | - {MissingArg} | 
| 408 | 1 | -f {MissingArg} | 
| 409 | 2 | {MissingArg} in0 {MissingArg} | 
| 410 | 3 | {MissingArg} is related to {MissingArg} under {MissingArg} | 
| 411 | 2 | {MissingArg} is reflexive relation in {MissingArg} | 
| 412 | 2 | {MissingArg} is symmetric relation in {MissingArg} | 
| 413 | 2 | {MissingArg} is transitive relation in {MissingArg} | 
| 414 | 2 | {MissingArg} is equivalence relation in {MissingArg} | 
| 415 | 3 | equivalence class of {MissingArg} in {MissingArg} modulo {MissingArg} | 
| 416 | 2 | {MissingArg} is partition of {MissingArg} | 
| 417 | 2 | {MissingArg} * {MissingArg} | 
| 418 | 2 | {MissingArg} *f {MissingArg} | 
| 419 | 2 | {MissingArg} ** {MissingArg} | 
| 420 | 2 | {MissingArg} + {MissingArg} | 
| 421 | 2 | {MissingArg} - {MissingArg} | 
| 422 | 2 | {MissingArg} +f {MissingArg} | 
| 423 | 2 | {MissingArg} -f {MissingArg} | 
| 424 | 2 | {MissingArg} ++ {MissingArg} | 
| 425 | 2 | R( {MissingArg} ) -- R( {MissingArg} ) | 
| 426 | 1 | | {MissingArg} | | 
| 427 | 3 | if( {MissingArg} , {MissingArg} , {MissingArg} ) | 
| 428 | 2 | {MissingArg} = {MissingArg} | 
| 429 | 2 | {MissingArg} != {MissingArg} | 
| 430 | 2 | {MissingArg} <= {MissingArg} | 
| 431 | 2 | {MissingArg} < {MissingArg} | 
| 432 | 2 | {MissingArg} =f {MissingArg} | 
| 433 | 2 | 
{MissingArg}  | 
| 434 | 2 | {MissingArg} sameF {MissingArg} | 
| 435 | 2 | {MissingArg} == {MissingArg} | 
| 436 | 2 | {MissingArg} << {MissingArg} | 
| 437 | 2 | {MissingArg} <<== {MissingArg} | 
| 438 | 2 | {MissingArg} zermelo is {MissingArg} | 
| 439 | 2 | {MissingArg} is subset of {MissingArg} | 
| 440 | 1 | not0 {MissingArg} | 
| 441 | 2 | {MissingArg} zermelo ~in {MissingArg} | 
| 442 | 2 | {MissingArg} zermelo ~is {MissingArg} | 
| 443 | 2 | {MissingArg} and0 {MissingArg} | 
| 444 | 2 | {MissingArg} or0 {MissingArg} | 
| 445 | 2 | {MissingArg} iff {MissingArg} | 
| 446 | 2 | the set of ph in {MissingArg} such that {MissingArg} end set | 
The pyk compiler, version 0.grue.20060417+ by Klaus Grue,